www.iiseas.com

Every Simple Planar Graph Is 4-Colorable

N.V. Deshpande¹ and *P. P. Kale ²

Professors (Retd), School of Mathematics, Devi Ahilya University, Indore, M.P., India.

1. 131, Lokmanya Nagar, Indore – 452009, India.

2. Flat No. 302, S. K. Residency, Ganesh Colony, Jalgaon – 425001, India.

email: kalep.p.100@gmail.com
kalep.p.100@gmail.com**

Abstract:

A simple mathematical proof of 4-color conjecture is proposed.

1. Introduction

The 4 – color conjecture has been referred to as the most famous unsolved problem in graph theory. The first proof of the conjecture was given by Kempe[4]. The proof was found to be erroneous by Heawood [3]. However, he proved the five color theorem. Since then many mathematicians have been trying to settle the conjecture [5]. Apple and Haken [1],[2] have given a proof of the conjecture by using a large scale computer. A simple proof still using a computer has been given by Robertson et. al.[6]. A simple proof of five color theorem for planar graphs is given by Thomessen [7] by showing them to be five choosable. In this paper we present a mathematical proof of the 4-color conjecture for the simple planar graphs.

2. Definitions and Notation:

Let G = (V, E) be a near triangulation that is G is a simple planar graph which consists of a cycle C and vertices and edges inside C, such that each bounded face is bounded by a triangle. Let x be a vertex of C and $\psi = \{P_1, P_2, ..., P_k\}$ $k \ge 2$ be any arbitrary partition of vertices of C into paths P_i where $|V(P_i)| \ge 2$ taken in clockwise order such that x is the initial

vertex of P_1 and $\bigcup_{i=1}^k P_i = C$. The intersection $P_i \cap P_{i+1}$ for $1 \le i \le k-1$ and $k \ge 2$ contains exactly one vertex of P_i and P_{i+1} which is end vertex of P_i and the initial vertex of P_{i+1} . We say that ψ is the sequence of paths bounding the graph G.

Suppose a near triangulation G is colored with 4 colors α, β, γ and δ . We write $v \to \alpha$ if $v \in V(G)$ is assigned the color α and a path $P_i \to \overline{\alpha}$ if the vertices of $P_i \in \psi$ are colored with at most three colors β, γ and δ . The path $P_i \to \overline{\beta}$ or $\overline{\gamma}$ or $\overline{\delta}$ is similarly defined. If P_i is colored with only two colors say α and β , then both the statements $P_i \to \overline{\gamma}$ and $P_i \to \overline{\delta}$ are true. We shall use $P_i \to \overline{\gamma}$ or $P_i \to \overline{\delta}$ according to our convenience.

3. Results:

Theorem: Let G be a near triangulation with C, x, ψ as defined in the Section 2 above with $|V(G)| \ge 3$. Then there exists a 4 coloring of G such that –

(i)
$$x \to \alpha$$
,

(ii)
$$P_i \to \overline{\beta}$$
 or $\overline{\gamma}$ or $\overline{\delta}$ for $1 \le i \le k$,

(iii) If $P_i \to \overline{\beta}$ then $P_{i+1} \to \overline{\gamma}$ or $\overline{\delta}$ and similarly if $P_i \to \overline{\gamma}$ (or $\overline{\delta}$) then $P_{i+1} \to \overline{\delta}$ or $\overline{\beta}$ (or $\overline{\beta}$ or $\overline{\gamma}$) for $1 \le i \le k-1$.

Proof: Let $y_1 \in V(P_1)$ be the vertex adjacent to the vertex x. We have following two cases:

Case A: There is no chord through y_1 in G,

Case B: G has a chord or chords through y_1 .

www.iiseas.com

Proof of Case A: We prove the case by induction on |V(G)|. Suppose |V(G)| = 3. Then C is a triangle xy_1y_2x . Let $x \to \alpha$, $y_1 \to \beta$ and $y_2 \to \gamma$. We have following three possibilities for ψ :

 $\psi_1 = \{P_1, P_2\}$ where $P_1 = xy_1$ and $P_2 = y_1y_2x$, $\psi_2 = \{P_1, P_2, P_3\}$ where $P_1 = xy_1$, $P_2 = y_1y_2$ and $P_3 = y_2x$, $\psi_3 = \{P_1, P_2\}$ where $P_1 = xy_1y_2$ and $P_2 = y_2x$.

