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Abstract 

This research work presents the transient flow analysis of viscous fluid within a pipe. The model 
equations evolved were considered for leak and no leak conditions. The equations were further 
solved analytically using eigen vector expansion method. The results obtained were presented 
graphically and analyzed. The analyses were undertaken using flow velocity, pressure, density, 
measured inlet mass flow, measured outlet mass flow, elevation, leak rate, leak velocity and 
Reynolds’ number. Based on the results obtained, these fundamental tools of analysis proved 
effective in detecting, locating and describing the type and behaviour of leakage in a pipe.  
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1.0 Introduction 

Pipelines are media needed for the movement of crude oil from reservoir wellbore and other 

stations to be delivered to destination point such as separator, storage tanks and the likes 

(Oyedeko and Balogun, 2015). The use of pipelines is considered as a major medium of 

transporting petroleum products like gases, fossil fuels, chemicals and other important 

hydrocarbons (Rehman and Nawaz, 2017). 

Until crude oil is converted into useful products, there are intermediary processes that need one 

or more-unit operations which will involve leakages with one another with the help of pipelines 

(Chinwuko et al.,2016). It has been proven that gas and oil pipeline system are the safest and 

most economical media of transporting crude oil and they fulfill a high demand for reliability 

and efficiency (Boaz et al., 2014; Xiao et al., 2018). Transportation of crude oil in pipelines need 

serious monitoring to detect pipeline failure or malfunctioning like leaks (Hauge et al., 2007). 

Overtime, these pipelines due to design faults, stress corrosion and fatigue cracks, operation 

outside design limit or intentional damage in act of vandalism, ageing and their likes result to 

leaks (Oyedeko and Balogun, 2015). Sudden pipeline burst result in rapid change in pressure, 
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causing economic loss and environmental problem without locating the leakages position and 

repairing in time (Yang et al., 2011). 

The failure of pipelines is either deliberate vandalism or device failure or corrosion damage 

(Ajao et al., 2018; White et al., 2019). This leads to pipeline failure and thus causing an 

irreversible damage such as financial losses and extreme environmental pollution specifically 

when the leakage is not located timely (Arifin et al., 2018; Mokhatab et al., 2012; Mutiu et al., 

2019). Crude oil is in some sense hazardous. Hence, it is required to install leak detection and 

localization systems (LDS). Leak detection systems that have the capability of detecting the 

particular spot. Both the transporters and producers of these hydrocarbons experience the 

problems of pipeline leaks from time to time and failure to locate it can lead to human casualties, 

direct cause of loss of product and lie downtime, environmental cleanup cost and possible fines 

and legal suits from habitants (Oyedeko and Balogun, 2015; Chinwuko et al., 2016). Hauge et 

al., (2007) suggested a set of two coupled one dimensional first order nonlinear hyperbolic 

partial differential equations governing the flow dynamics based on the assumption that 

measurements are only available at the inlet and outlet of the pipe, and output is applied in the 

form of boundary conditions. The deficiency of the model is that leak is only accurately located 

and quantified successfully when the pipeline is shut-down. In this work, we solved and 

extended the model for leakage in pipeline. The model was modified to include: no leak and leak 

situations for viscous fluid. The two were solved analytically by eigen-function expansion 

technique. 

2.0 Mathematical Formulation 

In formulating the models, relevant assumptions were made in line with Chinwuko et al., (2016). 
The model equation was also modified to depict two different situations. They are: 

1) Case 1: No leak situation for a viscous fluid. 

2) Case 2: Leak situation for a viscous fluid.  

The following assumptions were made: 

(i) Pipe cross-sectional area remains constant; 
(ii) Isothermal and adiabatic flow; 
(iii) One-dimensional flow (unidirectional) 
(iv) No chemical reaction between the transporting fluid and internal wall of the pipe; 
(v) Constant density throughout the pipeline segments 
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(vi) Homogenous fluid (either oil or gas) being transported in the pipeline. 
(vii) Energy conservation equation is neglected, since the leak considered in the transient model 

affects only the downstream temperature at the fluid flowing velocity. 

