
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

448

Network Simulator, Technique of implementing the network on the
computer

 Shikha SaxenaP

1
P, Suraiya HusainP

2
P

P

1
PMtech student, Jamia Hamdard, New Delhi

P

2
PAsst. Professor, Jamia Hamdard, New Delhi

ABSTRACT- In the network research area, establishing of
network in a real time scenario is very difficult. A single
test takes a large amount of time and cost. So
implementation of a whole network in real world is not
easily possible and very costly too. The simulator helps the
network developer to check whether the network is able to
work in the real time. Thus both the time and cost of
testing the functionality of network have been reduced and
implementations are made easy. This paper introduce the
main features of different simulator. Further details of
Omnet++ simulator, appropriate network simulators for
research. Further in this paper proposes a language for the
description of model topologies in discrete event
simulators. The language contains an efficient way to
create parametrized, flexible topologies. The language has
been implemented as part of the OMNeT++ simulator.
Omnet++ simulator (1) provide explicit support,(2) not
only fixed topologies are supported, (3) flexible topologies
require little bit programming. OMNeT++ uses a
description language with a powerful combination of
simple constructs (multiple connections, conditional
connections etc.) to allow parameterized description of
regular structures. This paper presents comparative study
of different types of simulators and few examples topology
templates as a tool for reusing interconnection structure,
presents three general patterns of using the tools of the
language, and describes the issues of creating complex,
parameterized structures in a simulation program at run-
time on omnet++.

KEYWORDS-Topology, Description Language, OPNET,
NetSim, JSIM,QUAL NET,OMNET,GloMosim,NED,INI

I. INTRODUCTION
Simulation is one of the important technologies in modern
time. The simulation in computer can model hypothetical and
real-life objects on a computer so that it can be studied. The
network is also simulated on the computer. A network
simulator is a technique of implementing the network on the
computer. Through this the behavior of the network is
calculated either by network entities interconnection using
mathematical formulas, or by capturing and playing back
observations from a production network. “The Network
Simulator provides an integrated, versatile, easy-to-use GUI-
based network designer tool to design and simulate a network
with SNMP, TL1, TFTP, FTP, Telnet and Cisco IOS
device.”[3]. Network simulator allows the researchers to test
the scenarios that are difficult or expensive to simulate in real
world. It particularly useful to test new networking protocols
or to changes the existing protocols in a controlled and
reproducible environment. One can design different network

topologies using various types of nodes (nodes, hubs, bridges,
routers and mobile units etc.). The network simulators are of
different types which can be compared on the basis of: range
(from the very simple to the very complex), specifying the
nodes and the links between those nodes and the traffic
between the nodes, specify everything about the protocols
used to handle traffic in a network, graphical applications
(allow users to easily visualize the workings of their simulated
environment.), text-based applications (permit more advanced
forms of customization) and programming-oriented tools
(providing a programming framework that customizes to
create an application that simulates the networking
environment to be tested.) [2]. There are different network
simulators with different features. Some of the network
simulator are OPNET, NS2, NS3, NetSim, OMNeT++, REAL,
J-Sim and QualNet. In this paper present working on omnet++
simulator.

II. COMAPARITIVE STUDY OF DIFFERENT TYPES OF

SIMULATORS:

NS2: Network simulator 2 has been developed under theVINT
(Virtual Inter Network Testbed) project; in 1995 it is a joint
effort by people from University of California at Berkeley,
University of Southern California's Information Sciences
Institute, Lawrence Berkeley National Laboratory and Xerox
Palo Alto Research Center. The main sponsors are the Defense
Advanced Research Projects Agency and the National Science
Foundation. It is a discrete event simulator that provides
substantial support for simulation of TCP,
routing, and multicast protocols over wired and wireless
networks.
NS3: The ns-3 simulator is a discrete-event network simulator
for Internet systems, targeted primarily for research and
educational use. The ns-3 project, started in 2006, is an open-
source project developing ns-3. Ns-3 is free software, licensed
under the GNU GPLv2 license.
OPNET: This simulator is developed by OPNET
technologies; Inc. OPNET had been originally developed at
the Massachusetts Institute of Technology (MIT) and since
1987 has become commercial software. It provides a
comprehensive development environment supporting the
modeling of communication networks and distributed systems.
Both behavior and performance of modeled systems can be
analyzed by performing discrete event simulations.
NETSIM: NetSim is a discrete event simulator developed by
Tetcos in 1997, in association with Indian Institute of Science.
NetSim has also been featured with Computer Networks and
Internets V edition by Dr. Douglas Comer, published by
Prentice Hall. It has an object-oriented system modeling and
simulation (M&S) environment to support simulation and

