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Abstract  

This paper is concerned with prediction of effective engineering constants of variable ply- 

thickness laminated composite panels using micro-macro mechanics methods. The composite 

panels are being extensively used as building blocks of aerospace industry. The attaches 

industry attaches prime importance to screening engineering constants of structural elements at 

pre-design level. Composites are heterogeneous materials, thus full characterisation of their 

properties is difficult. Misaligned and damage fibres, non-uniform curing, cracks, voids and 

residual stresses are pre-assumed negligible that can severely influence the properties. 

Furthermore, standard test methods and setups lack in data logging: ply-level, non-symmetric 

laminates, variable ply-thickness, effects of mutual influence coefficients, and coupling 

deformations. Micro-macro mechanics methods are need to be applied to supplement the 

previous studies. Current study applies micro-macro mechanics methods laws: constitutive, 

kinematics, equilibrium, and strain-displacement compatibility conditions to supplement 

previous efforts. Response of isotropic, orthotropic, and anisotropic materials were formulated 

at ply and laminate levels against axial, off-axis, and coupled loading. The formulations were 

coded into computer programs using MATLAB
TM

 software to predict the engineering 

constants. Quantities of the predicted engineering constants were plotted using MS-Excel
TM

 

2020 software. Selected results were compared against the data results available in the literature 

and found to be within acceptable deviations (±10%). Comparisons of the results confirmed 

that proposed micro-macro mechanics methods could also be useful to reliably predict effective 

engineering constants for the other similar cases.  

 

Keywords: A. Polymer Matrix Composites; B. Orthotropic Materials; C. Engineering 

Constants; D. Micro-Macro Mechanics.  
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1 Introduction 

Fibre-reinforced composite materials are combination of fibres and resin rich matrix that 

exhibit superior properties in a specific application [1] while constituents keep their original 

properties. Fibres are oriented at different angles within the matrix to achieve uniform 

directional stiffness and optimal performance [2]. The efficient configuration of fibres in the 

direction of loading path to transfer unidirectional load [3]. However, multi-directional panels 

are used where unidirectional panels are inadequate. Due to superior performance and 

fabrication flexibilities, the composite materials are being widely utilized in civil and military, 

mercantile, and offshore structures as beams, pipes, sheets and plates, cylinders, and many 

other part shapes Figure 1 [4]. The composites are becoming possible alternatives to steel due 

to high corrosion resistance, and specific strength properties: 20-40% weight savings, high 

stiffness, and reduced maintenance. 

 

 

Figure 1: Schematic illustration fibrous composite parts 

 

Structural elements have certain characteristics of shape, rigidity, stiffness, and strength for 

specific application. Thus comprehensive knowledge of engineering constants is important 

before putting them into load bearing services [5]. Therefore, extensive research is being 

carried out on various aspects of composites. For further references, the selected ones are being 

presented below.  

 

 One of the basic test method is ‘Ignition loss’ method used to determine quantities of volume 

fractions by weight in a composite sample. The method identifies volume fractions of quantities 

corresponding to response parameters of fibre, matrix types, and interfaces that influence 
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strengths and stiffness [6]. The volume fractions of quantities are utilised in Rule of Mixture 

(ROM), Halping-Tsai relations, and physical testing to formulate relationships to evaluate 

performance of the composite panels [7]. Similarly, dispersion or distribution of the filler in the 

matrix, interfacial structure and morphology affect the modulus [8] and [9]. Influence of shear 

effects in the displacements is another important factor, larger span-to-depth ratios are used to 

reduce the influence are detailed in [10]. Physical test methods consist of tensile, compression, 

flexural, shear modulus, Iosipescu, and v-notch-rail detailed in [11]. However, factors affecting 

engineering property determination are complicated: nature of matrix and filler, compatibility, 

and material processing technology [12] and [13]. Young’s modulus is one of the important 

characteristic, but it cannot be convenient procedure if the stacking sequence contains large 

number of plies [14]. They are solved by relating face conditions with symmetry conditions 

along the mid-plane in one half of the laminate through equations governing common variables 

between adjacent plies in layer-wise theory [15]. The deficiencies in the layer-wise theories are 

avoided using the author’s extended Poisson’s theory [16]. Use of such a theory in the 

preliminary analysis of extension and associated torsion problems is to be explored. As novel 

procedure based on this theory is envisaged in the analysis of unsymmetrical laminates. To the 

authors’ knowledge, no proper procedure exists in the literature [17].    

 

 Since fibrous composites are inhomogeneous and anisotropic, their characterisation is 

complex. Laminates aligned reinforcement are stiff along the fibres, but weak in transverse to 

the fibre direction, reported in [18]. In order to obtain equal stiffness in all off-axis loading 

systems to present balanced angle plies were investigated in [19]. To obtain equal stiffness in 

all directions quasi-isotropic lay-up configurations were used in [20]. A composite laminate 

subjected to off-axis loading system presents tensile-shear interactions in its plies that leads to 

distortions and local micro-structural damage hence their testing can produce unreliable results. 

