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Abstract:
A simple mathematical proof of 4-color conjecture is proposed.
1. Introduction

The 4 — color conjecture has been referred to as the most famous unsolved problem in
graph theory. The first proof of the conjecture was given by Kempe[4]. The proof was found
to be erroneous by Heawood [3]. However, he proved the five color theorem. Since then
many mathematicians have been trying to settle the conjecture [5]. Apple and Haken [1],[2]
have given a proof of the conjecture by using a large scale computer. A simple proof still
using a computer has been given by Robertson et. al.[6]. A simple proof of five color theorem
for planar graphs is given by Thomessen [7] by showing them to be five choosable. In this
paper we present a mathematical proof of the 4-color conjecture for the simple planar graphs.
2. Definitions and Notation:

Let G =(V, E) be a near triangulation that is G is a simple planar graph which consists

of a cycle C and vertices and edges inside C, such that each bounded face is bounded by a
triangle. Let x be a vertex of C and w ={R,P,,...,R.}k>2 be any arbitrary partition of

vertices of C into paths P; where |V(Pi) | > 2 taken in clockwise order such that x is the initial

k
vertex of P; and _UlPi =C. The intersection P nP,; for 1<i<k-1 and k >2 contains
1=

exactly one vertex of P; and P_; which is end vertex of P; and the initial vertex of P,_;. We
say that  is the sequence of paths bounding the graph G.
Suppose a near triangulation G is colored with 4 colors «,f,yand &. We write

v—a if veV(G) is assigned the color « and a path P, —> ¢ if the vertices of P ey are
colored with at most three colors g,yand 6. The path P, —> Bor y or 5 is similarly
defined. If P is colored with only two colors say a and 3, then both the statements P, Sy

and P, — o are true. We shall use P — y or P, —» ¢ according to our convenience.

3. Results:
Theorem: Let G be a near triangulation with C, x,i as defined in the Section 2 above with

V(G)| = 3. Then there exists a 4 coloring of G such that —

) x—>a,

(ii)P —> Bor yors for 1<i<Kk,

(iii) If P —>,§ then P4 —>; or & and similarly if P, —>;_/ (or 5) then Pi+1—>5 or E (or
Bory )for1<i<k-1.

Proof : Let y; €V (P)) be the vertex adjacent to the vertex x. We have following two cases:
Case A: There is no chord through y;in G,

Case B: G has a chord or chords through y,-
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Proof of Case A: We prove the case by induction on |V (G)|. Suppose |V (G)| = 3. Then C is

a triangle xy;y,x. Let x> «a, y; > £ and y, - . We have following three possibilities
for y :

{P,P,} where P,=xy; and P, = y;y,X,
{P.,P,, Py} where P, =xy;, P, =Yy, and P; = y,X,
{P.,P,} where P, =xy,y, and P, = y,x.

Y1
W2
Y3
In y1, L>yor 6, P,—>5. Let B>y and P, »>5.In yy, B >yor 6, P, >4 and
P> for 5 Leth,—>y, P,—>5 and P, > . In ys, PL>5and P, > Bor 5. Let
P, —> sand P, — 4. This shows that the theorem holds for |V (G)| = 3. in case A.

Suppose the theorem holds for |V (G)| = n—1in case A. We show that the theorem
holds for V (G)| =nin case A.

Let y={R,P,,....,R} where k>2 and P, =xyY,....yy, and
P=Yn Yo o Ymod=23.K Yy, =x. If the edge Xxy,2E(G) then let
X, Wy, Wo,...W,, Y, where r>1 be the vertices adjacent to the vertex y; taken in
anticlockwise direction around y; . As the interior of C is triangulated, the graph G contains
the path Q=xy,or xwiw,...w;y,. Thus the graph G-y; is also a near triangulation.

Corresponding to C and y for G, we have C* and y* for G-y;.
Depending on |V ()| we have following three cases:

Case | : V(P)| >4,
Case Il : |V (P)|=3,
Case Il V(P)|=2,
Case | : For G-y;, we take
p*={Q, P ,P,....., P} where B = Y,z , My >3and k >2.
By induction hypothesis, we have a 4-coloring of G-y; satisfying the conditions of the
theorem. Suppose X — «,Q —>EF’1*—>;, P, —>,Eif k =2 and so on if k > 2 say. Then
Ym, — & (Ora) . If y; — Bthen we get a 4 — coloring of G with x > a,P, > ,P, > g if
k =2 and so on for k > 2. The theorem holds in this case, when [\/(P1)| =n.
Case Il: V(P)|=3
We have following three cases :
(i) V(R)|=3, V(P)|=2and k=2,
(i) V(P)|=3, M(R)[>2and k=2,
(iii) M (P)[=3, V(P,)|>2and k > 3.