In ψ_1 , $P_1 \to \overline{\gamma}$ or $\overline{\delta}$, $P_2 \to \overline{\delta}$. Let $P_1 \to \overline{\gamma}$ and $P_2 \to \overline{\delta}$. In ψ_2 , $P_1 \to \overline{\gamma}$ or $\overline{\delta}$, $P_2 \to \overline{\delta}$ and $P_3 \to \overline{\beta}$ or $\overline{\delta}$ Let $P_1 \to \overline{\gamma}$, $P_2 \to \overline{\delta}$ and $P_3 \to \overline{\beta}$. In ψ_3 , $P_1 \to \overline{\delta}$ and $P_2 \to \overline{\beta}$ or $\overline{\delta}$. Let $P_1 \to \overline{\delta}$ and $P_2 \to \overline{\beta}$. This shows that the theorem holds for |V(G)| = 3. in case A.

Suppose the theorem holds for |V(G)| = n-1 in case A. We show that the theorem holds for |V(G)| = n in case A.

Let $\psi = \{P_1, P_2,, P_k\}$ where $k \ge 2$ and $P_1 = xy_1y_2....y_{m_1}$ and

 $P_i = y_{m_{i-1}} y_{m_{i-1}+1} \dots y_{m_i}, i = 2,3 \dots k, y_{m_k} = x$. If the edge $xy_2 \notin E(G)$ then let $x, w_1, w_2, \dots w_r, y_2$ where $r \ge 1$ be the vertices adjacent to the vertex y_1 taken in anticlockwise direction around y_1 . As the interior of C is triangulated, the graph G contains the path $Q = xy_2$ or $xw_1w_2 \dots w_ry_2$. Thus the graph G-y₁ is also a near triangulation. Corresponding to C and ψ for G, we have C* and ψ * for G-y₁.

Depending on $|V(P_1)|$ we have following three cases:

Case I : $|V(P_1)| \ge 4$,

Case II : $|V(P_1)| = 3$,

Case III : $|V(P_1)| = 2$,

Case I: For G-y₁, we take

 $\psi^* = \{Q, P_1^*, P_2, \dots, P_k\}$ where $P_1^* = y_2 y_3, \dots, y_{m_1}, m_1 \ge 3$ and $k \ge 2$.

By induction hypothesis, we have a 4-coloring of G-y₁ satisfying the conditions of the theorem. Suppose $x \to \alpha, Q \to \overline{\beta}, P_1^* \to \overline{\gamma}, P_2 \to \overline{\beta}$ if k=2 and so on if k>2 say. Then $y_{m_1} \to \delta$ $(or \alpha)$. If $y_1 \to \beta$ then we get a 4 – coloring of G with $x \to \alpha, P_1 \to \overline{\gamma}, P_2 \to \overline{\beta}$ if k=2 and so on for k>2. The theorem holds in this case, when $|V(P_1)| = n$.

Case II : $|V(P_1)| = 3$

We have following three cases:

(i) $|V(P_1)| = 3$, $|V(P_2)| = 2$ and k = 2,

(ii) $|V(P_1)| = 3$, $|V(P_2)| > 2$ and k = 2,

(iii) $|V(P_1)| = 3$, $|V(P_2)| \ge 2$ and $k \ge 3$.

In case (i), $P_1 = xy_1y_2$, $P_2 = y_2x$. Let $\psi^* = \{Q, P_2\}$ in $G - y_1$. There is a 4-coloring of $G - y_1$, by induction hypothesis, such that $Q \to \overline{\beta}$, $P_2 \to \overline{\gamma}$ say, satisfying the conditions of the theorem. Then $y_2 \to \delta$. We extend the 4-coloring of $G - y_1$ to that of G by $y_1 \to \beta$ so that $P_1 \to \overline{\gamma}$ and $P_2 \to \overline{\beta}$. Note that since $|V(P_2)| = 2$, the statements $P_2 \to \overline{\gamma}$, $P_2 \to \overline{\beta}$ are true.