Thus, unidirectional lamina was tested at different fibre volume fractions to predict elastic 

constants using the finite element method [21]. However, use of the method is reported to be 

limited for cases of tensile-shear interaction if the off-axis loading system does not coincide 

with the main axes of a single lamina or if the panel is not balanced [22], [23]. Instead of such 

testing, the simplified property prediction schemes based on mathematical formulations are 

being preferred [24]. The study paved the way for solution to obtain equal stiffness of panels 

subjected in all directions within a plane. Characterization of in-plane mechanical properties of 

laminated hybrid composites, and mechanics-of-materials model for predicting Young’s 

modulus can be found in [25]. Further complications exist as composite are anisotropic, thus 

they exhibit characteristics where normal loading induce normal and shear strains. Thus 
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relationships between forces and deformations exhibit much more complications than 

conventional materials. The coupled complications have severe implications during service life 

and unexpected behaviour of structural components. Effective elastic moduli and associated 

Poisson’s ratios for materials based on the theory of micro-macro mechanics along with linear 

elasticity and their limitations have been discussed in [26]and [27].  

 

The literature review reveals that majority of the existing studies are experimental, resource and 

time consuming. Many test methods use different geometries for panels and holding-fixtures 

that produce different data. Researcher has to undergo series of experiments to obtain desired 

properties [28]. Moreover, anisotropic nature and characteristics of shape, rigidity, and strength 

make physical testing complicated. Furthermore, analytical studies based on neglecting 

deformation effects could not be relied to predict optimal mechanical properties. Micro-macro 

mechanics methods found in the literature consist of uniform ply thickness, balanced, and 

symmetric. Micro-mechanics applied to variable ply thickness, non-symmetric laminates, and 

influence of mutual influence coefficients are required to approximate at pre-design stage are 

desired [29] and [30].  

 

Current study is based on micro-macro mechanics of fibrous composites. Stiffness matrices and 

invariants were formulated to include stress-strain effects and implemented in MATLAB
TM

 

code to approximate the effective engineering constants. Comparison and validation were 

carried out against intra-simulation and data results available in the literature and found to be 

within acceptable agreement. The study proposed that utilising the micro-macro mechanics 

laws the effective engineering can be reliably determined from computer codes.  

2 Materials and methods 

2.1 Fibre-reinforced panel and material properties  

The schematic illustration of fibres, lamina, and fibre-reinforced laminated composite panel are 

shown in Figure 2.   

 

 

Figure 2:  a) fibres, b) 5
th

 harness satin weave, and c) laminated panel 

Lamin
a 

Fibres 

5th Ply Horns Panel 
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The engineering constants calculated for a symmetric consisted of 4-Ply panel of AS4/3501-6 

laid up in a [     ]  stacking sequence, and for a non-symmetric 2-Ply panel of the same 

material code AS4/3501-6 laid up in a [     ]  stacking sequence [     ] . Material 

properties for both the panels are given in Table 1.  

 

Table 1: Properties of symmetric and non-symmetric panel 

Ply thickness (in) Young’s modulus (Ib/in
2
) Poisson’s ratio 

h               

0.005 20010000 1301000 0.3 0.02 

 

The engineering constants calculated for panel consisted of a 60-mm cube made up of graphite 

reinforced fibre polymer matrix composite material subjected to a tensile force of 100 kN 

perpendicular to a the fibre direction, directed along the 2-direction. The cube is free to expand 

or contract and the changes need to be determined in the 60-mm dimensions of the cube. The 

material constants for the graphite-reinforced polymer composite material are given Table 2.  

 

Table 2: Properties of graphite fibre-reinforced panel 

Ply thickness (mm) Young’s,  Shear moduli (GPa) Poisson’s ratio 

h      =                       =    

0.15 155 12 3.2 4.4 0.458 0.28 

The engineering constants calculated for panels consisted of fourth layer void- free, linear elastic 

plane of dimensions 150mm x 120mm laid in fibre-horns technique. Average thicknesses of 

laminates consist of eight-, sixteen-, and twenty-four plies with layup sequence codes and 

properties given Table 3. 

 

Table 3: Properties of variable ply-thickness carbon fibre-reinforced panel 

Panel Code: Fibredux 914C-833-40 

Panel Lay-up code Thickness mm Property parameter Unit MPa 

8-Ply [0/90/45/-45]S 2.4 Exx (0
0
), Eyy (90

0
) & 

45
0
, -45

0
 

230 

23 16-Ply  [0/90/45/-45]2S 4.8 

24-Ply [0/90/45/-45]3S 7.2 Gxy 88 

Poisson’s ratio 0.21 
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2.2 Micro-mechanics of a lamina  

An isotropic lamina exhibits same behaviour in all three material 1-2-3 directions. Its 

engineering constants can be described by one value: Young’s modulus, E(=           , 

Poisson’s ratio,                 , and shear moduli,                 regardless of 

the direction of the applied load. Two independent material constants       can characterize 

isotropic material; as shear modulus can be found from   
 

      
. Relationship between stress 

and strain is independent of the direction of force shown in (a) while especially orthotropic 

lamina described by two values shown in Figure 3 (b).  