In case (i), P, =xy;Y,,P, =y,x. Let y*={Q, R} in G - y;. There is a 4-coloring of
G-y1, by induction hypothesis, such that Q — 3, P, —> y say, satisfying the conditions of the
theorem. Then y, — 6. We extend the 4-coloring of G-y; to that of G by y; — fso that
R, — and P, — /3. Note that since V (P,)| = 2, the statements P, — y, P, — / are true.
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In case (ii), we have P =xy;y,and P, =Y,ys...yy,, where m; >3 and y,, =X.
Let y*={Q*,P, - le}where Q*= QUP2/ and le =P, = Yy,1Xin G —y1. The graph G-y, has
a 4-coloring such that Q*— 4 and Pz—le —>7 S0 that Ym,-1 — & say, by induction
hypothesis. We extend the 4-coloring of G-y; tothatof Gby y; > B, y, >y (or dor a)
sothat B, —>&or y and P, - /3.

In Case (iii), take w*={Q',P;,...,P}where, Q'=QUP, in G-y;. By induction
hypothesis we have a 4-coloring of G-y; such that x — «, Q'—>,E, Py —>;_/ if k=3 and so on
for k>3, say , so that Ym, — o(or ) . Extend this coloring of G-y; to that of G by Y, - f,

Yo > (or e)sothat PL—>3, P, —> B and P;— y if k = 3 and so on for k > 3. Thus the
theorem holds in this case also if |V (G)|=n.
Case Il : V(R)|=2

In this case we have following two cases for y in G:
v1={P.P,,.... R}, where V (R)| =N (P,)| =2,V (R;)| > 2and k >3,
vy ={R.P,.....,R}, where |V (R)| =2,V (P)|>3and k > 2.
If P'=RUP,then \V(P')|=3and the first case reduces to case Il with y, ={P',Ps,..,R},
k >3. By case Il, we have a 4-coloring of G such that x —» «, y; — S, P'—>7_/, P —>,E if k=3
and so on for k > 3 then y, —» d(or «). Thus we have a desired 4-coloring of G with
x—>a,P1—>5, P, — 7 and P — B if k =3 and so on for k>3.

If P"=R UP;then V(P")|>4 in the second case so that this case reduces to case |
for k>3. For G, let x//'2 ={P",P;,...., R}, By case | for k>3, G has a 4-coloring such that

X—=>a,y,—> pB,P'—> 7, Ps — /3 if k=3 and so on for k>3. Thus the desired 4-coloring of G
IS X—>a,y —>,B,Pl—>5, P, —J and Py —>E fork =3 and so on for k>3.
Suppose k=2 in y,. Let P'"= Y, Ymy#1-eeeees Ym,-1- For G, et

Wy ={P UP", P, —P"}. As\V(PLUP")[>3, by cases | and II, G has a 4-coloring such
that x—>a,y; > B RUP" ">y, P,—P"—> B sothat y, 4 —&. This gives the desired
4-coloring of G with x — a, B, — 8,P, — ». Thus the theorem holds in case III also if
V (G)|=n, Hence the theorem holds for all n in case A.

Case B: G has a chord or chords through y;
Let z be a vertex in the unbounded region of G near y;. Join z to the vertices of Py
that is to X, Y, Yo,..... Yy - Thus we get a new near triangulation G' with

C'=R U P, U...UB where R = X2y, - As G' has no chord through z the graph G’ has a

4-coloring with x — o satisfying the conditions of the theorem in cases I, 1l and 111 of case A
by case A. Then G'-z gives the desired 4-coloring of G in each of the cases.

We now show explicitly that from 4-coloring of G' we can get the desired 4-coloring
of G with x — « satisfying the conditions of the theorem.
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If k>3 then |V (R) UV (R,)|>4. Let y'for G' be given by y'={P,Ps,Ps..... P}
where P;=P UP, and k>3 in G. Then by case | of case A, G'has a 4-coloring such that
X—>a,z—> p,h -y P05 sothat y, —5(ora)and y,, — B(ora)if k=3 and so on

if k > 3. Then remove z to get the desired 4-coloring of G with x — a,R — ,P, — y and
P, — & if k =3 and so on for k >3in all cases I, Il and 111 of case A when k> 3.

If k = 2 take y' forG' as y'={R UP,,P, —P}where P, =P,—y, x if
V(R)| 23 (y'={P,P,}if N(P,)|=2). The graph G' has a 4-coloring such that
X—>a,2- B, RUP'5y(A >y)and P-P, > (R, > B)so that y, 4 —B(5) by
case | (case Il) of case A. Then remove z to get the desired 4-coloring of G with
Xx—a,P—>pand P, > y.

Thus the theorem holds in Case B also. This complete the proof of the theorem.

As a consequence of theorem1, we get the following result.
Theorem 2 : Every simple planar graph is 4 colorable.
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