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Abstract  

 In this paper we are presenting a ranking technique with alpha cut optimal 

solution for solving transportation problem, where fuzzy demand and supply are 

all in the form of Hexagonal fuzzy number. The main aim of this paper is to 

introduce a new operation for addition, subtraction, multiplication of Hexagonal 

fuzzy numbers on the basis of alpha cuts sets of fuzzy numbers. In an 

organisation, where a number  of alternatives and variables such as production, 

inventory, financial management, costing and various other parameters are 

involved. This ranking procedure serves as an efficient method wherein a 

numerical example is also taken and the inference is given.  

 

Keywords 

 Robust Ranking method, Hexagonal fuzzy numbers, α-optimal solution, 

Fuzzy transportation problem. 

 

1. Introduction 

 The Fuzzy Transportation Problem (FTP) is one of the special kinds of 

fuzzy linear programming problems. A fuzzy transportation problem is a 

transportation problem in which the transportation costs, supply and demand 

quantities are fuzzy quantities. To deal quantitatively with imprecise 
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information in making decisions Bellman and Zadeh and Zadeh introduced the 

notion of fuzziness. Fuzzy transportation is the transportation of fuzzy quantity 

from the fuzzy origin to fuzzy destination in such a way that the total fuzzy 

transportation cost is minimum. The objective of the fuzzy transportation 

problem is to determine the shipping schedule that minimizes the total fuzzy 

transportation cost, while satisfying fuzzy supply and demand limits. 

 

 The Fuzzy set Theory has been applied in many fields such as 

Management, Engineering etc.  In this paper a new operation on Hexagonal 

Fuzzy number is defined where the methods of addition, subtraction, and 

multiplication has been modified with some conditions. 

 

2. Preliminaries 

2.1 Definition 

 Let X be a nonempty set. A fuzzy set A in X is characterized by its 

membership function A : X → [0, 1], where A(x) is interpreted as the degree of 

membership of element x in fuzzy A for each other x ∈ X. 

 

2.2 Interval Number 

 Let R be the set of real numbers. Then closed interval [a, b] is said to be 

an interval number, where a, b ∈ R, a ≤ b. 

 

2.3 Fuzzy Number 

 A Fuzzy set A of the real line R with membership function 

 µ�̃� (X) : R → [0, 1] is called fuzzy number if 

 

i. A must be normal and convex fuzzy set; 
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ii. The support of �̃�, must be bounded 

iii. αRAR must be closed interval for every α ∈ [0, 1] 

 

3. Hexagon Fuzzy Number 

 The Fuzzy number H is a hexagonal fuzzy �̃�RH Ris a hexagonal fuzzy 

number denoted  �̃�H (a, b, c, d, e, f; 1) and its member function µ�̃�RHR(x) is give 

below. 

     y – a / b – a  a ≤ y ≤ b 

1 b ≤ y≤ c 

d – y / d – c  c ≤ y ≤ d 

0 Otherwise 

µ�̃�H(x) =  y – c / d – c  c ≤ y ≤ d 

1 d ≤ y ≤ e 

f – y / f – e  e ≤ y ≤ f 

0 Otherwise 
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Figure 1 : Graphical representation of a Hexagonal fuzzy number 

 

3.1 Arithmetic operations on Hexagonal fuzzy number 

 Let �̃�RHR = (aR1R, aR2R, aR3R, aR4R, aR5R, aR6R) and 𝑁� RHR = (nR1R, nR2R,  nR3R, nR4R, nR5R, nR6R) be two 

hexagonal fuzzy numbers, then 

 

i. �̃�RHR (+)𝑁� RHR = (aR1R + nR1R, aR2 R+ nR2R, aR3 R+ nR3R, aR4 R+ nR4R, aR5 R+ nR5R, aR6 R+ nR6R) 

ii. �̃�RHR (-)𝑁� RHR = (aR1R + nR1R, aR2 R+ nR2R, aR3 R+ nR3R, aR4 R+ nR4R, aR5 R+ nR5R, aR6 R+ nR6R) 

iii. �̃�RHR (*)𝑁� RHR = (aR1R + nR1R, aR2 R+ nR2R, aR3 R+ nR3R, aR4 R+ nR4R, aR5 R+ nR5R, aR6 R+ nR6R) 

 

3. Robust Ranking Technique 

 Robust Ranking Technique satisfies the following properties, 

 

i. Compensation 

ii. Linearity 

iii. Additivity 

 

 It provides results which are consist human intuition . If �̃� is a fuzzy 

number then the Robust ranking is defined by 

 

 R (�̃�RHR) = R0R∫ P

1 
P (0.5) (aRhαRP

L
P, aRhαRP

U
P) dα where (aRhαRP

L
P, aRhαRP

U
P) 

 

 Is the α level cut of the fuzzy number �̃�RHR. In this paper we find the rank 

of the objective 
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Numerical Example 

 A Company has six sources SR1R, SR2R, SR3R, SR4R, SR5R and S6 and six destination 

DR1R, DR2R, DR3R, DR4R, DR5R and DR6R ; the fuzzy transportation cost for unit quantity of the 

product from i P

th
P source j P

th
P destination is 

 