                   (1) 

One along the longitudinal direction of the fibres, EL, and one transverse to the direction of 

fibres, LT. Subscripts 1 and 2 are used such as EL = E1 and ET = E2 at a direction with applied 

force stresses coincide with the principal material axes. Thus indices are added to the stress, 

strain, and modulus values to describe the direction of the applied force: 

         and                    (2) 

 

 

 

 

 

                                                                  

                                                                                

 

 

 

 

 

 

 Figure 3: a) an isotropic and b) an orthotropic lamina 

 

Poisson’s ratio to the given loading direction is, 

      
  

  
 

  

  
 or      

  

  
 

  

  
         (3) 

The strain components stretched due to an applied force, minus the contraction of Poisson’s 

effect due to another force perpendicular to the applied force: 

Isotropic plate 
Orthotropic plate 

    Fibre 1-direction 

1  1 

2 
 2 

  =    = stiffness in any direction    ≫    ≠ stiffness in any direction 
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               (4)a 

Using equation (2) gives, 

   
  

  
    

  

  
        

  

  
    

  

  
         (4b) 

The shear stress related by the shear modulus, 

                       (5) 

Where    is the shear stress (indices (12) indicate shear in the 1-2 plane) and    is the shear 

strain. A relationship between Poisson’s ratio and the elastic moduli exists as:  

                        (6) 

Equations (4a) and (5) can be written in matrix form: 

 {

  
  
   

}   [
       
       
     

] {

  

  

   
}         (7) 

Where,       
 

  
,      

 

  
,       

   

  
  

   

  
,      

 

   
      (8) 

Stress as a function of strain can be obtained by inversion of 3x3 compliance matrix,  

{

  

  

   
}  [

       
       
     

] {

  
  
   

 

}          (9) 

Where:  

     
  

        
,      

  

        
,      

     

        
,               (10) 

The components of [ ] matrix are referred as reduced stiffness matrix, and its inversion 

[ ]  as the constitutive equations.  

 

The lamina is called generally orthotropic if it is loaded at some angle other than 0
0
 or 90

0
. In 

general, the loading direction does not coincide with the principal material direction, thus 

stresses and strains are transformed into coordinates for the wedged-shape differential element 

that to coincide with the principal material directions using free-body diagrams in Figure 4(a):  

 



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-7, Issue-11, November 2021 

ISSN: 2395-3470 

www.ijseas.com 

29 

  

 

                      

 

Figure 4:  a) Generally orthotropic lamina, b) and c) wedge-shape elements 

 

 

Static equilibrium of force by letting         and        can be written below. 

Summing forces in the 1-direction in free body diagram Figure 4(b):  

∑                                                  (11) 

And summing forces in the 2-direction of the free diagram Figure 4(c):  

∑                                                 (12) 

 

Summing forces in the 1-direction in the free diagram Figure 4(c): 

∑                                                    (13) 

Simplifying equations (11), (12), and (13),  
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              (14) 

Equation (14) may be written in matrix form as,  

{

  

  

   
}  [

       
        

             
] {

  

  

   
}         (15) 

The 3x3 matrix in equation (15) is the transformation matrix denoted by [T] that can also be 

used to transform strains. However, the tensorial shear strain is used not the engineering shear 

strain. Since the amount of shear strain must be equivalent to both the x-y axes transformed 

new 1-2 coordinate systems, while inverse of [T] is, 

  [ ]   [
        
       

             
]         (16) 

Thus;  

{

  

  

   
}  [ ] {

  

  

   
}      {

  

  

   
}   [ ]  {

  

  

   
}        (17) 

Similarly for strains: 

{

  
  
   

}  [ ] {

  
  
   

}      {

  
  
   

}  [ ]   {

  
  
   

}        (18) 

Putting equation (9) into the second part of equation in (17): 

{

  

  

   
}   [ ]  [ ] {

  
  
   

}  [ ]  [ ] [
   
   
   

] {

  
  
   

}       (19) 

Now putting the first equation of equation (18) into equation (19):  

{

  

  

   
}   [ ]  [ ] [

   
   
   

] [ ] {

  
  
   

}        (20) 

Defining a new matrix called the lamina stiffness matrix  ̅ as: 

[ ̅]  [ ]  [ ] [
   
   
   

] [ ]          (21) 

 ̅        
      

              
     

 ̅                   
         

       

 ̅        
      

              
     

 ̅                    
                     

 ̅                                     
    

 ̅                        
         

                   (22)       
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The equation (22) is referred to as extension shear coupling that takes place when a lamina is 

loaded at an angle to the fibres (       , which generates non-zero  ̅  and ̅   terms. 

Putting into equation (20), the stress-strain equation becomes,       

{

  

  

   
}  [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
  
   

}         (23) 

Since six constants in 3x3 matrix equation (23) govern stress-strain behaviour of a lamina are 

not independent, the elements in stiffness matrices can be expresses in terms of five invariant 

properties using trigonometric identities: 

 ̅                      ,  ̅              ,  ̅                        

 ̅    
  

 
             , ̅    

  

 
             ,  ̅     

 

 
                         

                              (24a) 

Where the set of invariant stiffness is defined as follows:  

   
 

 
                     ,   

 

 
         ,   

 

 
              

       

   
 

 
                                      (24b) 

The invariants due to rotations in equation (24) are simply four independent invariants as there 

are four independent elastic constants: easier to compute stiffness matrices. Likewise, the 

element oriented along fibre angle exhibits a shear strain when subjected to a normal stress 

exhibiting an extensional strain when subjected to a shear stress. Thus,   and    are 

coefficients of sine or cosine (at 0
0
 and 90

0
) terms become zero in equation (24) when 

calculating  ̅ values making the independent invariants              calculations along ply 

orientation     easier. For the strain-displacement relationship, first assumption of the classical 

plate theory says that the lamina only deflects, it is un-damaged, and there is no strain in the 

thickness direction. The small deflection of the lamina in the x-direction is designated as u in 

Figure 5. Displacement along z-direction due to bending is      times z. Since   is small so 

      . Therefore, the displacement is –    where negative is compression and positive is 

tension. For the y-direction, it is designated as v and for the z-direction w. Strains can be 

obtained:  