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

449

analysis of voice and data communication scenarios for High
Frequency Global Communication Systems (HFGCS).
OMNET++: It is a component-based, modular and open
architecture discrete event simulator framework. The most
common use of OMNeT++ is for simulation of computer
networks, but it is also used for queuing network simulations
and other areas as well. It is licensed under the its own
Academic Public License, which allows GNU Public
Licenselike freedom but only in noncommercial settings. It
provides component architecture for models.
JSIM: JSim has been developed by a team at the Distributed
Real-time Computing Laboratory (DRCL). The project has
been sponsored by the National Science Foundation (NSF),
DARPA’s Information Technology Office, Air Force Office of
Scientific Research’s Multidisciplinary University

Research Initiative, the Ohio State University and the
University of Illinois at Urbana-Champaign. J-Sim is free and
available with source code.
QualNet: It is a commercial network simulator from Scalable
Network Technologies, Inc in 2000-2001. It is ultra
highfidelity network simulation software that predicts
wireless, wired and mixed-platform network and networking
device performance. A simulator for large, heterogeneous
networks and the distributed applications that execute on such
networks.
REAL: It is in Computer Science Department Technical
Report 88/472, UC Berkeley, 1988. REAL is a simulator for
studying the dynamic behavior of flow and congestion control
schemes in packet switch data networks. It provides users with
a way of specifying such networks and to observe their
behavior.

Attribute

Simulator

Devel
oped
in

Licensed -by Availability

(web site)

Language Use

(free/commercial)

NS-2 1995 VINT (Virtual Inter
Network Testbed)
project

30TUhttp://www.isi.edu/nsnam/ns/ns-
build.htmlU30T

C++, Octl Free

NS-3 2006 GNU GPLv2 license http://www.nsnam.org/ns-3-
13/download/

C++,Pytho
n

Free

OP-NET 1987 Massachusetts
Institute of
Technology

http://www.opnet.com/university
_program/itguru_academic_editi
on/

C(C++) Commercial

NETSIM 1997
Tetcos+ Indian
Institute of Science 30TUhttp://www.ssfnet.org/download/li

cense.htmlU30T
Java Commercial

OMNET++ 2003
Own Academic
Public License

30TUhttp://www.omnetpp.org/compon
ent/docman/cat_view/17-
downloads/1-omnet-releases U30T

C++ Free

JSIM 2000-
01

Distributed Real-
time Computing
Laboratory (DRCL)

http://www.cs.cornell.edu/skesha
v/real/overv

iew.html

Java, Tcl Free

QUALNET 1980 GloMosim
30TUhttps://sites.google.com/site/jsimo
fficial/downloadsU30T Visual C++ Commercial

REAL 1988
Computer Science
Department
Technical Report
88/472, UC Berkeley

http://www.it.iitb.ac.in/~qualnet/ C Free

JSIM 2000-
01

Distributed Real-
time Computing
Laboratory (DRCL)

http://www.cs.cornell.edu/skesha
v/real/overv

iew.html

Java, Tcl Free

Table1. Comparative study of different type of Simulator

III. WHY OMNET++
 By comparing with other simulators the network simulation
scene has changed a lot in the past ten years, simulation tools

coming and going. This section presents an overview of
various commercial and noncommercial network simulation
tools in wide use today, and compares them to OMNeT++.

http://www.isi.edu/nsnam/ns/ns-build.html
http://www.isi.edu/nsnam/ns/ns-build.html
http://www.ssfnet.org/download/license.html
http://www.ssfnet.org/download/license.html
http://www.omnetpp.org/component/docman/cat_view/17-downloads/1-omnet-releases
http://www.omnetpp.org/component/docman/cat_view/17-downloads/1-omnet-releases
http://www.omnetpp.org/component/docman/cat_view/17-downloads/1-omnet-releases
https://sites.google.com/site/jsimofficial/downloads
https://sites.google.com/site/jsimofficial/downloads

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

450

Specialized network simulator. Also, the discussion only
covers the features and services of the simulation
environments themselves, but not the availability or

characteristics of specific simulation models like IPv6 or QoS
(the reason being that they do not form part of the OMNeT++
simulation package.)

