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Abstract: Landslides are one of the natural hazards that can have a negative impact on people's 
lives. The purpose of this study was to evaluate how each vulnerability map differed when 
created using different methodologies for assessing overall landslide vulnerability of the Lumbay 
watershed. It has been demonstrated that GIS-based techniques combined with AHP can assess 
landslide vulnerability in a watershed while taking physical and anthropogenic factors into 
account. Furthermore, the slope, rainfall, and road distance obtained the highest weights, 
indicating that these elements play a role in landslide incidence in the watershed area. The 
landslide inventory map revealed that the modelled maps are extremely reliable, with 57%, 
63%, and 55% of landslides and any sort of mass movement occurrences detected in high 
vulnerability classes of the vulnerability map produced. In this regard, the accuracy using the 
confusion matrix on the map produced using AHP combined with the WOM with >300mm 
rainfall data demonstrated the highest accuracy of 100% when compared to the other techniques. 
Both approaches indicated that the obtained results are scientifically correct however, as with the 
other studies, the highest accuracy must be selected and used for the recommendation of various 
strategies to lessen the impact of this hazard. Moreover, it was observed that density of 
landslides was mostly distributed in grassland cover areas and could be found in less than 100 
meters from the road. As a result, adequate action is essential to prevent landslides from 
occurring, necessitating the development of rules and regulations in the watershed area to limit 
such effects. 
 
Keywords: Landslide, AHP, WOM, raster calculator, accuracy, confusion matrix 
 
I. Introduction 
 
 Landslides are one of the most common natural disasters in mountainous areas and are 
regarded as the greatest threat in a large number of regions around the world, putting people's 
lives and property at risk (Chakraborty et al., 2012; Goetz et al., 2011; Regmi et al., 2014; 
Pourghasemi et al., 2013). It is caused by a number of factors, making it difficult to analyze and 
predict (Mahalingam et al., 2016). Furthermore, the damages caused by landslides are expected 
to increase in the coming decades due to population growth, the progression of residential areas 
and infrastructure in high-risk areas, ongoing deforestation, and an increase in regional 
precipitation (Regmi et al., 2014). As a result, it is necessary to examine the conditions under 
which landslides have occurred in the past and to use critical combinations of preparatory factors 
to delineate the possibility of future landslides. 
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 Preston et al. (2011) emphasize the importance of mapping the degree of vulnerability in 
order to produce and represent local context scenarios. One of the primary approaches for 
developing hazard reduction strategies is to conduct a landslide vulnerability assessment using 
geographic information system (GIS) analysis, which provides a powerful tool for modeling 
landslide hazards (Dai et al., 2002; Cevik and Topal, 2003; Ayalew and Yamagishi, 2005; and 
Fall et al., 2006) and based on expert judgment, the Analytic Hierarchy Process (AHP) tool was 
deemed to be a suitable tool for collecting and analyzing vulnerability, as well as for conducting 
an effective and context-specific vulnerability assessment (Nghiem, 2015), which is particularly 
suited to decisions made with limited information (Saaty et al. 2001). 

Meanwhile, landslides are a common hazard in the Lumbay watershed during the rainy 
season. Hence, the primary purpose of this study is to determine how each vulnerability map 
differs when constructed using various approaches for estimating overall landslide vulnerability. 
Because different methods produce different study results, the modifications will tell us which 
method is fairly applicable to the watershed. The study concentrated on the integration of AHP 
and GIS-based methods while taking into account the physical and anthropogenic factors 
influencing the watershed's vulnerability. Another goal is to identify landslide occurrences and 
the degree of landslide vulnerability in order to evaluate the performance of these models using a 
confusion matrix. The main research gap in this study is a lack of comprehensive information at 
the watershed level, and it will only use what is available. Thus, the primary goal of this study 
was to investigate and determine the differences between the methods used to generate the 
landslide vulnerability assessment of the Lumbay watershed, a potential hotspot area for 
landslide occurrences, in order to manage natural resources and reduce losses in the future. 
 