   
  

  
     

  

  
      (

  

  
 

  

  
)                 (25) 

The slope of the lamina if it is bending can be formulated:  

  

  
 along the x-direction,  

  

  
 along the y-direction.      
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The total in-plane displacement at any point in the ply is the sum of the normal displacements 

plus the displacement introduced by bending. Denoting the displacements of the mid-plane of 

the plate for the x and y directions as    and    respectively. The total displacements become:  

      
  

  
;       

  

  
.             (26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Total displacements in a) un-deformed and b) deformed plate 

 

Strains-displacement relations gives, 

   
  

  
 

   

  
  

   

        
  

  
 

   

  
  

   

          
  

  
 

  

  
 

   

  
 

   

  
   

   

    
   (27) 

Writing the mid-plane strains:  

   

   
      

 ;  
   

   
      

 ; and 
   

   
 

   

   
      

         (28)  

and curvature-displacement relation gives: 

 
   

            
   

                
   

    
              (29) 

Thus strain-curvature equation gives,  

{

  
  
   

}  {

  
 

  
 

   
 

}   {

  

  

   

}         (30) 

The lamina curvature    or    is the rate of change of slope of bending in either x- or y-

direction, respectively. The curvature term     is the amount of bending in the x-direction 

along the y-axis (i.e. twisting).  The strains in equation can be expressed in terms of mid-

x 

z 

+z 

-z 

a) Un-deformed edge of plate 

Top surface of plate 

Mid-plane 

Bottom surface of plate 

b) Deformed edge of plate 

x 
z 

Mid-plane 

  Compression  

           

-z 
  Tension 

   

 

   

 

w  

 

    

 

          
  

  
  

  for small   

 +z 
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plane(  
    

     
 ), and curvatures (  

    
     

 )at reference surface. The equation (30) can be 

written in matrix form using equation (23) to determine stresses as, 

{

  

  

   

}  [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
     

 

  
     

 

   
      

 

}        (31) 

The equation (31) formulates principal stresses transformations from isotropic material into the 

general orthotropic using the local-global coordinates. 

 

2.3 Macro-mechanics of laminated plates  

Fibre-reinforced materials consist of multi-layers at different fibre orientations to form a 

laminate with stacking arrangements corresponding to structural response. Figure 6 shows a 

global Cartesian system and a general laminate consisting of N layers. The laminate thickness 

is H and the thickness of an individual layer by h. Since the stress in each ply varies through the 

thickness of the laminate, stresses and strains in each ply need to be known in terms of 

equivalent forces and acting at the middle surface. Referring to figure 7, it can be seen that the 

stresses acting on an edge can be broken into increments and summed. The resulting integral is 

defined as the stress result (force per unit length and acts in the same direction). 

 

 

Figure 6: Schematic illustration of laminate with stress and moment resultants 

 

The total force in x-direction   ∑          

As       ∑            ∫     
 

 ⁄

  
 ⁄

     ∫     
 

 ⁄

  
 ⁄

 

Likewise, it can be drawn for the y-direction stress and shear stress. The stress resultants are 

therefore:  

   ∫     
 

 ⁄

  
 ⁄

 ,    ∫     
 

 ⁄

  
 ⁄

,     ∫      
 

 ⁄

  
 ⁄

        (32) 

 
 ⁄  

   
 ⁄  

    
 ⁄  

   

dz 

y 

x 

z 
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The stress acting on an edge produces a moment (torque per unit length) about the mid-plane at 

a distance z from the mid-plane. Following the same procedure as for the stress resultants, the 

moment relations cane be defines as:  

   ∫      
 

 ⁄

  
 ⁄

,    ∫      
 

 ⁄

  
 ⁄

,     ∫       
 

 ⁄

  
 ⁄

       (33) 

The moments   ,      will cause the plate to bend and     will cause the plate to twist. Once 

stresses are calculated for each lamina, the resulting forces and moments in the laminae can be 

determined. 

 

Applying reverse process of the micro-mechanics the lamina to laminate stiffness matrix when 

force and moment resultants are known, stresses and strains through the thickness as well as the 

strains and curvatures on the reference surface can be determined. In Figures show the force 

and moment resultants, a small element of laminate surrounding a point (x, y) on the geometric 

surface is shown. The force resultants Nx, Ny, and Nxy can be related to strains and curvatures at 

the reference surface by equation (32). The positive forces are defined per unit length is shown 

in Figure 7(a), and the positive bending and twisting moments per unit length are shown in 

Figure 7(b). 

 

 

Defined positive forces per            Defined positive bending and twisting moments 

 

Figure 7: Schematic illustration of force and moment resultants 

 

Integrating global stresses in each lamina gives the resultant forces and moments per unit 

length in xy-plane through-thickness. Putting equations (32) and (33) in matrix form gives, 

{

  

  

   

}  ∫ {

  

  

   

}

 
 ⁄

  
 ⁄

   , {

  

  

   

}  ∫ {

  

  

   

}

 
 ⁄

  
 ⁄

         (34) 

Y 

Z 

X 

Nx 

Ny 

Nxy 

My 
Mxy 

Mxy 
Mx 

Forces per unit length 

Bending and twisting moments 

per unit length 
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The integrals over equation (34) must be performed over each ply and then summed, since 

discontinuities in stresses can occur at ply interfaces, equations (35) and (36) can be written as:  

 {

  

  

   