NS-2 [6] is currently the most widely used network simulator
in academic and research circles. NS-2 does not follow the
same clear separation of simulation kernel and models as
OMNeT++:the NS-2 distribution contains the models together
with their supporting infrastructure, as one inseparable unit.
This is a key difference: the NS-2 project goal is to build a
network simulator, while OMNeT++ intends to provide a
simulation platform, on which various research groups can
build their own simulation frameworks. The latter approach is
what called the abundance of OMNeT++ based simulation
models and model frameworks into existence, and turned
OMNeT++ into a kind of an “ecosystem”. NS-2 does not
follow the same clear separation of simulation kernel and
models as OMNeT++: the NS-2 distribution contains the
models together with their supporting infrastructure, as one
inseparable unit. NS-2 lacks many tools and infrastructure
components that OMNeT++ provides: sumilator pport for
hierarchical models, a graphical editor, GUI-based execution
environment (except for nam), separation of models from
experiments, graphical analysis tools, simulation library
features such as multiple RNG streams with arbitrary mapping
and result collection, seamlessly integrated parallel simulation
support, etc. This is because the NS-2 project concentrates on
developing the simulation models, and much less on
simulation infrastructure. This architecture makes it practically
impossible to create graphical editors. NS-3 is an ongoing
effort to consolidate all patches and recently developed models
into a new version of NS. Although work includes refactoring
of the simulation core as well, the concepts 2 In fact, OTcl,
which is an object-oriented extension to Tcl. 3 Generating a
Tcl script from a graphical representation is of course possible,
but not the other way round: no graphical editor will ever be
able to understand an arbitrary NS-2 script, and let the user
edit it graphically. The NS-3 project goals [7] include some
features (e.g. parallel simulation, use of real-life protocol
implementations as simulation models) that have already
proven to be useful with OMNeT++. J-Sim [8][9] (formerly
known as JavaSim) is a componentbased, compositional
simulation environment, implemented in Java. J-Sim is similar
to OMNeT++ in that simulation models are hierarchical and
built from self-contained components, but the approach of
assembling components into models is more like NS-2: J-Sim
has the same drawback as with NS-2: it makes implementing
graphical editors impossible. In fact, J-Sim does provide a
graphical editor (gEditor), but its native format is XML.
Although gEditor can export Tcl scripts, developers
recommend that XML files are directly loaded into the
simulator, bypassing Tcl. This way, XML becomes the
equivalent of OMNeT++ NED. However, the problem with
XML as native file format is that it is hard to read and write by
humans. Simulation models are provided in the Inet package,
which contains IPv4, TCP, MPLS and other protocol models.
The fact that J-Sim is Java-based has some implications. On
one hand, model development and debugging can be
significantly faster than C++, due to existence of excellent
Java development tools. However, simulation performance is