II. Materials and Methods 
Study area 

 
        Figure 1. Location of map of the study 
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 The Lumbay watershed lies in the coastal municipality of Guindulman in the province of 
Bohol with geographic coordinates of 9P

o
P44'20" and 9 P

o
P48'40" North latitude, and 124 P

o
P25' E to 

124P

o
P31'30" East longitude. The watershed covers a total area of 5,461 hectares (generated from a 

30m x 30m DEM) and includes the municipalities of Guindulman (78.62%), Candijay (18.64%), 
and Anda (2.74%). 
 According to PAG-ASA, the Lumbay watershed is under Corona's fourth (4th) Type 
zone. This category comprises places where there is more or less uniformly distributed year-
round rainfall or where there is heavy rainfall for the majority of the year with only a brief dry 
season. The average monthly rainfall data of the watershed ranged between 100mm – 200mm 
(based on data from the power.larc.nasa.gov website) and >300mm (downloaded from 
worldclim.com).  
 The watershed comprised of less than 8% (level to undulating), followed by 30% to 50% 
(steep) in slope and the elevation ranges from 1 to 610 meters above sea level (masl). 
 
Datasets and sources 

The current study relied on secondary data gathered from a variety of sources. These 
included the 5m x5m Digital Terrain Model (DTM) and land cover obtained from NAMRIA. 
Rainfall data was generated by BSWM from the power.larc.nasa.gov website, and rainfall was 
downloaded from the worldclim.com website. Geology was downloaded from the Philgis.org 
website, soil map sourced out from BSWM; provincial boundary from PPDO, municipal and 
barangay boundary from LGU-Guindulman from NAMRIA; road network obtained from LGU-
Guindulman; land use and stream network digitized from PPDO and built-ups downloaded and 
digitized from OSM and Google Earth images. 

The boundary of Lumbay watershed was created using 30m x 30m cell size resolution 
downloaded from USGS. 
 
Generation of spatial maps using GIS 

The landslide vulnerability due to physical factors were slope, rainfall, land cover, soil 
and geology. While the anthropogenic factors were NPAAAD (alternative to farming system), 
distance to road, river and built-ups areas. The vector files of these maps were converted to a 
raster file format with a 5m x 5m resolution, and then reclassified based on Table 1. Proximity to 
roads, built-ups areas and rivers was classified into five different buffer categories using a 
Euclidean distance interpolation method in the GIS application and reclassified into five classes 
(e.g. <100, 100-200m, 200-300m, 300-500m and >500m for very low). These maps were 
classified into different classes according to the requirement using the natural breaks (Jenks) 
method. All maps were processed and georeferenced using ArcGIS 10.7 using projected 
Universal Transverse Mercator (UTM-51N) and Luzon 1911 UTM Zone 51N. 

All thematic maps were transformed to hazard class rating maps based on the procedure 
contained in the ERDB Manual for Vulnerability Assessment (ERDB, 20011). The following 
hazard categories were assigned to the factors: the levels are 1–Very Low, 2–Low, 3–Moderate, 
4–High, and 5–Very High (see Table 2) 
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Table 1. Rating of physical factors affecting Landslide   

Vulnerability 
Class 

Class/ 
Rating 

Slope 
(%) 

Rainfall 
(mm) 

Land cover Soil Type Geology 

Very Low 1 

< 8% < 100mm 

Mangrove 
forest; Inland 
water; 
Fishpond 

 
- 

Upper 
Miocene-
Pliocene 
(Sedimentary 
& Rocks) 

Low 2 8.1-
18% 

100.1-
200mm open forest Ubay Clay Pliocene-

Pleistocene 
Moderate  

3 18.1-
30% 

200.1-
300mm 

Brush/shrubs, 
built-ups; 
Grassland 

 
Bolinao Clay 

Cretaceous - 
Paleogene 

High  
4 30.1-

50% 
300.1-
500mm 

Perennial 
crops, Annual 
crops,  

 
Mountain 
Soil 
(Undifferenti
ated) 

 
Upper 
Miocene - 
Pliocene (N2) 

Very High 5 >50% > 500mm  - Recent (R) 
 
             Table 2. Vulnerability class  

Vulnerability Class Rating 
Very Low Vulnerability < 2.1 

Low Vulnerability 2.1 – 2.79 
Moderately Vulnerable 2.8 – 3.49 

Highly Vulnerable 3.5 – 4.19 
Very Highly Vulnerable >4.2 

 
 