}  ∑ ∫ {

  

  

   

}

 
 ⁄

  
 ⁄

   
   , {

  

  

   

}  ∑ ∫ {

  

  

   

}  

 
 ⁄

  
 ⁄

   
        (35) 

 

Now equation (30) can be substituted into equation (23), which can be substituted into 

equations into equations (34) and (35), the equations (12) and (13) simplifies as, 

{

  

  

   

}  ∑ {∫ [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
 

  
 

   
 

}   ∫ [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

]
  

    

  

    
{

  
 

  
 

   
 

}    } 
    (36) 

and 

{

  

  

   

}  ∑ {∫ [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
 

  
 

   
 

}     ∫ [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

]
  

    

  

    
{

  
 

  
 

   
 

}     } 
     

(37) 

 

Since the middle surface strains and curvatures are not a function of z (because these values are 

always at the middle surface z = 0), they need not be included in the integration. Also, the 

laminate stiffness matrix is constant for each ply, so it will be constant over the integration of a 

lamina thickness. Putting these constants to the front of the integral in equations (36) and (37) 

gives, 

{

  

  

   

}  ∑ {[

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
 

  
 

   
 

}∫    [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  

  

   

}∫    
  

    

  

    
} 

    (38) 

and 

{

  

  

   

}  ∑{[

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
 

  
 

   
 

} ∫     [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  

  

   

} ∫     

  

    

  

    

}

 

   

  

(39) 

{

  

  

   

}  ∑ {[

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  
 

  
 

   
 

}          [

 ̅   ̅   ̅  

 ̅   ̅   ̅  

 ̅   ̅   ̅  

] {

  

  

   

}
 

 
(  

      
 )} 

      

            (40) 
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            (41) 

Since the middle surface strains and curvatures are not part of the summations, the laminate 

stiffness matrix and the    terms can be combined to form new matrices. From Equations (40) 

and (41) can be defined as:  

    ∑ [ ̅  ] 
 
            ,    
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The constitutive equations can be written in ABD matrix form: 
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Written in compact form, equation (43) becomes:  

[
 

  
 

]   [
   
   
   

] [
  

  
 

], partial inversion gives: [
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]  (44) 

Where, [  ]  [ ]  , [  ]  [ ]  [ ] , [  ]  [ ][ ]  , [  ]  [ ]  [ ][ ]  [ ]  (45) 

The fully inverted form is given by:  
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       (46) 

Where,  

[  ]  [  ]  [  ][  ]  [  ], [  ]  [  ][  ]  , [  ]  [  ]  [  ]  [  ] , [  ]  [  ]    

            (47) 

 

Symmetric laminates are configured such that the geometric mid-plane is mirror image of the 

ply configurations above and below the mid-plane, the geometric is also the neutral plane of the 

plate, and the [ ] matrix is equal to zero. However, if the laminate is un-symmetric as shown in 

Figure 8, then the plies near the bottom of the plate are much stiffer in the x-direction, then the 
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geometric mid-plane will not be neutral plane of the plate; and the neutral plane will be closer 

to the bottom of the plate for x-direction bending. This is accounted for in the constitutive 

equations, since the [ ] matrix will have some nonzero elements, implying that a bending 

strain (plate curvature) will cause a mid-plane strain. Likewise, a mid-plane strain will cause a 

bending moment.  

 

 

 

 

 

Figure 8: Displacement in an unsymmetrical plate 

 

Referring to  [ ] [ ]  and [ ] matrices in equation (42), it can be seen that the last term in 

equation is the k
th

 lamina thickness is denoted by   . Thus,   

     ∑ [ ̅  ]   
 
               (48) 

This is the extensional stiffness matrix, when     and    are nonzero and the laminate has a 

shear strain applied to it, normal stresses will result and vice versa. These terms are analogous 

to the     and     terms. Equation (42) can be written as:   

     
 

 
∑ [ ̅  ] 

         
 
    ∑ [ ̅  ]   

 
   

         

 
       (49) 

Where    is the thickness of k
th

 ply, and 
         

 
 is the distance from the geometric mid-plane 

in the centre of the k
th

 ply, the coupling stiffness matrix. The     and     terms relate twisting 

strains to normal stresses and shear strains to bending stresses. If the laminate is symmetric, 

then the     terms will be the same for each mirrored ply above and below the mid-plane (-z) 

+z 

-z 

+z 

-z 

Un-deformed edge of plate 

Top surface of plate 

Geometric mid-plane  

Very stiff ply 

Bottom surface of plate 

Deformed edge of plate 

           Compression 

Geometric mid-plane  
               Normal plane  

Pure bending causes axial compression of mid-plane  
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and positive if it is above the mid-plane (+z). Thus, when summed, the result will be zero for 

all    . Now define: 
         

 
    ̅. Part of equation (42) can be written as:  

(  
      

 )   [(  
      

 )            
            

 ]  

  [         
     

             
 ]   

 [         
                     

   (  
      

 )]  

  (  
      

 )       
     ̅

          (50) 

Therefore, the equation can be written as 

    
 

 
∑ [ ̅  ] 

 
   (

  
 

  
    ̅

 )           (51) 

It can be seen that the last term in the second moment of the k
th

 ply with respect to the 

geometric mid-plane     is called the bending stiffness matrix and relates the amount of 

bending curvatures with the bending moments. 

