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Abstract: 
A simple mathematical proof of 4-color conjecture is proposed. 
1. Introduction  
 The 4 – color conjecture has been referred to as the most famous unsolved problem in 
graph theory. The first proof of the conjecture was given by Kempe[4]. The proof was found 
to be erroneous by Heawood [3]. However, he proved the five color theorem. Since then 
many mathematicians have been trying to settle the conjecture [5]. Apple and Haken [1],[2] 
have given a proof of the conjecture by using a large scale computer. A simple proof still 
using a computer has been given by Robertson et. al.[6]. A simple proof of five color theorem 
for planar graphs is given by Thomessen [7] by showing them to be five choosable. In this 
paper we present a mathematical proof of the 4-color conjecture for the simple planar graphs. 
2. Definitions and Notation: 
 Let ),( EVG = be a near triangulation that is G is a simple planar graph which consists 
of a cycle C and vertices and edges inside C, such that each bounded face is bounded by a 
triangle. Let x be a vertex of C and 2},...,,{ 21 ≥= kPPP kψ  be any arbitrary partition of 
vertices of C into paths PRi Rwhere 2)( ≥iPV taken in clockwise order such that x is the initial 

vertex of PR1R and . The intersection 1+∩ ii PP  for 11 −≤≤ ki  and k ≥ 2 contains 

exactly one vertex of PRiR and 1+iP  which is end vertex of PRi Rand the initial vertex of 1+iP . We 
say that ψ is the sequence of paths bounding the graph G. 
 Suppose a near triangulation G is colored with 4 colors γβα ,, and δ . We write 

α→v  if )(GVv∈  is assigned the color α and a path α→iP  if the vertices of ψ∈iP  are 

colored with at most three colors γβ , and δ . The path β→iP or γ  or δ  is similarly 

defined. If iP is colored with only two colors say α and β, then both the statements γ→iP  

and δ→iP  are true. We shall use γ→iP  or δ→iP  according to our convenience. 
3.  Results: 
Theorem: Let G be a near triangulation with ψ,, xC  as defined in the Section 2 above with 

. Then there exists a 4 coloring of G such that – 
(i) α→x , 
(ii) β→iP or γ orδ  for ,1 ki ≤≤  

(iii) If β→iP  then γ→+1iP  or δ  and similarly if γ→iP  (or δ ) then δ→+1iP  or β   (or 

γβ or ) for .11 −≤≤ ki  
Proof :  Let )( 11 PVy ∈  be the vertex adjacent to the vertex x.  We have following two cases: 
Case A: There is no chord through 1y in G, 
Case B: G has a chord or chords through 1y . 
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Proof of Case A: We prove the case by induction on )(GV . Suppose )(GV  = 3. Then C is 
a triangle xyxy 21 . Let α→x , β→1y  and γ→2y . We have following three possibilities 
for ψ  : 
 ψR1 R= { }21, PP  where 11 xyP =  and xyyP 212 = , 
 ψR2 R= { }321 ,, PPP  where 11 xyP = , 212 yyP =  and xyP 23 = , 
 ψR3 R= { }21, PP  where 211 yxyP =  and xyP 22 = . 
In ψR1R, γ→1P or δ , δ→2P . Let γ→1P  and δ→2P . In ψR2R, γ→1P or δ , δ→2P  and 

β→3P or δ   Let γ→1P , δ→2P  and β→3P . In ψR3R, δ→1P and β→2P or δ .  Let 

δ→1P and β→2P . This shows that the theorem holds for )(GV  = 3. in case A.  

 Suppose the theorem holds for )(GV  = 1−n in case A. We show that the theorem 

holds for )(GV  = n in case A. 
 Let ψ = },.....,,{ 21 kPPP  where 2≥k  and 1....211 myyxyP =  and 

 xykiyyyP
kiii mmmmi ===

+−−
,....3,2,.....

111
. If the edge )(2 GExy ∉  then let 

221 ,,....,, ywwwx r  where 1≥r  be the vertices adjacent to the vertex 1y  taken in 
anticlockwise direction around 1y . As the interior of C is triangulated, the graph G contains 
the path 2xyQ = or xwR1RwR2R…wRrRyR2R. Thus the graph G-yR1 Ris also a near triangulation. 
Corresponding to C and ψ for G, we have C* and ψ* for G-yR1R. 
 Depending on )( 1PV  we have following three cases: 

Case I : )( 1PV ≥ 4, 

Case II : )( 1PV = 3, 

Case III : )( 1PV = 2, 
Case I : For G-yR1R, we take  

,,{* *
1PQ=ψ PR2R,….., PRkR} where .23,..... 132

*
1 1

≥≥= kandmyyyP m  

By induction hypothesis, we have a 4-coloring of G-yR1R satisfying the conditions of the 
theorem. Suppose βγβα →→→→ 2

*
1 ,,, PPQx if k =2 and so on if k > 2 say. Then 

)(1 αδ orym → . If β→1y then we get a 4 – coloring of G with βγα →→→ 21 ,, PPx  if  

k = 2 and so on for k > 2. The theorem holds in this case, when )( 1PV = n. 