Vulnerability factors equations 
 Physical and anthropogenic factors were assigned numerical scores based on their 
relative importance in influencing landslides. The overall landslide vulnerability map was 
created by adding the physical and anthropogenic factors together. The following is the 
mathematical model used to calculate overall landslide vulnerability: 
 

Physical factors 
VRLpR = S (29.9) + R (27.1) +Lc (14.6) + St (14.8) + G (13.6)  (1) 
 
Where: S = slope; R = rainfall; Lc = land cover; St = soil type; G = geology 
 

Anthropogenic factors 
VRLaR = NPAAAD (25.8) + road distance (63.7) + built-up distance (10.5) / 3    (2) 
 
Where: NPAAAD = network of protected area for agriculture and agro-industrial 
development 
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Overall landslide vulnerability 
VRLR = VRLpR (66.7) + VRLaR (33.3)R      R(3) 
 

VRLpR = vulnerability due to physical factors;  
VRLa R= vulnerability due to anthropogenic factors 

AHP Analysis 
In this study, the AHP method for weighting the criteria of physical and anthropogenic 

factors and calculate its overall vulnerability affecting the landslide vulnerability of the 
watershed was computed. The relative ranking of each pair of factors was guided by the 
knowledge of local experts. This method involves performing a pairwise comparison of all 
possible pairs of factors and attempting to synthesize the judgments to determine the weights 
(Saaty, 2001). In matrix-based pair-wise comparison, if the factor on the horizontal axis is more 
important than the factor on the vertical axis, this value ranges between 1 and 9. In contrast, the 
value varies between the reciprocals 1/2 and 1/9 (Table 3). The consistency ratio (CR) was 
calculated to assess the consistency of comparisons in the pairwise comparison matrix. If the 
value is equal to or less than 0.1, the CR is considered acceptable (Malczewski, 2010). The CR is 
obtained by comparing the consistency index (CI) with average random consistency index (RI). 
Otherwise, a reassessment of the provided qualitative judgment and recalculation of weights is 
required. The CR was computed using the following equation: 

CR = Consistency Index/Random Index,    (4) 
where random index (RI) denotes the randomly generated average consistency index and 
consistency index (CI) is defined as follows (see Table 4): 

CI = (λmax - n)/(n - 1),      (5) 
where λmax represents the largest eigenvalue of the matrix and n refers to the order of the matrix 
(Mahapatra et al., 2015). 
 The calculations were carried out using the AHP online tool developed by Goepel (2018). 
 
    Table 3. Scale of relative importance between two predictive factors (Saaty, 1980) 

Intensity of 
Importance 

Definition Explanation 

1 Equal importance Two factors contribute equally to the objective 

3 Moderately more 
important 

Experience and judgment slightly to moderately favor one 
activity over another 

5 Strongly important Experience and judgment strongly or essentially favor one 
activity over another 

7 Very strongly 
important 

An activity is strongly favored over another and its 
dominance is showed in practice 

9 Extremely more 
important 

The evidence of favoring one factor over another is of the 
highest degree possible of an affirmation 

2, 4, 6, 8 Intermediate values Used to represent compromises between the references in 
weight 1, 3, 5, 7, and 9 

Reciprocals Opposites Used for inverse comparison 
      
     Table 4. Average random consistency index (RI) 

N 2 3 4 5 6 7 8 9 10 
λRmax 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 
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GIS analysis tools 
      
     Weighted overlay method (WOM) 

The weighted overlay technique is used to create a map by overlaying several raster 
layers and assigning weight to each raster layer based on its importance (Saaty, 1990). Weights 
are assigned to each raster layer both externally and internally based on their relative importance 
as determined by expert opinion. External weights or weight values refer to the total weights of 
all layers, which must be equal to 100, whereas internal weights or rating values are referred to 
as class values (class 1-5). AHP was used to compute the weight values and rating values of each 
event-controlling factor. Following the assignment of weights to the model, all raster layers were 
added to the weighted overlay tool for analysis. Finally, landslide vulnerability map was created 
using the weighted overlay method in ArcGIS software. The outcomes of this activity include the 
identification of vulnerable areas as well as the classification (from high to low) of various 
hazards (degree of vulnerability).  All layers were combined by using the weighted overlay tool 
based on Equation (6): 

 
     (6) 

 
 
where Wi is the weight of i th factor, Sij represents subclass weight of j th factor and S is the 
spatial unit of the final map. 
     