significantly weaker than with C++, and it is also not possible
to reuse existing real-life
protocol implementations written in C as simulation models.
(The feasibility and usefulness of the latter has been
demonstrated with OMNeT++, where simulation models
include port of the Quagga Linux routing daemon, the TCP
stack from the FreeBSD kernel, the port of the UU-AODV
routing package, etc. The NS-3 team has similar plans as
well.) OPNET Modeler is the flagship product of OPNET
Technologies Inc. [10]. OPNET Modeler is a commercial
product.
OPNET and OMNeT++ provide rich simulation libraries of
roughly comparable functionalities. The OPNET simulation
library is based on C, while the one in OMNeT++ is a C++
class library. OPNET's architecture is similar to OMNeT++ as
it allows hierarchical models with arbitrarily deep nesting (like
OMNeT++), but with some restrictions (namely, the "node"
level cannot be hierarchical). A significant difference from
OMNeT++ is that OPNET models are always of fixed
topology, while OMNeT++'s NED and its graphical editor
allow parametric topologies. In OPNET, the preferred way of
defining network topology is by using the graphical editor.
The editor stores models in a proprietary binary file format,
which means in practice that OPNET models are usually
difficult to generate by program (it requires writing a C
program that uses an OPNET API, while OMNeT++ models
are simple text files which can be generated e.g. with Perl)
Both OPNET and OMNeT++ provide a graphical debugger
and some form of automatic animation which is essential for
easy model development. OPNET does not provide source
code to the simulation kernel (although it ships with the
sources of the protocol models). Qualnet [41] is a commercial
simulation environment mainly for wireless networks, which
has a significant client base in the military. Qualnet has
evolved from the Parsec parallel simulation “language”4 [11]
developed at the UCLA Parallel Computing Laboratory
(PCL), and the GloMoSim (Global Mobile system Simulation)
model written on top of Parsec. The Parsec language divides
the simulation model into entities, and provides a minimalistic
simulation API (timers, etc) for them. Entities are
implemented with coroutines. Because coroutine CPU stacks
require relatively large amounts of memory (the manual
recommends reserving 200KByte each), it is rarely feasible to
map the natural units of the simulation (say, hosts and routers,
or protocols) one-to-one onto entities. What GloMoSim and
Qualnet models do is implement the equivalent of the
OMNeT++ model structure in model space, above the Parsec
runtime. The Parsec kernel is only used to provide event
scheduling and parallel simulation services.Parsec provides a
very efficient parallel simulation infrastructure, and models
(GloMoSim and Qualnet simulation models) have been written
with parallel execution , resulting in an excellent parallel
performance for wireless network simulations.
In this section we have examined the simulation packages
most relevant for analysis of telecommunication networks, and
compared them to OMNeT++. NS-2 is still the most widely
used network simulator in the Academia, but it lacks much of

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

451

the infrastructure provided by OMNeT++. The other three
open-source network simulation packages examined (J-Sim,
SSFNet and JiST/SWANS), have failed to gain significant
acceptance, and their project web pages indicate near
inactivity since 2004.We have examined two commercial

products as well. Qualnet emphasizes wireless simulations.
OPNET has similar foundations as OMNeT++, but ships with
an extensive model library and provides several additional
programs and GUI tools.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

452

IV. MODEL STRUCTURE IN OMNET++

1.

An OMNeT++ model is build from
components (modules) which
communicate by exchanging
messages. Modules can be nested,
that is, several modules can be
grouped together to form a
compound module. When creating
the model, you need to map your
system into a hierarchy of
communicating modules.

2.

Define the model structure in the
NED language. You can edit NED in
a text editor or in the graphical editor
of the Eclipse-based OMNeT++
Simulation IDE.

3.

The active components of the model
(simple modules) have to be
programmed in C++, using the
simulation kernel and class library.

4.

Provide a suitable omnetpp.ini to
hold OMNeT++ configuration and
parameters to your model. A config
file can describe several simulation
runs with different parameters.

5.

Build the simulation program and
run it. You'll link the code with the
OMNeT++ simulation kernel and
one of the user interfaces OMNeT++
provides. There are command line
(batch) and interactive, graphical
user interfaces.

6.

Simulation results are written into
output vector and output scalar files.
You can use the Analysis Tool in the
Simulation IDE to visualize them.
Result files are text-based, so you
can also process them with R, Matlab
or other tools.

System Module Simple modules

 Compound Module

http://www.omnetpp.org/doc/api

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

453

V. CREATING A FIRST NETWORK

In OMNeT++, networks and nodes inside the network are
described using the NED (NEtwork Description) language.
A- Objective
In this first step, we will build a two-node wired network.
At simulation startup, the first node will send a message to
the second node. Then, upon receiving, each node will re-
send the message back to the sender.

B- Network topology
First, create a project directory called check as a
subdirectory of Development In project directory, we will
now describe what will be the basic topology of our
simulated network. Therefore, create a file called Net.ned
and open it for edition. Then insert the following code:
Create NED file

Net.ned
network net
{
 @display("bgb=178,112");
 submodules:
 computer1: computer {
 @display("p=28,44;b=30,43");
 }
 computer2: computer {
 @display("p=138,44;b=20,49");
 }
 connections:
 computer1.out --> computer2.in;
 computer2.out --> computer1.in;

}
Create package file and ini file
Package.ned
@license(omnetpp);

Omnetpp.ini

[General]
network = net

Create C++ program

computer.cc

#include <string.h>
#include <omnetpp.h>

class computer : public cSimpleModule
{
 protected:
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
};
Define_Module(computer);

void computer::initialize()
{
 if (strcmp("computer1", getName()) == 0)
 {
 cMessage *msg = new cMessage("checkMsg");
 send(msg, "out");
 }
}

void computer::handleMessage(cMessage *msg)
{
 send(msg, "out");
}
C- Simulation configuration, build and run
 OMNeT++ graphical environment right click on check
project then build network to simulate and press "Run". We
can see the two modules exchanging the message called
cMessage check message.