Based on the above assumptions, the continuity equation also known as the mass balance 
equation which is based on the law of conservation of mass for a one-dimensional flow can be 
expressed as; 

          (1)  

In the occurrence of a leak, the continuity equation becomes  

         (2) 

where the is the leak rate defined as: 

 (Tetzner, 2003)     (3) 

The leak position is also given by 

                     (4) 

The momentum equation describes the force balance on the fluid within a segment of the 
pipeline. From the Navier-Stokes equations, the conservation of momentum in one – dimensional 
flow is: 

                   (5) 

Substituting the viscosity  from the expression for Reynolds’ number and later substituting 
with the relation of frictional factor  gives: 

        (6)  

Substituting into (6) and introducing the leak term gives  

      (7) 
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where:  is the one-dimensional velocity of fluid;  is time;  is the spatial space;  is the 
static pressure; is the viscosity of the fluid;  is the elevation; is the density of the fluid; 

 is the cross sectional area of the pipe; is the leak rate; is the leak position; is the 

length of the pipe; is the acceleration due to gravity; is the leak velocity; is the 

reference flow velocity; is the estimated outlet mass flow rate; is the estimated inlet mass 

flow rate; is the measured outlet mass flow rate and is the measured inlet mass flow rate. 

The following initial and boundary conditions are later applied: 

           (8) 

2.1 Method of Solution 

If we assume to be parabolic, i. e.      (9) 

Then, equations (2) and (7) satisfying (8) become (10) and (11) respectively 

          (10) 

                (11) 

2.2 Non-Dimensionalization 

Here, we non-dimensionalize equations (10) and (11) satisfying (8) using the following 

dimensionless variables:    (12) 

Substituting (12) into (10), (11) and using (8), we have 
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and          (15) 

i.e.     
       (16) 

and       (17) 

         (18) 

Dropping prime we have the following dimensionless equations and initial and boundary 
conditions. 

         (19)
 

      (20) 

           (21) 

where is the leak rate,  is the leak velocity, is the elevation  and 

is the Reynolds’ Number for the flow 

The above equations (19) – (21) will now be considered under two (2) cases. They are; 
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1. If there is no leak, the transient pressure drop per unit length along the pipeline is constant i.e., 
no leak implied  

constant         (22) 

2. If a leak occurs, the flow rate upstream of the leak will be greater than the flow rate downstream 
of the leak, therefore the pressure drop per unit length upstream of the leak will also be greater 
than pressure downstream of the leak i.e., 

    (23) 

2.3 Viscous flow without leakage 

In this case, equation (19) and (21) reduce to 

          (24) 

       (25) 

           (26) 

2.4 Analytical solution of Viscous Flow without Leakage 

It is simple to eliminate the continuity equation (24) by means of streamlines function 
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          (29) 

          (30) 

then           (31) 

and            (32) 

The coordinate transformations become 

          (33) 

        (34) 

Using (27) - (34) then equations (24) – (26) can be simplified as: 

        (35) 

           (36) 
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     (41) 

     (42) 

and 

         (43) 

         (44) 

        (45) 

Then equation (35) – (36) reduce to 

        (46) 
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        (52) 

         (53) 

Compare (46) and (47) with (48) and (49) respectively, we have 
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      (64) 

Therefore,      (65) 

Thus      (66) 

2.5 Case 2: Viscous flow with leakage 

In this case, equations (19)- (21) reduce to 
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           (74) 

         (75) 

Using (71) - (75), then equations (67) – (69) can be simplified as 

   (76) 

Suppose the solution can be expressed as: 
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                     (82) 

Equations (79) – (80) is a non-homogeneous boundary value problem. So, we let 
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Then, equations (79) and (80) become 

            (85) 

                   (86) 

Compare (85) and (86) with (48) and (49) respectively we have 

              (87) 

Then                   (88) 

and 

             (89) 

            (90) 

( )
( )
( )