     Raster calculator tool 

Each raster layer of physical and anthropogenic factors with weighted information 
content was multiplied by its weight (obtained using the AHP analysis method), and the single 
factor layers with weighted information contents were overlain using the ArcGIS raster 
calculator tool, resulting in an overall landslide vulnerability map using equations 1, 2, and 3. 
 
Landslide inventory map and accuracy assessment 

The landslide validation map was created using the actual location of the landslide. The 
geographic coordinates of the landslide were taken, refined in Google Earth Pro, and converted 
to a GIS-compatible format. A field visit was conducted in March – April 2021 to assess the 
accuracy of the landslide vulnerability map produced in this study. The field visit included 
identifying where landslides and any type of mass movement (Guzzetti et al., 2012) were 
observed within the watershed area. 

The accuracy assessment is required to validate the performance of the vulnerability map 
produced by the weighted overlay method and the raster calculator tool. Two types of accuracy 
evaluation were obtained in this study. First, map classes were compared to landslide densities in 
those classes. The known location of the landslide was compared and overlaid with the 
vulnerability map generated by AHP and various GIS methods. The analysis was based on the 
study of Basharat et al. (2016) showing spatial analysis between landslide events and 
vulnerability maps. The accuracy assessment was calculated by dividing the number of verified 
landslide locations from the inventory map over the total number of landslide locations collected 
during field surveys. The distribution of these landslide events was calculated in all classes of the 
vulnerability map. If the majority of the landslide events fall within the high and very high 
vulnerability classes, this indicates a good agreement. On the other hand, if the majority of the 
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landslide events fall within the low and moderate vulnerability classes, this indicates a low 
accuracy rate. The second step in calculating accuracy is to compare the Lumbay watershed's 
landslide vulnerability map with the landslide inventory map, with the percentage of overlap 
between the two indicating how well the model predicts reality. The model was compared to the 
landslide inventory using the study to determine overall accuracy (calculated by the total number 
of correctly classified pixels of landslides and non-landslides divided by the total number of 
pixels or landslides in the study area) (Miandad et al., 2020). Accuracy were calculated using a 
cross table that depicts the amount of overlap and relationship between inventory and predicted 
maps. 
 
III. Results and Discussion 
 
Analytic Hierarchy Process (AHP) analysis 
 
Table 5. Pairwise comparison matrix, weight and consistency ratio of landslide vulnerability factors  

Physical Factors Slope Rainfall Land Cover Soil Geology Weights 
Slope 1 1 3 2 2 29.9 % 

Rainfall 1 1 3 1 2 27.1 % 
Land Cover 0.33 0.33 1 2 1 14.6 % 

Soil 0.50 1 0.50 1 1 14.8 % 
Geology 0.50 0.50 1 1 1 13.6 % 

 CR = 8.6 % 
Anthropogenic 

Factors 
NPAAAD Road Distance Built-up 

Distance 
  Weights 

NPAAAD 1 0.33 3   25.8 % 
Road Distance 3 1 5   63.7 % 

Built-up Distance 0.33 0.20 1   10.5 % 
 CR = 0.4 % 

Overall Factors Physical Factors Anthropogenic Factors  Weights 
Physical Factors 1 2  66.7% 
Anthropogenic 

Factors 
0.50 1  33.3% 

 CR = 0% 
 

The AHP was used to estimate the weights and ratings for vulnerability factors: physical 
and anthropogenic factors, both of which can be obtained from the pairwise comparison matrix. 
As shown in Table 5, slope and rainfall were the most influential physical factors, with a value of 
29.9% and 27.1%, respectively. The factors soil, land cover, and geology were deemed less 
important due to a lack of information and the difficulty in identifying these factors affecting the 
vulnerability of the watershed. On the other hand, in terms of anthropogenic factors, road 
distance obtained the highest weights. Road distance, on the other hand, received the highest 
weights in terms of anthropogenic factors. Furthermore, physical factors received the highest 
weights in the overall factors, with a value of 66.7%. This value was assigned because the 
majority of the landslides in the watershed area were located in road areas, which are classified 
as man-made. 