BRijR Where [bRijR] 3x4 = (1,2,3,4,5,6) (1,3,4,6,7,8) (8,9,7,8,6,5,4) (2,6,5,4,3,2) 

      (3, 6, 5, 4, 3, 2) (2,3,5,6,7,5) (4,7,6,5,2,1) (3,4,5,6,7,5) 

      (1,5,6,7,6,2) (1,8,7,6,5,6) (5,9,4,6,7,6) (8,7,1,0,6,5) 

 

 And fuzzy availability of the product at source are (2,3,5,6,2,1), 

(5,10,12,17,11,10), (8,10,12,12,6,4) and the fuzzy demand of the product at 

destination are (5,8,8,7,5,4), (5,1,6,7,5,4,2), (2,3,1,3,5,7) and 

(3,6,9,12,15,13,18). 

 

Then the problem becomes as 

 

Table – 1 

 FD1 FD2 FD3 FD4 Supply 

FSR1 (1,2,3,4,5,6) (1,3,4,6,7,8) (8,9,7,6,5,4) (2,6,5,4,3,2) (2,3,5,6,2,1) 

FSR2 (3,6,5,4,3,2) (2,3,5,6,7,5) (4,7,6,5,2,1) (3,4,5,6,7,5) (5,10,12,17,11,10) 

FSR3 (1,5,6,7,6,2) (1,8,7,6,5,6) (5,9,4,6,7,6) (8,7,1,0,6,5) (8,10,12,12,6,4) 

Demand (5,8,8,7,5,4) (5,1,6,7,5,2) (2,3,1,3,5,7) (3,6,9,12,15,18)  

 

Solution 

 The fuzzy transportation problem can be formulated in the following 

mathematical programming from 
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Min  x =  R(1,2,3,4,5,6) yR1R1 + R(1,3,4,6,7,8) yR12R + R(8,9,7,6,5,4) yR13R + 

R(2,6,5,6,7,5) yR14R + R(3,6,5,4,3,2) yR21R + R(2,3,5,6,7,5) yR22R + R(4,7,6,5,2,1) yR23R 

+ R(3,4,5,6,7,5) yR24R + R(1,5,6,7,6,2) yR31R + R(1,8,7,6,5,6) yR32R + R(5,9,4,6,7,6) 

yR33R + R(8,7,0,6,5) yR34 

 

R (H) = 0∫ P

1
P (0.5) (aRhαRP

L
P, aRhαRP

U
P) dα 

Where  = {(b-a) α + a, d – (d-c) α} + {(d-c) α + c, f – (f-e) α} 

R (1, 2, 3, 4, 5, 6) = R0R∫ P

1
P (0.5) (α + 1 + 4 - α + α +3 + 6 - α) dα 

Similarly 

R(1,3,4,6,7,8) = 9.75; R(8,9,7,6,5,4) = 13; R(2,6,5,4,3,2)=7.75; R(3,6,5,4,3,2)=8 

R(2,3,5,6,7,8) = 9.75; R(4,7,6,5,2,1) = 9; R(3,4,5,6,7,5) = 10.25; R(1,5,6,7,6,2) 

= 10; R(1,8,7,6,5,6) = 11.5; R(5,9,4,6,7,6) = 11.75; R(8,7,1,0,6,5) = 7; 

Rank of all supply 

R(8,10,12,12,6,4) = 19; R(2,3,5,6,2,1) = 9.75; R(2,3,1,3,5,7) = 6.25; 

R (3, 6, 9, 12, 15,18) = 21; 

Table after ranking 

 

Table 2 

 FDR1 FDR2 FDR3 FDR4 Supply 

FSR1 7 9.75 13 7.75 19 

FSR2 8 9.75 9 10.25 7.5 

FSR3 10 11.5 11.25 7 23.5 

Demand 13 9.75 6.25 21  

 

Table after applying Matrix Minima method 

 

Table 3 
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 FDR1 FDR2 FDR3 FDR4 Supply 

FSR1 
  7   

7 9.75 13 7.75 19 

FSR2 
 6  9.75  

8 9.75 9 10.25 7.5 

FSR3 
 2.5  21  

10 11.5 11.25 7 23.5 
Demand 13 9.75 6.25 21  

 

The Transportation cost is 

      (13) (7) + (9.75) (6) + (1025) (9.75) + (11.5) (205) + (7) (21) 

  =  393.6875 

  =  393.7 

 

Conclusion 

 We have thus obtained an optimal solution for fuzzy transportation 

problem using hexagon fuzzy numbers. The new arithmetic operations of 

hexagon fuzzy numbers are employed to get the fuzzy optimal solutions. 

Moreover the fuzzy transportation problem using Robust’s ranking indices, 

numerical example show that by this method we can have the optimal solution 

as well as the crisp and fuzzy optimal total cost. By using Robust’s [10] ranking 

method we have shown that the total cost obtained is optimal. We can conclude 

that the solution of fuzzy transportation problems can be obtained by Robust’s 

ranking method effectively. 
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