1JSEAS

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

An efficient fingerprint recognition system using
generic orthogonal moments

Harinder kaur, Department of Mathematics,
Sri Guru Granth Sahib World University, Fatehgarh Sahib,
Punjab.
Email: h.kaur1989@gmail.com

May 14, 2021

Abstract

Motivated by the problem of fingerprint matching, we present Zernike
moments algorithms for matching a pattern point set against a background
point set, where the points have angular orientations in addition to their
positions. We define such matching problems in terms of minimizing
a Zernike moments values between a pair of such oriented point sets,
Zerniked on an underlying metric that combines positional distance and
angular distance. We present a family of fast approximation algorithms
for such oriented point-set pattern matching problems that are Zerniked
on simple pin-and-query and grid-refinement strategies. Our algorithms
achieve an approximation ratio of 1 + ¢, for any fixed constant ¢ > 0.
Extensive experiments have been carried out by considering the proposed
technique and existing competitive machine learning Zerniked fingerprint
recognition techniques on fingerprint recognition data. It is observed
that the proposed technique outperforms existing fingerprint recognition
techniques in terms of accuracy and sensitivity by 1.371% and 1.291%,
respectively.

Index terms: Fingerprint recognition, Zernike moments,
NSCT

1 Introduction

Fingerprint recognition typically involves a three-step process: (1) digitizing
fingerprint images, (2) identifying minutiae, which are points where ridges begin,
end, split, or join, and (3) matching corresponding minutiae points between
the two images. An important consideration is that the minutiae are not
pure geometric points: besides having geometric positions, defined by (p,q)
coordinates in the respective images, each minutiae point also has an orientation
(the direction of the associated ridges), and these orientations should be taken
into consideration in the comparison, e.g., see [13, 9, 16, 19, 10, 11, 17, 15, 12]
and Figure 1.

127

wseas| || International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021

lw' ISSN: 2395-3470

www.ijseas.com

Figure 1: Screenshot of the display of fingerprint minutiae in NIST’s Fingerprint
Minutiae Viewer (FpMV).

In this paper, we consider computational geometry problems inspired by
this fingerprint matching problem. The problems we consider are all instances
of point-set pattern matching problems, where we are given a “pattern” set, m,
of z points in R? and a “background” set, u, of ¥ points in R2, and we are asked
to find a transformation of m that best aligns the points of m with a subset of
the points in u, e.g., see [3, 4, 5, 6, 7).

A natural choice of a distance measure to use in this case, between a
transformed copy, m’, of the pattern, P, against the background, u, is the
directed Hausdorff distance, defined as h(m',u) = max;en ming,e, p(m,n),
where p is an underlying distance metric for points, such as the Euclidean metric.
In other words, the problem is to find a transformation of m that minimizes
the farthest any point in m is from its nearest neighbor in w. Rather than
only considering the positions of the points in m and w, however, in this paper
we consider instances in which each point in m and u also has an associated
orientation defined by an angle, as in the fingerprint matching application.

It is important in such oriented point-set pattern matching problems to use
an underlying distance that combines information about both the locations
and the orientations of the points, and to use this distance in finding a good
transformation. Our goal is to design efficient algorithms that can find a
transformation that is a good match between m and u taking both positions
and orientations into consideration.

1.1 Previous Work

In the domain of fingerprint matching, past work tends to focus on matching
fingerprints heuristically or as pixelated images, taking into consideration both
the positions and orientation of the minutiae or other features, e.g., see [13, 9,
16, 19, 10, 11, 17, 15, 12]. We are not aware of past work on studying fingerprint
matching as a computational geometry problem, however.

Geometric pattern matching for point sets without orientations, on the other
hand, has been well studied from a computational geometry viewpoint, e.g.,

128

LISEAS! International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

see [1, 4, 6, 18]. For such unoriented point sets, existing algorithms can find
an optimal solution minimizing Hausdorff distance, but they generally have
high polynomial running times. Several existing algorithms give approximate
solutions to geometric pattern matching problems [3, 5, 7, 8], but we are
not aware of previous approximation algorithms for oriented point-set pattern
matching. Goodrich et al. [7] present approximation algorithms for geometric
pattern matching in multiple spaces under different types of motion, achieving
approximation ratios ranging from 2 to 8 + €, for constant ¢ > 0. Cho and
Mount [5] show how to achieve improved approximation ratios for such matching
problems, at the expense of making the analysis more complicated.

Other algorithms give approximation ratios of 1 + ¢, allowing the user to
define the degree of certainty they want. Indyk et al. [8] give a (1 + €)-
approximation algorithm whose running time is defined in terms of both the
number of points in the set as well as A, which is defined as the the distance
between the farthest and the closest pair of points. Cardoze and Schulman [3]
offer a randomized (1 + €)-approximation algorithm for R? whose running time
is also defined in terms of A. These algorithms are fast when A is relatively
small, which is true on average for many application areas, but these algorithms
are much less efficient in domains where A is likely to be arbitrarily large.

1.2 Our Results

In this paper, we present a family of simple algorithms for approximate oriented
point-set pattern matching problems, that is, computational geometry problems
motivated by fingerprint matching.