Additionally, the CR values were less than 10% (Table 5), which corresponds to the 
consistency of the pairwise comparison. As a result, these findings validate the ratings and 
weights of the factors (Pourghasemi et al., 2012). 
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Overall, slope, rainfall, and road distance were the most important vulnerability factors 
influencing landslide distribution as determined by AHP pairwise comparison.  
 
 
Vulnerability Factors 

Figure 2. Landslide vulnerability due to physical factors using weighted overlay method  
a) >300mm RF; b) 100-200mm RF 

 

Figure 3. Landslide vulnerability due to physical factors using raster calculator tool  
a) >300mm RF; b) 100-200mm RF 
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Anthropogenic factors 

 
Figure 4. Landslide vulnerability due to anthropogenic factors 

 
Figure 2 illustrates the landslide vulnerability due to physical factors using >300mm 

rainfall (Fig. 2a) and rainfall ranging from 100mm-200mm (Fig.2b). As a result, physical factors 
were integrated into the GIS environment using a WOM, and each factor was multiplied by its 
assigned weight created by AHP pairwise comparison to generate the landslide vulnerability map 
(physical factors). 

Figure 3 depicts the landslide vulnerability (physical factors) using the raster calculator 
tool. Accordingly, several physical factors were integrated into the GIS environment using a 
raster calculator tool, and each factors was multiplied by its assigned weight to generate the 
landslide vulnerability map (physical factors) as shown in Equation (1). 

The landslide vulnerability due to anthropogenic factors is illustrated in Figure 4. The 
calculation was modified in accordance with the ERDB vulnerability assessment manual (2011). 
However, as an alternative to the farming system, the Network of Protected Areas for 
Agriculture and Agro-Industrial Development (NPAAD) was used and calculated using equation 
(2). 
 Local experts assigned the greatest weight to road distance because several landslides in 
the area were frequently discovered adjacent to the road. 
 
 
Overall Landslide Vulnerability 

The vulnerability map was classified based on Table 2 to obtain the overall landslide 
vulnerability, which was calculated by combining physical and anthropogenic factors. Figure 5 
shows the overall landslide vulnerability maps were based on physical factors calculated using 
WOM and anthropogenic factors calculated using equation (2).  

Each single vulnerability factor (physical factor) was multiplied by its weight (obtained 
using the AHP method) with the weighted information content of the landslide vulnerability 
assessment model for Lumbay watershed, resulting in an overall landslide vulnerability map, as 
shown in Figure 5a & b. According to the results in Figure 5a, a large portion of the watershed 
(60%) is moderately vulnerable to landslides, 22.85% is high to very highly vulnerable, and only 
18% is low to very low vulnerable. Figure 5b shows that 44% of the watershed is moderately 
vulnerable, 8.54% is high to very highly vulnerable, and 47% is low to very low vulnerable to 
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landslides. The results showed that the road area with steeper slopes was highly to very highly 
vulnerable to landslides. 
 

  Figure 5. Overall landslide vulnerability using weighted overlay method a) >300mm RF; b) 100-
200mm RF 

 

 Figure 6. Overall landslide vulnerability using raster calculator tool a) >300mm RF; b) 100-
200mm RF 

 
The overall landslide vulnerability maps were generated using the raster calculator tool 

(physical factors) and the anthropogenic factors (calculated using equation 2) (Figure 6). Based 
on the results in Figure 6a, a large percentage of the watershed (41%) is low vulnerability to 
landslides, followed by very low vulnerability (11%), and only 8% is high to very high 
vulnerability to landslides. According to Figure 6b, 44% of the watershed is moderately 
vulnerable, 23% is high to very highly vulnerable, and only 33% is low to very low vulnerable to 
landslides. To generate the landslide vulnerability map, the raster layer of each physical and 
anthropogenic factor is multiplied by their given weights using the raster calculator tool and 
summed together using the weighted sum overlay tool in GIS, as shown in Figure 6. The results 
show a significant difference between the outcomes of Figures 6a and 6b.  