 

2.4 Engineering constants for symmetric and un-symmetric laminates 

For a given stacking sequence of laminate whose engineering constants are known, it is 

possible to determine the in-plane engineering constants for symmetric laminate from the 

   matrix. The orthotropic materials have symmetric elastic properties with respect to the 

chosen axis, which are called the ‘principal material direction’. The 1-direction is angled with 

the fibre direction if fibre-matrix system is replaced with homogeneous material Figure 9. 

Elastic properties for a mechanical test in 2-direction or 3- direction will give the same result. 

However, the properties in longitudinal 1-direction are different.  

 

  

Figure 9: Lamina with different material properties 

 

To find modulus in x-direction, values of stress and strain in the x-direction are calculated: 

   
  

  
  

  
 ⁄

  
 where h is lamina thickness. The matrix      , the constitutive equation is,  

Fibre direction 

1 

   3 

2 
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}         (52) 

Relationship between    and   
  when load is applied in the x-direction,   
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Resolution of the equations gives,  
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The equations (53) and (54) can be substituted in equation (56). Thus,    can be as:  
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The same process is followed to obtain   . The constitutive equation (53) changes for    from 

zero.  
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    can be found in the same manner. In the constitutive replace zero by    .  

       
       

        
         

       
       

        
          

         
       

        
                    (61) 
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Dividing equations above by the laminate thickness give, 

    
   

 
 

   
 

    
 

                  
    

     
    

 

 (      
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      (64) 

To find Poisson’s ratios of the laminate, equation (61) and (62) are utilised to obtain:  
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 ). Re-arranging gives Poisson’s ratios:  
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For a non-symmetric laminate, procedure is the same as for symmetric laminates. If matrix 

     , the constants for un-symmetric laminates can be determined from          and     

matrices. The bottom half of a symmetric laminate does not consist of a negative mirror image 

of stresses and strains from the top half due to bending moments. The plane of zero strain 

(neutral plane) for any direction in an un-symmetric laminate can be calculated pure bending in 

the x-direction,  
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The constitutive equations to find   , only the x-direction from    and   
  relationship:   
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Using Cramer’s rule to solve for   
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Determinant of two 6x6 matrices are found from cofactor expression in the numerator:  
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   can be found in a similar manner, but denominator is different as solved for   
 :  

 

 
  

  
     

[
 
 
 
 
 
                  
                  
                  
                  
                  
                  ]

 
 
 
 
 

 

 

[
 
 
 
 
               
               
               
               
               ]

 
 
 
 

          (71) 

    is obtained as:  
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Poisson’s ratio in x-direction for symmetric panels    , contraction in y-direction,, 
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and    can be obtained as,   
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         (74) 

 

2.5 Effective engineering constants of laminated composite panels 

 A laminate with 1-z axis drawn downward extending in the z-direction from H/2 to –H/2 is 

shown in Figure 10.  The relationship of material properties, relative volume contents, and 

geometric arrangement of the constituent materials are computed from macro-mechanics laws. 

The quantities   
 ,   

 ,    
 , and    

  referred to as the reference surface extensional strain in the 

y direction, the reference surface curvature in the y-direction, the reference surface in-plane 

shear strain, and the reference surface twisting curvature are also required. 

 

 

Figure 10: Schematic illustration of the geometry of laminated composite plate 

 

Applying the second assumption of classical lamination theory, stresses, strains, and curvatures 

of the reference surface can be found if volume of the laminate is in a state of plane stress. The 

geometric mid-plane can be within a particular layer or at an interface between layers as shown 

in Figure 11. Referring to the ply at the most negative location as ply 1, the next layer in as 

layer 2, the ply at an arbitrary location as ply k, and the ply at the most positive z position as 

ply n. The locations of the ply interfaces are denoted by a subscribed z; the first ply is bound by 

locations h0 and h1, the second by h1 and h2, the k
th

 ply by hk-1 and hk, and the n
th

 ply by hn-1 and 

Z0 

Zb 

Z1 

 Zh-1 

Z2 

Zh-2 

  Zk-1 

   Zk 

   θ  

Y     1, Z 

       X 
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hn. The thickness of the k
th

 ply is denoted by hk of the through-thickness coordinate, designated 

h, is located at the laminate geometric mid-plane. The geometric mid-plane may be within a 

particular ply or at an interface between plies. The ply k and ply k+1 are the same lamina but 

separated into two plies by the mid-plane: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Ply-level schematic illustration of a laminate 

 

The constitutive relations for an orthotropic material were writtenin terms of the   

stress and strain components that are referred to a coordinate system that coincides with the 

principal material coordinate system to transform constitutive equations from the material 

coordinates (1, 2, 3) of each layer to the coordinates (x, y, z) used to write the governing 

equations of a laminate Refer---related as follows:    
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       (75)  

Where transformation matrix is given as, 

 h1 

hk-1 

 hk 

hk+1 
hk+2 

  hn-1 

 hn 

Ply 1 Ply 1 

Ply 2 

Mid-plane 

Ply k-1 

Ply k 

Ply n 

Ply k+1 

Ply k+2 

Ply n-1 

 h 
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The transformation relations for angles (           ) measured from x-axis to axis 1-, 2-, 3-axes 

in terms of direction cosines              are given as:  

                                                 

                                                          

                                                           

 

In an anisotropic material, properties are different in all directions so that the materials contain 

no planes of material property symmetry. Fibre-reinforced composites, in general, contain three 

orthogonal planes of material property symmetry, namely, the 1-2, 2-3, and 1-3 as shown in 

Figure 12. and are classified as orthogonal materials.  