Case II : )( 1PV = 3 
We have following three cases : 
(i) )( 1PV = 3, )( 2PV = 2 and k = 2, 

(ii) )( 1PV = 3, )( 2PV > 2 and k = 2, 

(iii) )( 1PV = 3, )( 2PV ≥ 2 and k ≥ 3. 
 In case (i), xyPyxyP 22211 , == . Let },{* 2PQ=ψ  in G – yR1R. There is a 4-coloring of 
G-yR1R, by induction hypothesis, such that γβ →→ 2, PQ  say, satisfying the conditions of the 
theorem. Then δ→2y . We extend the 4-coloring of G-yR1R to that of G by β→1y so that 

γ→1P  and β→2P . Note that since )( 2PV = 2, the statements γ→2P , β→2P  are true. 
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 In case (ii), we have 211 yxyP = and 2....322 myyyP = where 32 >m  and xym =2 .  

Let }*,{* /
22 PPQ −=ψ where Q*= /

2QUP and xyPP m 12
/

2 2−−= in G – yR1R. The graph G-yR1R has 

a 4-coloring such that Q*→ β  and γ→− /
22 PP  so that δ→−12my  say, by induction 

hypothesis. We extend the 4-coloring of G-yR1R to that of G by β→1y , γ→2y  (or δ or α ) 
so that δ→1P or γ  and β→2P . 
 In Case (iii), take },...,,'{* 3 kPPQ=ψ where, 2' QUPQ =  in G-yR1R. By induction 

hypothesis we have a 4-coloring of G-yR1R such that α→x , β→'Q , γ→3P  if k=3 and so on 
for k>3, say , so that )(

2
αδ orym → . Extend this coloring of G-yR1R to that of G by β→

1
y , 

γ→2y  (or α ) so that δ→1P , β→2P  and γ→3P  if k = 3 and so on for k > 3. Thus the 
theorem holds in this case also if )(GV = n. 

Case III : 2)( 1 =PV  
 In this case we have following two cases for ψ  in G: 

},....,,{ 211 kPPP=ψ , where 32)(,2)()( 321 ≥≥== kandPVPVPV , 

},....,,{ 212 kPPP=ψ , where 23)(,2)( 21 ≥≥= kandPVPV . 

If 21' PPP ∪= then 3)'( =PV and the first case reduces to case II with },,..,,'{ 3
'
1 kPPP=ψ  

3≥k . By case II, we have a 4-coloring of G such that βγβα →→→→ 31 ,',, PPyx  if k=3 
and so on for k > 3 then )(2 αδ ory → . Thus we have a desired 4-coloring of G with 

βγδα →→→→ 321 ,, PandPPx  if k = 3 and so on for k>3. 
 If 21'' PPP ∪= then 4)''( ≥PV  in the second case so that this case reduces to case I 

for k 3≥ . For G, let },....,,''{ 3
'
2 kPPP=ψ , By case I for k 3≥ , G has a 4-coloring such that 

βγβα →→→→ 31 ,'',, PPyx  if k=3 and so on for k>3. Thus the desired 4-coloring of G 

is γδβα →→→→ 211 ,,, PPyx  and β→3P  for 3=k  and so on for k>3. 
 Suppose k=2 in 2ψ . Let 111

''' += mm yyP ……. 12−my . For G, let 

}''','''{ 2
'
2 1

PPPP −∪=ψ . As 3)'''( 1 ≥∪ PPV , by cases I and II, G has a 4-coloring such 

that  βγβα →−→∪→→ ''',''',, 211 PPPPyx  so that δ→−12my . This gives the desired 

4-coloring of G with γδα →→→ 21 ,, PPx . Thus the theorem holds in case III also if 
nGV =)( , Hence the theorem holds for all n in case A. 

Case B: G has a chord or chords through 1y  
 Let z be a vertex in the unbounded region of G near 1y . Join z to the vertices of PR1R 
that is to .,.....,, 121 myyyx  Thus we get a new near triangulation 'G  with 

kPPPC ∪∪∪= ....' 2
'

1  where 1
'

1 mxzyP = . As 'G  has no chord through z the graph 'G  has a 
4-coloring with α→x  satisfying the conditions of the theorem in cases I, II and III of case A 
by case A. Then 'G -z gives the desired 4-coloring of G in each of the cases. 
 We now show explicitly that from 4-coloring of 'G  we can get the desired 4-coloring 
of G  with α→x  satisfying the conditions of the theorem.  
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 If 3≥k  then 4)()( 2
'

1 ≥∪ PVPV . Let '' Gforψ  be given by },...,,,{' 43
''

1 kPPPP=ψ  

where P ''
1 = 2

'
1 PP ∪  and 3≥k  in G. Then by case I of case A, 'G has a 4-coloring such that 

δγβα →→→→ 3
''

1 ,,, PPzx  so that  )(
1

αδ orym → and )(2 αβ orym → if  k=3 and so on 

if k > 3. Then remove z to get the desired 4-coloring of G with γβα →→→ 21 ,, PPx  and 
δ→3P if 3=k  and so on for 3>k in all cases I, II and III of case A when k 3≥ . 

 If k = 2 take '' Gforψ  as },{' ''
22

''
2

'
1 PPPP −∪=ψ where xyPP m 12

''
2 2 −−=  if  

3)( 2 ≥PV  ( 2)(},{' 22
'

1 == PVifPPψ ). The graph 'G  has a 4-coloring such that 

)('',, '
1

'
1 γγβα →→∪→→ PPPzx and )( 2

''
22 βδ →→− PPP so that )(12 δβ→−my  by 

case I (case II) of case A. Then remove z to get the desired 4-coloring of G with 
βα →→ 1, Px and γ→2P . 

 Thus the theorem holds in Case B also. This complete the proof of the theorem. 
As a consequence of theorem1, we get the following result. 
Theorem 2 : Every simple planar graph is 4 colorable. 
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