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-7, Issue-8, August 2021 
ISSN: 2395-3470 

www.ijseas.com 

88 

In this study, the AHP and GIS-based methods were used to generate predictive landslide 
vulnerability maps for the Lumbay watershed using two different rainfall data sets and two GIS 
tools. The vulnerability maps were created based on the physical and anthropogenic factors 
affecting the watershed. The GIS approach validated the capability of GIS technology in 
assessing landslide vulnerability. Based on the findings of this study, it is possible to conclude 
that the high and very high vulnerability landslide zones identified by the AHP method can 
predict potential landslide areas in the real world. The AHP can be used to evaluate the relative 
performance of decision alternatives with respect to the relevant criteria. According to Saaty et 
al. (2001), AHP was seen to be a suitable tool and is particularly suited to decisions made with 
limited information. The study's findings indicate that when field conditions are properly 
determined by good proficiency, the AHP method can produce more truly good results (Moradi 
et al., 2012). AHP is a simple and easy way to rate various factors affecting landslide 
vulnerability. The CR value remained below 10%, indicating appropriate and reliable weighting 
criteria. Despite the fact that the AHP-based model has drawbacks due to its subjective approach, 
AHP is a very useful tool for comparing different factors. 

The most important vulnerability factors controlling the landslide distribution derived 
from AHP pairwise comparison were slope, rainfall, and road distance, which were considered 
basic conditions for slope stability. This is in agreement with the study of Derbyshire et al. 
(2001), which found that the road network has the greatest influence on the spatial distribution of 
landslides. This is due to uncontrolled blasting and excavation during road construction on these 
fragile slopes, which causes frequent landslides (Devkota et al., 2013). This is also true in the 
study of Nohani et al. (2019), who discovered that poor road construction is one of the most 
effective determinants of landslide occurrence. According to Coco and Buccolini (2015), in the 
same geological and climatic setting, slope is an important driving parameter for slope failures. 
The shear strength decreases as the slope increases. As a result, the density of landslides 
increases as the steepness of the slope increases (Pradhan et al., 2010). According to Kartiko et 
al. (2006), more than half of all landslides occur in areas with slopes greater than 25%. 

There are many models developed for landslide vulnerability and susceptibility, 
according to Nohani et al. (2019), but there are no universal guidelines for model selection to 
model a better landslide vulnerability assessment. Meanwhile, preparing for landslide 
vulnerability is one of the most practical approaches for landslide hazard assessment and proper 
management tasks (Guzzetti, 2006). The present study therefore will help in providing better 
choices on what specific approach or technique to be used in landslide vulnerability assessment 
with emphasis on having a higher accuracy. 

 
 
Landslide density 

The results clearly show that the density of landslide events increases with grassland 
cover (53%), then with perennial crops (24%), 10% for annual crops and brush/shrubs land and 
built-up areas (6%) (Figure 7a). Vegetation is important in increasing slope stability and 
decreasing landslide susceptibility (Miles and Keefer, 2007). Therefore, grassland cover is 
incapable of stabilizing the slope, increasing the risk of landslides in the watershed area. 

Meanwhile, the density of landslide events increases in less than 100 meters of road 
distance (Figure 7b). As a result, the likelihood of a landslide increases as the distance from the 
road decreases. This means that proper action should be taken to prevent such hazard from 
occurring in the road area. 
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Figure 7. Landslide density: a) Land cover map and b) road distance 
  
 
Landslide inventory 
 
Table 6. Overlaid landslide events in the vulnerability map produced using weighted overlay 

method 
a) Rainfall: >300mm b) Rainfall: 100 – 200mm 

Vulnerability class Landslide 
percentage (%) 

Vulnerability class Landslide 
percentage (%) 

  Low 6 
Moderate 16 Moderate 31 

High 57 High 63 
Very High 27   

Total 100%  100% 
 
 Table 7. Overlaid landslide locations in the vulnerability map produced using raster calculator 

tool method 
a) Rainfall: >300mm b) Rainfall: 100 – 200mm 

Vulnerability class Landslide 
percentage (%) 

Vulnerability class Landslide 
percentage (%) 

Low 14 Low 12 
Moderate 53 Moderate 27 

High 33 High 55 
  Very High 6 

Total 100%  100% 
 

The most crucial and fundamental data set is the landslide inventory. The study created 
and used a landslide inventory by validating the actual location of landslide occurrences and any 
type of mass movement. Thus, the extent of landslides was not included because it is 
inaccessible, not feasible, and also for the researcher's safety. 