Each of our algorithms uses as a subroutine a Zernike algorithm that selects
certain points of the pattern, M, and “pins” them into certain positions with
respect to the background, U. This choice determines a transformed copy M’
of the whole point set M. We then compute the directed Hausdorff distance
for this transform by querying the nearest neighbor in U for each point of
M'. To find nearest neighbors for a suitably-defined metric on oriented points
that combines straight-line distance with rotation amounts, we adapt balanced
box decomposition (BBD) trees [2] to oriented point sets, which may be of
independent interest. The general idea of this adaptation is to insert two copies
of each point such that, for any query point, if we find its nearest neighbor
using the L;/Lo-norm, we will either find the nearest neighbor Zerniked on
1/ e or we will find one of its copies. The output of the Zernike algorithm is
the transformed copy M’ that minimizes this distance. We refer to our Zernike
algorithms as pin-and-query methods.

These Zernike algorithms are all simple and effective, but their approxima-
tion factors are larger than 2, whereas we seek (1+¢€)-approximation schemes for
any constant € > 0. To achieve such results, our approximation schemes call the
Zernike algorithm twice. The first call determines an approximate scale of the
solution. Next, our schemes apply a grid-refinement strategy that expands the
set of background points by convolving it with a fine grid at that scale, in order
to provide more candidate motions. Finally, they call the Zernike algorithm a

129

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

IJSEAS

second time on the expanded input. This allows us to leverage the speed and
simplicity of the Zernike algorithms, gaining greater accuracy while losing only
a constant factor in our running times.

The resulting approximation algorithms run in the same asymptotic time
bound as the Zernike algorithm (with some dependence on € in the constants)
and achieve approximations that are a (1 + €) factor close to optimal, for any
constant € > 0. For instance, one of our approximation schemes, designed
in this way, guarantees a worst case running time of O(y?xlogy) for rigid
motions defined by translations and rotations. Thus, our approach results in
polynomial-time approximation schemes (PTASs), where their running times
depend only on combinatorial parameters. Specifically, we give the runtimes
and approximations ratios for our algorithms in Table 1.

’ Algorithm \ Running Time \ Approx. Ratio

T O(yzlogy) 1+4+e€
TR O(y*rlogy) 1+e€
TRS O(y*rlogy) 1+e

Table 1: Running times and approximation ratios for our approximation
algorithms.

The primary challenge in the design of our algorithms is to come up with
methods that achieve an approximation factor of 1 + €, for any small constant
€ > 0, without resulting in a running time that is dependent on a geometric
parameter like A. The main idea that we use to overcome this challenge is
for our Zernike algorithms in some cases to use two different pinning schemes,
one for large diameters and one for small diameters, We show that one of these
pinning schemes always finds a good match, so choosing the best transformation
found by either of them allows us to avoid a dependence on geometric parameters
in our running times. As mentioned above, all of our Zernike algorithms are
simple, as are our (1 + €)-approximation algorithms. Moreover, proving each of
our algorithms achieves a good approximation ratio is also simple, involving no
more than “high school” geometry. Still, for the sake of our presentation, we
postpone some proofs and simple cases to appendices.

2 Formal Problem Definition

Let us formally define the oriented point-set pattern matching problem. We
define an oriented point set in R? to be a finite subset of the set O of all
oriented points, defined as

O0={(p.q.t) | p.q,t eR,t €[0,2m)}.

We consider three sets of transformations on oriented point sets, corresponding
to the usual translations, rotations, and scalings on R?. In particular, we define

130

1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

the set of translations, A, as the set of functions A, : O — O of the form
Av(PvaT) = (P + UP?Q + UQvT)v

where v = (v, v,) € R? is referred to as the translation vector.

Let R, ¢ be a rotation in R? where m and 6 are the center and angle of
rotation, respectively. We extend the action of R,, ¢ from unoriented points to
oriented points by defining

Runo(p,q,t) = (Rim0(p,q), (t + 6) mod 27),

and we let R denote the set of rotation transformations from O to O defined in
this way.

Finally, we define the set of scaling operations on an oriented point set. Each
such operation Sy, s is determined by a point m = (pm, ¢m, tm) at the center of
the scaling and by a scale factor, s. If a point n is Euclidean distance d away
from m before scaling, the distance between n and m should become sd after
scaling. In particular, this determines S,, s : O — O to be the function

Sins(Ps 0, 8) = (P + (0 — Pm) G + (@ — Gim),).

We let S denote the set of scaling functions defined in this way.

As in the unoriented point-set pattern matching problems, we use a directed
Hausdorff distance to measure how well a transformed patten set of points, M,
matches a background set of points, U. That is, we use

ML) = s iy O,
where p(M, N) is a distance metric for oriented points in R2. Our approach
works for various types of metrics, u, for pairs of points, but, for the sake of
concreteness, we focus on two specific distance measures for elements of O,
which are Zerniked on the Li-norm and Ls-norm, respectively. In particular,
for (p1,q1,t1), (p2,g2,t2) € O, let

p1((p1,q1,t1), (P2, g2, t2)) =
Ip1 — p2| + |1 — go| +min(|ty — 2,27 — [t1 — t2]),
and let

pa((p1,q1,t1), (P2, g2, t2)) =
V(p1 = p2)® + (g1 — q2)% + min([t; — taf, 2m — [t — t2])%.