 

 

Figure 12: Three planes of symmetry 

The stress-relation matrix reduces to,  
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Where (                    ) are stress components,    are the reduced stiffness 

coefficients, and (                    ) are strain components. Strains are also second-

order tensor quantities, transformation equations derived for stresses are also valid for tensor 

components of strains. However, the single-column formats for stress are not valid for single-

column formats of strains because of the definitions:         ,         ,         , thus 

modification yields relations for the engineering components of strains as presented for stress 

components.  

 ̅        
             

   

 ̅        
             

   

 ̅         

 ̅                     
       

 ̅        
      

          

 ̅         
                   

 ̅        
      

          

 ̅        
             

                      
   

 ̅        
             

              
       

   

 ̅        
             

                      
   

 ̅        
             

                      
   

 ̅               

 ̅               

 ̅        
                

                         
   

 ̅        
                

                         
   

Where the  ̅  are the transformed elastic coefficients referred to the [x, y, z] coordinate system, 

which are related to the elastic coefficients in the material coordinates    . For an orthotropic 

material matrix [Q], the following additional stiffness components are required:    

 
     

        
,        ,                ,     

     

        

     

        
, while  

                                           , and    are equal to zero.  

 

The transformed matrices provide a mean to convert stress components referred to the problem 

(laminate) coordinate system to the material (lamina) coordinate system. Thus, stress equation 

can be written as, 
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       (77) 

The inverse relationships transformed reduced stiffness matrix can be used to compute ply level 

stresses. If nonlinear terms are considered, use the following stress equations: 
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If nonlinear terms,     and applied load (         ) are considered, the constitutive equations 

becomes, 
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If reduced transformed stiffness matrices and the ply thickness reference coordinate    can be 

combined, new stiffness matrices can be formed: [A], [B], [D], [E], [F], and [H], 
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The parameter,   , is solution character coefficient:      leaner and      non-linear 

solution. Applying unidirectional load in x-axis direction: the mid-plane strain {  }; rotations of 

transverse normal curvatures {  }     {  }; shear strains 

{  } {  }                     {  }; the equation (88) becomes, 
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Using the relation 
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Where hj-1; distance from the mid-plane to the top of the j
th

 lamina, hj: distance from the mid-

plane to the bottom of the j
th

 lamina, and thickness of the k
th

 lamina denoted by    and   ̅  

         

 
.. Using symmetry of rotations and putting Ln =0, the components of the reduced 

stiffness matrix equate to the load-induced matrix as follows: 
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   (81) 

The equation of mid-plane strain is obtained as, 
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For the effective engineering constants, the stress-stain in each ply can be calculated from 

equation (31), and transformed into the principal material direction, and integrated to obtain 

resultant effective stresses,  
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       (83)  

Stresses can be obtained from the effective force resultants:  

    
 

 
  ,       

 

 
  , and      

 

 
           (84) 

Solving and substituting the results,  
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The effective mid-plane strains can be obtained from     terms of the matrix [A],  
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] {

  

  

   
}        (86) 

The matrix 3x3 is defined as the laminate compliance matrix for symmetric balanced laminates. 

Therefore, by analogy constitutive equations (reduced compliances), the following effective 

engineering constants can be obtained:  
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                (87) 

Coefficients of mutual influence are defined by analogy of Poisson’s ratio if lamina is under 

coupled loading, the ratio of a shear strain to an extensional strain if       ) as the coefficient 

of mutual influence of the second kind        
   

  
  and if        another as        

   

  
 . 

The coefficients of mutual influence of the first kind are defined if        as        
  

   
 and 
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. Mutual influence coefficients can be found from superposition of loading, stress-

strain relations in terms of elastic constants,  

{

  
  
  

}  
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}                    (88) 

Elastic constants derived from equation (88) in global coordinates become: 
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The effective engineering constants of laminated structural elements beam/plate panels of 

thickness H consisting of N plies rotated at angles    can be determined as follows:  

 ̅  
 

  
∑       

 
   ,  ̅  

 

  
∑       

 
   ,  ̅   

 

  
∑        

 
   , 

 ̅   
 

  
∑        

 
    ̅   

 

  
∑        

 
                (96)  

  

3 Results and discussions 

Computer programs were developed in commercial software MATLAB
TM

 software to 

approximate the engineering constants for symmetric, non-symmetric, and effective panels. 

The programs are capable to execute and predict engineering constants for laminated structural 

elements consisting of plies of variable ply-thickness and number of plies for given material 

properties. Selected cases are being presented with brief discussions. 
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3.1 Engineering constants for symmetric and non-symmetric panels  

Since elastic constants are interdependent, elastic constants only in the fibres parallel directions 

are shown in all cases. The following engineering constant,     were predicted by computer 

simulations for symmetric and non-symmetric panels: 

a) for symmetric panel,             
  

   
  and  

b) for non-symmetric panel,           
  

   . 

The other engineering constants can be predicted executing the same program. As expected, the 

predicted quantities of the engineering constants exactly agreed to the result data available in 

the literature.  

 

3.2  Effective engineering constants   

3.2.1 Engineering constants of uniform ply thickness 

Computer programs were also executed to predict the effective engineering constants: Young’s 

and shear moduli, Poisson’s ratios, and coefficients of mutual influence. The selected 

engineering constants were plotted as functions against ply orientation angles range:   
 ⁄  

   
 ⁄   at the step difference of 10

0
. All plots exhibit mirror images of quantities about mid-

planes zero-position through thick: -90
0
 < 0

0
 and 0

0
 < 90

0
. Thus, variations of plotted quantities 

against 0
0
 < 90

0
 angles are being briefly discussed below.  