In case (ii), we have $P_1 = xy_1y_2$ and $P_2 = y_2y_3....y_{m_2}$ where $m_2 > 3$ and $y_{m_2} = x$. Let $\psi^* = \{Q^*, P_2 - P_2^{/}\}$ where $Q^* = QUP_2^{/}$ and $P_2^{/} = P_2 - y_{m_2-1}x$ in $G - y_1$. The graph $G - y_1$ has a 4-coloring such that $Q^* \to \overline{\beta}$ and $P_2 - P_2^{/} \to \overline{\gamma}$ so that $y_{m_2-1} \to \delta$ say, by induction hypothesis. We extend the 4-coloring of $G - y_1$ to that of G by $y_1 \to \beta$, $y_2 \to \gamma$ (or δ or α) so that $P_1 \to \overline{\delta}$ or $\overline{\gamma}$ and $P_2 \to \overline{\beta}$.

In Case (iii), take $\psi^* = \{Q', P_3, ..., P_k\}$ where, $Q' = QUP_2$ in G-y₁. By induction hypothesis we have a 4-coloring of G-y₁ such that $x \to \alpha$, $Q' \to \overline{\beta}$, $P_3 \to \overline{\gamma}$ if k=3 and so on for k>3, say, so that $y_{m_2} \to \delta(or\,\alpha)$. Extend this coloring of G-y₁ to that of G by $y_1 \to \beta$, $y_2 \to \gamma$ (or α) so that $P_1 \to \overline{\delta}$, $P_2 \to \overline{\beta}$ and $P_3 \to \overline{\gamma}$ if k=3 and so on for k>3. Thus the theorem holds in this case also if |V(G)| = n.

Case III: $|V(P_1)| = 2$

In this case we have following two cases for ψ in G:

$$\psi_1 = \{P_1, P_2, \dots, P_k\}, \text{ where } |V(P_1)| = |V(P_2)| = 2, |V(P_3)| \ge 2 \text{ and } k \ge 3,$$

 $\psi_2 = \{P_1, P_2, \dots, P_k\}, \text{ where } |V(P_1)| = 2, |V(P_2)| \ge 3 \text{ and } k \ge 2.$

If $P' = P_1 \cup P_2$ then |V(P')| = 3 and the first case reduces to case II with $\psi_1 = \{P', P_3, ..., P_k\}$, $k \ge 3$. By case II, we have a 4-coloring of G such that $x \to \alpha$, $y_1 \to \beta$, $P' \to \gamma$, $P_3 \to \overline{\beta}$ if k=3 and so on for k > 3 then $y_2 \to \delta(or \alpha)$. Thus we have a desired 4-coloring of G with $x \to \alpha$, $P_1 \to \overline{\delta}$, $P_2 \to \gamma$ and $P_3 \to \overline{\beta}$ if k=3 and so on for k>3.

If $P''=P_1\cup P_2$ then $|V(P'')|\geq 4$ in the second case so that this case reduces to case I for $k\geq 3$. For G, let $\psi_2'=\{P'',P_3,....,P_k\}$, By case I for $k\geq 3$, G has a 4-coloring such that $x\to\alpha,y_1\to\beta,P''\to\overline{\gamma},P_3\to\overline{\beta}$ if k=3 and so on for k>3. Thus the desired 4-coloring of G is $x\to\alpha,y_1\to\beta,P_1\to\overline{\delta},P_2\to\overline{\gamma}$ and $P_3\to\overline{\beta}$ for k=3 and so on for k>3.