 Fig1: two nodes communication

 Generating ring topology
To generate ring topology with random number of nodes ,
modify the Sim module definition as follows:
Define ned file
//
// A generated network with ring topology.
//

Net.ned
network Net
{
 submodules:
 node0: Node {
 @display("p=200,50");

 }
 node1: Node {
 @display("p=306,94");

 }
 node2: Node {
 @display("p=350,201");

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

454

 }
 node3: Node {
 @display("p=306,307");

 }
 node4: Node {
 @display("p=199,350");

 }
 node5: Node {
 @display("p=93,307");

 }
 node6: Node {
 @display("p=50,200");

 }
 node7: Node {
 @display("p=93,94");

 }
 connections:
 node0.next <--> DelayChannel <--> node1.prev;
 node1.next <--> DelayChannel <--> node2.prev;
 node2.next <--> DelayChannel <--> node3.prev;
 node3.next <--> DelayChannel <--> node4.prev;
 node4.next <--> DelayChannel <--> node5.prev;
 node5.next <--> DelayChannel <--> node6.prev;
 node6.next <--> DelayChannel <--> node7.prev;
 node7.next <--> DelayChannel <--> node0.prev;
}

This description will generate a seven nodes connected to
each other.

 Performing simple routing
The SimpleMessage class allows to store the source and
destination address of each message. This will be useful for
routing operation.Therefore we propose to modify the nodet
model by creating the following functions :
generateMessage() . The node with index 0 will generate a
SimpleMessage at initialization; forwardMessage() that will
randomly select a next hop amongst neighbors (i.e. a
random out gate in the gate vector) to forward the received
message. Each time a message is received, a node will
forward it if it is not the final destination. Otherwise, it will
delete it and generate a new message.

Create header file
 node.h
#ifndef NODE_H_
#define NODE_H_
#include <iostream.h>
#include <string.h>
 #include <omnetpp.h>
#include "SimpleMessage_m.h"

class Node : public cSimpleModule

{
 private:

int counter;
int limit;

protected:
// The following redefined virtual function holds the
algorithm.

 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
 virtual SimpleMessage *generateMessage();
virtual void forwardMessage(SimpleMessage

*msg);
};
#endif /* NODE_H_ */

Write source code (C++ code)
Node.cc
#include "Node.h"
 // The module class needs to be registered with OMNeT++
Define_Module(Node);
 void Node::initialize()
{

 Variables initialization here.
if (...)
{
ev << "I have index 0, sending initial message" << endl;
 SimpleMessage *msg = generateMessage();
forwardMessage(msg);
 }
}
void Node::handleMessage(cMessage *msg)
 {
SimpleMessage *smsg = check_and_cast<SimpleMessage
*>(msg);
// I am final destination

if (...)
{
ev << "Message " << smsg << " arrived after " << smsg
>getHopCount() << " hops.\n";
delete smsg;
// Generate another one.
ev << "Generating another message: ";
SimpleMessage *newmsg = generateMessage();
 forwardMessage(newmsg);
}
else
// I am not final destination
{
forwardMessage(smsg);

 }
}
SimpleMessage* Node::generateMessage()
// Produce source and random destination addresses.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

455

// Create message object and set source and destination
field.

 SimpleMessage *msg = new
SimpleMessage(msgname);

msg->setSource(src);
msg->setDestination(dest);
return msg;

}
void Node::forwardMessage(SimpleMessage *msg)

{

// Increase hop count
 ...
// Randomly select a next hop k
 ...
ev << "Forwarding message " << msg << " on port out[" <<
k << "]\n";
send(msg, "out", k);

}

The handleMessage() function has been defined with a
pointer to an object of generic class cMessage as argument.
Here we use objects of class SimpleMessage instead. So as
to have access to specific fields of the SimpleMessage class,
it is required to cast the pointer to this more precise object
type. The check_and_cast template method allows to do this
safely, i.e. when trying to cast to an improper destination
type, the simulation will crash and stop with an error
message reporting the wrong casting attempt.