 

Young’s modulus parallel to x-direction, Ex, is depicted in Figure 13.The quantities make bell 

type curve with maximum value at 0
0
 angle along the fibre direction. However, it abruptly 

decreases as angle increases within the 0
0
-20

0
 range, and proceeds almost smoothly along 

increase in fibre orientations up to 90
0
. Plot of modulus, Ey, quantities in y-direction, the 

perpendicular to fibre direction is depicted in Figure 14. The plot illustrates almost no change 

and smoothly continues within the range 0-70
0
. However, its behaviour abruptly changes 

afterward following steep increase up to 90
0
.   
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Figure 13: Variation of Ex versus angle 

 

Figure 14: Variation of Ey versus angle 

 

Plot of Poisson’s ratios, vxy, is depicted in Figure 15.The a significant drop can be seen in the 

curve of minimal quantity at 0
0
 and abrupt increase within the range 0

0
-20

0
. Rest of the curve 

shows steady downward trends until it reaches 90
0
. Plot of Poisson’s ratios, vyx, is depicted in 

Figure 16. The curve shows a continuous slight increase within the range 0
0
 -80

0
. After that 

point, rest of the curve shows significant increasing trends until it reaches 90
0
. 
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Figure 15: Variation of    versus angle  

 

 

Figure 16: Variation of    versus angle 

 

Plot of shear modulus (Gxy) shows a wave like curve as depicted in Figure 17. The quantities at 

0
0
 show almost a minimum, and curve shows increasing trends up to 50

0
, after that point the 

curve shows steady downward trends until it reaches 90
0
.   
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Figure 17: Variation of     versus angle 

 

Plot of mutual influence coefficient       depicted in Figure 18. The quantities at 0
0
 shows 

almost zero value. The quantities make decreasing trends with increasing angles up to ±20
0
, 

after that point the curve shows reverse trends, and quantities show increase with increasing 

angles until reaching again zero at 50
0
. At that point, curve shows increasing trends up to 750

0
 

and afterwards decreasing trends until it ends at 90
0
.   
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Figure 18: Variation of        versus angle 

 

Plot of mutual influence coefficient       is depicted in Figure 19. The curve shows increase in 

quantities with increased in angle up to 20
0
, and decreasing trends against increase in angles 

within the range 40
0
-75

0
. After that point curve shows abrupt increase as angle increases until it 

reaches zero value at 90
0
. 

 

Figure 19: Variation of        versus angle 
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3.2.2 Effective engineering constants for variable ply thickness 

A six-layer [     ]  graphite composite polymer matrix laminate was considered with 

mechanical properties in Table 2. The laminate has total thickness of 0.9 mm. The four layers 

are of equal thickness. MATLAB code was executed to determine the five effective constants 

for the laminate. The distances                   are calculated as follows:    

                                                    . And five calls were 

made to the five MATLAB
TM

 functions to calculate the five effective constants: 

  ̅         ̅         ̅      ,  ̅        ,  ̅         

 

Predicted values of elastic constants were compared with equivalent quasi-isotropic beam and 

plate panels [29]. The flexural modulus of the laminated beam depending on the ply stacking 

sequence and moduli in Table 3 were utilised. The ply index lay-up, angles, and multiples for 

selected 8-Ply panel are shown in Table 4. 

   

Table 4:  Lay-up, angle, and modulus of 8-Ply laminate 

Ply index, t 

 t:N-n, n=0:N-1 

          Ply angle  Modulus, E
(t)

 

8 [169] 0 59 

7 [127] 90 59 

6 [91] 45 6 

5 [61] -45 6  

4 [37] 0 59 

3 [19] 90 59 

  2 [7] 45 6 

1 [1] -45 6 

 

 Utilising the equation     
 

  
∑                

 

 

     
, where subscript c = 0 being the 

starting at lower-half of the neutral axis. Progressions of the values: 

6[1]+6[7]+59[19]+59[37] equate to 3352/64 = 52.4. From ply-laminate ratios the predicted 

elastic constant in x-direction gives, 76.2 GPa. The engineering constants for the other panels 

can be determined following the same procedure. 

 

Neutral axis 
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4 Conclusions 

In this work, mathematical formulations have been described in detail to calculate effective 

engineering constants for isotropic, orthotropic, and three-dimensional panels using micro-

mechanics methods. Computer programs were developed into MATLAB
TM

 software to predict 

the effective engineering constants. The following conclusions can be extracted:  

 Mathematical formulations of the fibrous composite panels were described in detail 

from ply-level to stack of plies using micro-macro mechanics methods. Relationships of 

loading directions for isotropic, orthotropic, and anisotropic materials to fibres aligned 

directions in local-global coordinates were also presented. 

 Effects of coefficients of mutual influences and coupled loading were also considered in 

formulations of effective engineering constants.  

 Simulation produced results were compared and validated against the data results 

available in the literature and found to be within acceptable range of (±10%) deviations.  

 

Based on comparison of the results, the present study proposed efficient and reliable 

simulation model to predict engineering constants for variable-ply thickness panel based on 

micro-macro mechanics methods. The study could be modified and extended to study similar 

materials and cases coupling hygro-thermal environmental loadings.  
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