Suppose k=2 in ψ_2 . Let $P^{""}=y_{m_1}y_{m_1+1}.....y_{m_2-1}$. For G, let $\psi_2^{'}=\{P_1\cup P^{""},P_2-P^{""}\}$. As $\left|V(P_1\cup P^{""})\right|\geq 3$, by cases I and II, G has a 4-coloring such that $x\to\alpha,y_1\to\beta,P_1\cup P^{""}\to\overline{\gamma},P_2-P^{""}\to\overline{\beta}$ so that $y_{m_2-1}\to\delta$. This gives the desired 4-coloring of G with $x\to\alpha,P_1\to\overline{\delta},P_2\to\overline{\gamma}$. Thus the theorem holds in case III also if |V(G)|=n, Hence the theorem holds for all n in case A.

Case B: G has a chord or chords through y_1

Let z be a vertex in the unbounded region of G near y_1 . Join z to the vertices of P_1 that is to $x, y_1, y_2,, y_{m_1}$. Thus we get a new near triangulation G' with $C' = P_1' \cup P_2 \cup \cup P_k$ where $P_1' = xzy_{m_1}$. As G' has no chord through z the graph G' has a 4-coloring with $x \to \alpha$ satisfying the conditions of the theorem in cases I, II and III of case A by case A. Then G'-z gives the desired 4-coloring of G in each of the cases.

We now show explicitly that from 4-coloring of G' we can get the desired 4-coloring of G with $x \to \alpha$ satisfying the conditions of the theorem.

If $k \ge 3$ then $|V(P_1) \cup V(P_2)| \ge 4$. Let ψ' for G' be given by $\psi' = \{P_1'', P_3, P_4, ..., P_k\}$ where $P_1'' = P_1' \cup P_2$ and $k \ge 3$ in G. Then by case I of case A, G'has a 4-coloring such that $x \to \alpha, z \to \beta, P_1^" \to \overline{\gamma}, P_3 \to \overline{\delta}$ so that $y_{m_1} \to \delta(or\alpha)$ and $y_{m_2} \to \beta(or\alpha)$ if k=3 and so on if k > 3. Then remove z to get the desired 4-coloring of G with $x \to \alpha, P_1 \to \overline{\beta}, P_2 \to \overline{\gamma}$ and $P_3 \to \overline{\delta}$ if k = 3 and so on for k > 3 in all cases I, II and III of case A when $k \ge 3$.

If k = 2 take ψ' for G' as $\psi' = \{P_1' \cup P_2'', P_2 - P_2''\}$ where $P_2'' = P_2 - y_{m_2-1}x$ if $|V(P_2)| \ge 3$ $(\psi' = \{P_1', P_2\})$ if $|V(P_2)| = 2$. The graph G' has a 4-coloring such that $x \to \alpha, z \to \beta, P_1 \cup P'' \to \overline{\gamma}(P_1 \to \overline{\gamma}) \text{ and } P_2 - P_2 \to \overline{\delta}(P_2 \to \overline{\beta}) \text{ so that } y_{m_2 - 1} \to \beta(\delta) \text{ by}$ case I (case II) of case A. Then remove z to get the desired 4-coloring of G with $x \to \alpha, P_1 \to \overline{\beta}$ and $P_2 \to \overline{\gamma}$.

Thus the theorem holds in Case B also. This complete the proof of the theorem. As a consequence of theorem1, we get the following result.

Theorem 2: Every simple planar graph is 4 colorable.

References

- K. Appel, and W. Haken, "Every planar map is 4-colorable", Part 1:Discharging, Illinois J. Math., 21 (1977), 429-490.
- K. Appel, and W. Haken, "Every planar map is 4-colorable", Part 2: Reducibility, [2] Illinois J. Math., **21** (1977), 491-567.
- P. J. Heawood, "Map-color theorem", Qart J. Math., 24 (1850), 332-338.
- A. B.Kempe, "On the geographical problem of four colors", Amer. J. Math., 2 (1879), [4] 193-200.
- O.Ore, "The four color problem", Academic press, New York, 1967. [5]
- N.Robertson, D. P. Sandars, S D.eymour, and G.Thomas, "A new proof of the fourcolor theorem", electronic research announcements of the Amer. Math. Soc., 2 (1996).
- [7] C. Thomassen, "Every planar graph is 5- choosable", J. comb. theory, Series, 62 (1994), 180-181.