1

1

1

,0 0

0, 0

1, 0

u

u t

u t

η = 


= 
= 

( )( ) ( ) 0
1( , ) ( ) ( ) 1t t t t t

L
ηµ η α β α η= + − = −

( ) ( )0 1( , ) , ,u t B t tη η µ η= +

( )( ) ( )
2

02

1 1 1 Leak
I I

e

VB B M M M
t R

βη η η
ρ η ρ ρ ρ

∂ ∂
= − + − − − +

∂ ∂
  

( )
( )
( )

,0 1

0, 0

1, 0

B

B t

B t

η η= − 


= 
= 

( )

( ) ( )( ) ( )( )0

1, , 0, 1,L 1,

1, 1

e

Leak I I

u B k F x
R

F t V M M M

α η η η
ρ

η η βη η
ρ

= = = = − = = 

= − + − − −


  

( ) 1 nF n b qη = − ⇒ =

( )
( ) ( )

1 1

0
0 0

1
2

0

sin sin
2

sin

Leak I I

n

V M n d M M n d
F t

n d

πη η β η πη η

ρ
β η πη η

 
− − − + 

 =  
 + 
 

∫ ∫

∫

  

( ) ( )( ) ( ) ( )( )
( )

2
0

3

2 ( ) ( 1) 21 ( 1) ( 1)2
nn n

Leak I I
n

nV M M M
F t

n n n

πβ

ρ π π π

 − − −− − − − + −
 = + +
 
 

  



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-8, Issue-3, March 2022 
ISSN: 2395-3470 

www.ijseas.com 

86 
 

Let                     (91) 
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Then                        (103) 

                                    (104) 

Therefore;           (105) 

Thus,            (106) 

    (107) 

3.0 Results and Discussion 

In analyzing the solution, we examine the effect of the measured inlet mass flow rate ( ), 

measured outlet mass flow rate ( ), elevation, pressure, the leak rate ( ), leak velocity  

( ), the Reynold number ( ) on the flow distribution. 

 

3.1 Analysis of Results 

The graphs for different cases are given below:  

 

Case 1: Viscous flow without leakage 

 
Figure 4.1: Flow distribution against distance at various values of  

Figure 4.1 depicts the graph of flow velocity against distance for various 

values of measured inlet mass flow rate . It is observed that the flow 

velocity decreases along distance and decreases as measured inlet mass flow 

rate value increases.  

 
Figure 4.2: Flow distribution against time at various values of  

Figure 4.2 depicts the graph of flow velocity against time for various values 

of measured inlet mass flow rate . It is observed that the flow velocity 

decreases and later becomes steady with time and decreases as measured inlet 

mass flow rate  value increases. 
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Figure 4.3: Flow distribution against distance at various values of  
Figure 4.3 depicts the graph of flow velocity against distance for various 

values of elevation  . It is observed that the flow velocity decreases along 
distance and increases as elevation value increases.  

 
 

Figure 4.4: Flow distribution against time at various values of  
Figure 4.4 depicts the graph of flow velocity against time for various values 

of elevation  . It is observed that the flow velocity decreases and later 
becomes steady with time and increases as elevation value increases. 

 
Figure 4.5: Flow distribution against distance at various values of  
Figure 4.5 depicts the graph of flow velocity against distance for various 
values of density . It is observed that the flow velocity decreases along 
distance and decreases as density  value increases. 

 
Figure 4.6: Flow distribution against time at various values of  
Figure 4.6 depicts the graph of flow velocity against time for various values 
of density . It is observed that the flow velocity decreases and later 
becomes steady with time and increases as density  value increases. 

 
Figure 4.7: Flow distribution against distance at various values of  

Figure 4.7 depicts the graph of flow velocity against distance for various 

values of Reynolds’ number . It is observed that the flow velocity 

decreases along distance and decreases as Reynolds’ number value 

increases.  

 
Figure 4.8: Flow distribution against time at various values of  

Figure 4.8 depicts the graph of flow velocity against time for various values 

of Reynolds’ number . It is observed that the flow velocity decreases and 

later becomes steady with time and increases as Reynolds’ number value 

increases. 
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Case 2: Viscous flow with leakage 

 

Figure 4.9: Flow distribution against distance at various values of  

Figure 4.9 depicts the graph of flow velocity against distance for various 

values of measured inlet mass flow rate . It is observed that the flow 

velocity decreases along distance and decreases as measured inlet mass flow 

rate value increases.  