Table 6 shows the overlaid landslide events or any mass movement to the vulnerability 
map created with WOM and two different rainfall datasets. According to the findings, landslide 
events are mostly found in the highly vulnerable (57%) and very highly vulnerable (27%) 

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Annual Crop
Brush/Shrubs

Built-up
Fishpond

Grassland
Inland Water
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Open Forest
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categories, with the remaining 16% falling into the moderate vulnerability category (Table 6a). 
Conversely, 63% of landslides and any mass movement inside the watershed were identified in 
the highly vulnerable category, followed by 30% in the moderate category, and the remaining 
6% in the low vulnerability category (Table 6b). 

Landslide events or any type of mass movement were overlaid on the vulnerability map 
created with the raster calculator tool. The findings show that landslide events were common in 
the moderately vulnerable (Table 7a) and highly vulnerable (Figure 7b) classes, with percentage 
values of 53% and 55%, respectively. 
 The majority of the landslide events were found in high vulnerability areas, with very few 
landslides found in moderate to low vulnerability classes (Table 6a, b & 7b). Based on the 
methods of this study, if the majority of the landslide events fall into the high and very high 
vulnerability classes, this indicates good agreement. Therefore, the values of 57%, 63%, and 
55% (Tables 6a, b, and 7b) support the existence of a strong link between vulnerability classes 
and landslide events. As a result, this assessment indicates that the map is accurate enough. 
However, if the majority of landslide events fall into the low and moderate vulnerability classes, 
this indicates a low accuracy rate. As a result, 53% of landslides are classified as moderately 
vulnerable, indicating a low accuracy rate (Table 7a). 
 
 
Accuracy assessment using confusion matrix 
 
   Table 8. Confusion matrix of landslide inventory and vulnerability map (WOM) 

a) Rainfall: >300mm b) Rainfall: 100 – 200mm 
 Reference data  Reference data 

With 
landslide 

No 
landslide 

With 
landslide 

No  
landslide 

C
la

ss
ifi

ed
 

da
ta

 

With 
landslide 

51 0 

C
la

ss
ifi

ed
 

da
ta

 

With 
landslide 

48 0 

No 
Landslide 

0 0 No 
Landslide 

3 0 

Overall accuracy 100% Overall accuracy 94.12% 

 
   Table 9. Confusion matrix of landslide inventory and vulnerability map (raster calculator tool) 

a) Rainfall: >300mm b) Rainfall: 100 – 200mm 
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Table 8 shows the confusion matrix of landslide inventory and vulnerability map 
produced based on WOM. Based on the results, fifty one (51) of the landslide events in the 
inventory were correctly matched in the classified data. Therefore, it achieved a total accuracy of 
100% (Table 8a). In contrast, only forty eight (48) landslide locations were correctly classified 
out of 51 landslide events, with three (3) misclassified, yielding an overall accuracy of 
94.12% (Table 8b). 

Table 9 displays the confusion matrix of the landslide inventory and vulnerability map 
generated using the raster calculator tool. The results show that only forty four (44) landslide 
locations were correctly classified, and only seven (7) were misclassified in the classified data 
using >300mm of rainfall data, yielding an overall accuracy of 86.27% (Table 9a). Table 9b, on 
the other hand, shows that only forty two (42) landslide events were correctly classified, yielding 
an overall accuracy of 82.35%. 

In general, the validation was based on the actual location of the landslide and any type 
of mass movement, such as soil creep, in the watershed areas. Most landslides in the Lumbay 
watershed are caused by soil creep, which is common in grassland areas and causes slope failure. 
It was frequently observed that grassland converted to houses was cracked and damaged, with 
visible creeps around the area. Furthermore, flows are one type of landslide, whereas creep is one 
of the categories of flows, and creep is defined as the imperceptibly slow, steady downward 
movement of slope-forming soil or rock by the USGS (2014). Moreover, the movement is caused 
by shear stress which is strong enough to cause permanent deformation but not strong enough to 
cause shear failure. However, because it was not included in the study, the study cannot conclude 
whether the type of creeps within the watershed are seasonal, continuous, or progressive. 