Simulation configuration, build and run
Change the omnetpp.ini file and package file then built
project and run it.

 Fig2: Ring Topology

Generating star Topology: Tolpology can be generated by
random number of nodes that can be seen in the following
ned file.
Create ned file
import ned.DelayChannel;

module Node {

 parameters:
 @display("i=misc/node_vs");
 gates:
 inout hub;
 connections allowunconnected:
}

module Hub {
 parameters:
 @display("i=misc/node_vs");
 gates:
 inout spoke[];
 connections allowunconnected:
}

//
// A generated network with star topology.
//
network Net
{
 parameters:
 int n = default(6);
 submodules:
 hub: Hub {
 gates: spoke[n];
 }
 node[n]: Node {
 @display("p=,,ring,");

 }

 connections:
 for i=0..n-1 {
 hub.spoke[i] <--> DelayChannel <--> node[i].hub;
 }
}
write source code and build and run, the topology will be
shown like figure.

Fig3: Star Topology
Like these basic topologies we can create tree ,hybrid and
grid structure of network.

5. CONCLUSIONS

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

456

This paper presented an overview of the OMNeT++
discrete event simulation platform, designed to support the
simulation of telecommunication networks and other
parallel and distributed systems. The OMNeT++ approach
significantly differs from that of NS-2, the most widely
used network simulator in academic and research circles:
while the NS-2 (and NS-3) project goal is to build a network
simulator, OMNeT++ aims at providing a rich simulation
platform, and leaves creating simulation models to
independent research groups. The last ten years have shown
that the OMNeT++ approach is viable, and several
OMNeT++-based open-source simulation models and
model frameworks have been published by various research
groups and individuals.

6. REFERENCES
[1] Jianli Pan, Prof. Raj Jain,Project , “A Survey of Network
Simulation Tools: Current Status and Future
Developments”, report.
[2] András Varga,Rudolf Hornig ”AN OVERVIEW OF
THE OMNeT++ SIMULATION
ENVIRONMENT “,SIMUTools, March 03 – 07, 2008,
Marseille, France.
[3] Mrs. Saba Siraj, Mr. Ajay Kumar Gupta, Mrs Rinku-
Badgujar, “Network Simulation Tools Survey” ,
International Journal of Advanced Research in Computer
and Communication Engineering
Vol. 1, Issue 4, June 2012
[4] OMNeT++ Home Page. http://www.omnetpp.org
[accessedon September, 2007]
[5] Varga, A. 2001. The OMNeT++ Discrete Event
Simulation System. In the Proceedings of the European
Simulation Multiconference (ESM2001. June 6-9, 2001.
Prague, Czech Republic).
 [6] Bajaj, S., L. Breslau, D. Estrin, K. Fall, S. Floyd, P.
Haldar, M. Handley, A. Helmy, J. Heidemann, P. Huang, S.
Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y.
Xu, H. Yu and D. Zappala. 2000. Improving simulation for
network research. IEEE Computer. (to appear, a preliminary
draft is currently available as USC technical report 99-702)
 [7] T. R. Henderson, S. Roy, S. Floyd, G. F. Riley. ns3
Project Goals. WNS2 ns-2: The IP Network Simulator, Pisa,
Italy-Oct.10,2006.
http://www.nsnam.org/docs/meetings/wns2/wns2-ns3.pdf
[8] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-
Chuan Kung, Ning Li, Hyuk Lim, Hung-Ying Tyan, and
Honghai Zhang,.J-Sim: a simulation and emulation
environment for wireless sensor networks. IEEE Wireless
Communications Magazine, Vol. 13, No. 4, pp. 104--119,
August 2006.
[9] J-SIM home page: http://www.j-sim.org [accessed on
September, 2007]
[10] OPNET Technologies, Inc. OPNET Modeler.
http://www.opnet.com [accessed on September, 2007]
[11] Bagrodia, R, R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, B. Park, H. Song. 1998. Parsec: A Parallel
Simulation Environment for Complex Systems. Computer,
Vol. 31(10), October, pp. 77-85.