 

Figure 4.10: Flow distribution against time at various values of  

Figure 4.10 depicts the graph of flow velocity against time for various values 

of measured inlet mass flow rate . It is observed that the flow velocity 

decreases and later becomes steady with time and decreases as measured inlet 

mass flow rate value increases. 
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Figure 4.11: Flow distribution against distance at various values of  
Figure 4.11 depicts the graph of flow velocity against distance for various 

values of elevation  . It is observed that the flow velocity decreases along 
distance and decreases as elevation value increases. 

 

Figure 4.12: Flow distribution against time at various values of  
Figure 4.12 depicts the graph of flow velocity against time for various values 

of elevation  . It is observed that the flow velocity decreases and later 
becomes steady with time and decreases as elevation value increases. 

 

Figure 4.13: Flow distribution against distance at various values of  
Figure 4.13 depicts the graph of flow velocity against distance for various 
values of density . It is observed that the flow velocity decreases along 
distance and decreases as density  value increases.  

 

Figure 4.14: Flow distribution against time at various values of  
Figure 4.14 depicts the graph of flow velocity against time for various values 
of density . It is observed that the flow velocity decreases and later 
becomes steady with time and increases as density  value increases. 

 

Figure 4.15: Flow distribution against distance at various values of  

Figure 4.15 depicts the graph of flow velocity against distance for various 

 

Figure 4.16: Flow distribution against time at various values of  

Figure 4.16 depicts the graph of flow velocity against time for various values 
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values of leak velocity . It is observed that the flow velocity decreases 

along distance and increases as leak velocity value increases. 

of leak velocity . It is observed that the flow velocity decreases and 

later becomes steady with time and increases as leak velocity value 

increases. 

 

Figure 4.17: Flow distribution against distance at various values of 

 

Figure 4.17 depicts the graph of flow velocity against distance for various 

values of leak rate . It is observed that the flow velocity decreases 

along distance and decreases as leak rate value increases. 

Figure 4.18: Flow distribution against time at various values of  
Figure 4.18 depicts the graph of flow velocity against time for various values 

of leak rate . It is observed that the flow velocity decreases and later 

becomes steady with time and decreases as leak rate value increases. 

 

Figure 4.19: Flow distribution against distance at various values of  

Figure 4.19 depicts the graph of flow velocity against distance for various 

values of Reynolds’ number . It is observed that the flow velocity 

decreases along distance and decreases as Reynolds’ number value 

increases.  

 

Figure 4.20: Flow distribution against time at various values of  

Figure 4.20 depicts the graph of flow velocity against time for various values 

of Reynolds’ number . It is observed that the flow velocity decreases and 

later becomes steady with time and increases as Reynolds’ number value 

increases. 
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Figure 4.21: Flow distribution against distance at various values of  

Figure 4.21 depicts the graph of flow velocity against distance for various 

values of measured outlet mass flow rate . It is observed that the flow 

velocity decreases along distance and decreases as measured outlet mass flow 

rate value increases.  

Figure 4.22: Flow distribution against time at various values of  

Figure 4.22 depicts the graph of flow velocity against time for various values 

of measured outlet mass flow rate . It is observed that the flow velocity 

decreases and later becomes steady with time and decreases as measured 

outlet mass flow rate value increases. 

 

5.0 Conclusion  

In this research work, a mathematical model for detecting leakage of non-viscous and viscous 
fluid flow in a pipeline was formulated. The model equations evolved were considered in two 
cases: 

i. Viscous flow without leakage ii. Viscous flow with leakage 

The two cases were solved analytically and we observed that: the flow velocity, pressure, density 
measure inlet mass flow rate, measured outlet mass flow rate, elevation, leak velocity and 
Reynolds’ number for the flow in the equations are not only fundamental but useful tools in 
detecting, localizing and analyzing leakage of viscous and non-viscous fluid in a pipe. 
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