According to Senouci et al. (2021), evaluating the quality of predictive landslide maps is 
a first step in this field. Two approaches were used in this study. The first method is based on the 
use of the landslide inventory map with the goal of overlaying it to the landslide vulnerability 
maps produced using the WOM and raster calculator tool. The quality of these maps was 
determined by comparing them to the landslide inventory map (Table 8 & 9). According to the 
findings, landslide locations were commonly observed in highly vulnerable to landslide areas 
using both methods, with the exception of >300mm rainfall calculated using the raster calculator 
tool (Table 9a). The second method employed the use of a confusion matrix, which is calculated 
by dividing the total number of corrected points or pixels by the total number of landslide 
location events (Miandad et al., 2020). The overall accuracy for the map based on AHP 
combined with WOM using >300 mm rainfall and 100mm-200mm rainfall was 100% and 
94.12%, respectively. In contrast, the overall accuracy of maps computed using the raster 
calculator tool was 86.27% and 82.35%, respectively. These results indicate that the models used 
are appropriate for mapping landslide vulnerability. Thus, the landslide predictive maps 
produced acceptable results based on the techniques used in this study. 
 
 
Conclusion 
 The danger of landslides have imposed enormous constraints on socioeconomic 
development (Senouci et al., 2021). Many approaches, including qualitative and quantitative 
approaches, have been tried for landslide assessment studies. In this study, a semi-quantitative 
method was used, as well as the analytical hierarchy process (AHP) and GIS-based analysis 
using various computation methods such as WOM and raster calculator tool. The study 
distinguished between the aforementioned methods and calculated their accuracy. GIS-based 
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methods, combined with the use of AHP, have demonstrated their ability to assess landslide 
vulnerability in a watershed. The use of AHP has provided a solid foundation for determining the 
relative significance of landslide vulnerability factors. According to the AHP results, the slope, 
rainfall, and road distance received the highest weights, indicating that these factors play a role 
in the occurrence of landslides in the watershed area. 

A set of landslide vulnerability maps for the Lumbay watershed were created using two 
different GIS tools: WOM and raster calculator, with two different rainfall data sets: >300mm 
and 100mm-200mm. The final map was then subjected to five different classes of landslide 
vulnerability: very low, low, moderate, high, and very high vulnerability.  
 The predictive landslide vulnerability maps were evaluated using a landslide inventory 
map that depicted the location of landslides and other types of mass movement events in the 
area. Given the location of the landslide and any mass movement events, the landslide inventory 
map confirmed that the modelled maps have exceptional reliability showing 57%, 63%, and 
55% were found in high vulnerability classes. Meanwhile, the confusion matrix based on 
different rainfall datasets and the GIS tool used with AHP shows a higher accuracy. The 
accuracy of the vulnerability maps produced in this study using the AHP combined with WOM 
is 100%, followed by 100mm-200mm rainfall using WOM (94.12% ), >300mm rainfall using 
raster calculator (86.27% ), and 82.35% for 100mm-200mm rainfall using raster calculator tool, 
which is very satisfactory. Both techniques demonstrated that the obtained results are 
scientifically correct. However, as with the other studies, a method with highest accuracy must 
be selected to be used for the recommendation of various measures to reduce the impact of 
landslide hazard. 
 Moreover, it was observed that the density of landslides based on land cover and road 
distance was mostly distributed in grassland cover areas and could be found less than 100 meters 
from the road. This means that proper intervention is required to prevent landslides from 
occurring, particularly during the rainy season. 
 The study suggested that a characterization of the watershed particularly its biophysical 
and socioeconomic aspects must be undertaken and carried out thoroughly. Previous landslide 
occurrences adjacent to roads must be monitored and recorded for future references. Besides, 
using updated thematic maps will yield more reliable results. However, some of the thematic 
layers used in this study were out of date, such as the land cover map, which was taken in 2015. 

All the more, while the watershed area is not densely populated, local governments can 
mitigate the effects of landslides by implementing policies and regulations within the watershed 
area. Furthermore, now is the best time to put in place the necessary safeguards to prevent these 
hazards from occurring. The vulnerability maps could be used to track the spread of landslides 
and prevent natural disasters. In this regard, the landslide vulnerability map could assist decision-
makers in better designing future construction projects and avoiding construction in highly 
vulnerable zones without proper mitigation assessment. Lastly, this study must be incorporated 
in the comprehensive forest/land use plan of the area to ensure the sustainable development of 
the watershed and its natural resources. 
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