 [12] Kaage, U., V. Kahmann, F. Jondral. 2001. An
OMNeT++TCP Model. To appear in Proceedings of the
European Simulation Multiconference (ESM 2001), June 7-
9, Prague.
[13] Wehrle, K, J. Reber, V. Kahmann. 2001. “A
Simulation Suite for Internet Nodes with the Ability to
Integrate Arbitrary Quality of Service Behavior”. In
Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Conference
2001, Phoenix (AZ), USA, January 7-11.
[14] MiXiM home page.
30TUhttp://sourceforge.net/projects/mixim/U30T [accessed on
September, 2007]
[15] JiST home page. http://jist.ece.cornell.edu [accessed on
September, 2007]
[16] Varga, A. and Gy. Pongor. 1997. Flexible Topology
Description Language for Simulation Programs. In
Proceedings of the 9th European Simulation Symposium
(ESS'97), pp.225-229, Passau, Germany, October 19-22.
[17] Varga, A and B. Fakhamzadeh. 1997. The K-Split
Algorithm for the PDF Approximation of Multi-
Dimensional Empirical Distributions without Storing
Observations. In Proc. of the 9th European Simulation
Symposium (ESS'97), pp.94-98. October 19-22, Passu,
Germany.
[18] Varga, A. 1998. Parameterized Topologies for
Simulation Programs. In Proceedings of the Western
Multiconference on Simulation (WMC'98), Communication
Networks and Distributed Systems (CNDS'98). San Diego,
CA, January 11-14.
[19]Consensushomepage.http://www.consensus.tudelft.nl/so
ftware.html [accessed on
September, 2007]
[20] Field Bushomepage.
http://developer.berlios.de/projects/fieldbus [accessed on
September, 2007]
 [21] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke,
and H. Karl, A Mobility Framework for OMNeT++. 2003.
3P

rd
P International OMNeT++ Workshop (Budapest

University of Technology and Economics, Department of
Telecommunications Budapest, Hungary, January 2003).
http://www.tkn.tu-berlin.de/~koepke/
 [22] OverSim:The Overlay Simulation Framework
http://www.oversim.org [accessed on September, 2007]
[23] Ingmar Baumgart and Bernhard Heep and Stephan
Krause. 2007. OverSim: A Flexible Overlay Network
Simulation Framework. Proceedings of 10th IEEE Global
Internet Symposium (May, 2007). p.79-84.
[24] Ingmar Baumgart and Bernhard Heep and Stephan
Krause. 2007. A P2PSIP Demonstrator Powered by
OverSim. Proceedings of 7th IEEE International Conference
on Peerto- Peer Computing (P2P2007, Galway, Ireland.
Sep, 2007). pp. 243-244,
[25] C. Mallanda, A. Suri, V. Kunchakarra, S.S. Iyengar, R.
Kannan, A. Durresi, and S. Sastry. 2005. Simulating
Wireless Sensor Networks with OMNeT++ , submitted to
IEEE Computer, 2005
http://csc.lsu.edu/sensor_web/publications.html

http://sourceforge.net/projects/mixim/

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

457

[26] Sensor Simulator. http://csc.lsu.edu/sensor_web
[accessed on September, 2007]
[27] S. Valentin. 2006. ChSim - A wireless channel
simulator for OMNeT++, (TKN TU Berlin Simulation
workshop, Sep. 2006) 30TUhttp://www.cs.uni-
paderborn.de/en/researchgroup/U30T research-group-
computernetworks/ projects/chsim.html
 [28] I. Dietrich, C. Sommer, F. Dressler. Simulating
DYMO in OMNeT++. Erlangen-Nürnberg: Friedrich-
Alexander- Universität. 2007 Internal report.
[29] Isabel Dietrich, Volker Schmitt, Falko Dressler and
Reinhard German, 2007. "SYNTONY: Network Protocol
Simulation based on Standard-conform UML 2 Models,"
Proceedings of 1st ACM International Workshop on
Network Simulation Tools (NSTools 2007), Nantes,
France,October 2007.
[30] Feng Chen, Nan Wang, Reinhard German and Falko
Dressler, 2008. "Performance Evaluation of IEEE 802.15.4
LR-WPAN for Industrial Applications," Proceedings of 5P

th
P

IEEE/IFIP Conference on Wireless On demand Network
Systems and Services (IEEE/IFIP WONS 2008), Garmisch-
Partenkirchen, Germany, January 2008.

http://www.cs.uni-paderborn.de/en/researchgroup/
http://www.cs.uni-paderborn.de/en/researchgroup/