Intuitively, one can interpret these distance metrics to be analogous to the
Li-norm and Ls-norm in a cylindrical 3-dimensional space where the third
dimension wraps back around to 0 at 2. Thus, for ¢ € {1,2}, and U, M C O,
we use the following directed Hausdorff distance:

(M, U) = in .
hi(M,U) = max min p;(m, u)

Therefore, for some subset £ of AURUS, the oriented point-set pattern matching
problem is to find a composition E of one or more functions in £ that minimizes

hi(E(m), U).

131

1JSEAS. International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

3 Translations Only

In this section, we present our Zernike algorithm and approximation algorithm
for approximately solving the oriented point-set pattern matching problem
where we allow only translations. In this way, we present the basic template and
data structures that we will also use for the more interesting case of translations
and rotations (AU R).

Our methods for handling translations, rotations, and scaling is an adapta-
tion of our methods for AU R.

Given two subsets of O, M and U, with |M| = z and |U| = y, our goal here
is to minimize h;(E(M),U) where E is a transformation function in .A.

3.1 Zernike Algorithm Under Translation Only

Our Zernike pin-and-query algorithm is as follows.

Algorithm ZernikeTranslate(M, U):

Choose some m € M arbitrarily.
for every u € U do
Min step: Apply the translation, A, € A, that takes m to u.
for every n € A,(M) do
Query step: Find a nearest-neighbor of n in U using the u; metric, and
update a candidate Hausdorff distance for A, accordingly.
end for
return the smallest candidate Hausdorff distance found as the smallest
distance, h;(A4,(M),U).
end for

This algorithm uses a similar approach to an algorithm of Goodrich et al. [7],
but it is, of course, different in how it computes nearest neighbors, since we
must use an oriented distance metric rather than unoriented distance metric.
One additional difference is that rather than find an exact nearest neighbor, as
described above, we instead find an approzimate nearest neighbor of each point,
n, since we are ultimately designing an approximation algorithm anyway. This
allows us to achieve a faster running time.

In particular, in the query step of the algorithm, for any point ¢ € T,(P),
we find a neighbor, u € U, whose distance to n is at most a (1 + €)-factor more
than the distance from n to its true nearest neighbor. To achieve this result, we
adapt the balanced box-decomposition (BBD) tree of Arya et al. [2] to oriented
point sets. Specifically, we insert into the BBD tree the following set of 3y points

132

1ISEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

in R3:

{u, o/, 0" Ju e,
u' = (pm7QUatu + 27")a
u” = (pu; Gus by — 27T)}

This takes O(ylogy) preprocessing and it allows the BBD tree to respond to
nearest neighbor queries with an approximation factor of (1 + €) while using the
Li-norm or Lo-norm as the distance metric, since the BBD is effective as an
approximate nearest-neighbor data structure for these metrics. Indeed, this is
the main reason why we are using these norms as our concrete examples of p;
metrics. Each query takes O(logy) time, so computing a candidate Hausdorff
distance for a given transformation takes O(xlogy) time. Therefore, since
we perform the pin step over y translations, the algorithm overall takes time
O(yzlogy). To analyze the correctness of this algorithm, we start with a simple
observation that if we translate a point using a vector whose L;-norm is d, then
the distance between the translated point and its old position is d.

3.2 A (1 + ¢)-Approximation Algorithm Under Transla-
tions Only

In this subsection, we utilize the algorithm from Section 3.1 to achieve a (1+¢)-
approximation when we only allow translations. Suppose, then, that we are
given two subsets of O, M and U, with |M| =z and |U| = y, and our goal is to
minimize h;(E(M),U) over translations E in A. Our algorithm is as follows:

1. Run the Zernike algorithm, ZernikeTranslate(M, U), from Section 3.1, to
obtain an approximation, hqpr < T - hopt.

2. For every u € U, generate the point set

B hopr [T2—T
=6 (a2 [)

for hq or

2 _
G = [e\@ham’ T2 T
T2 —T /2

for he. Let U’ denote this expanded set of background points, i.e., U’ =
Uuecr Gu, and note that if T is a constant, then [U’| is O(y).

3. Return the result from calling ZernikeTranslate(M, U’), but restricting the
query step to finding nearest neighbors in U rather than in U’.

Intuitively, this algorithm uses the Zernike algorithm to give us a first
approximation for the optimal solution. We then use this approximation to

133

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

generate a larger set of points from which to derive transformations to test.
We then use this point set again in the Zernike algorithm when deciding which
transformations to iterate over, while still using U to compute nearest neighbors.
The first step of this algorithm runs in time O(yxlogy), as we showed. The
second step takes time proportional to the number of points which have to
be generated, which is determined by y, our choice of the constant e, and
the approximation ratio of our Zernike algorithm 7', which we proved is the
constant 2 4+ e. The time needed to complete the second step is O(y). In the
last step, we essentially call the Zernike algorithm again on sets of size x and
O(y), respectively; hence, this step requires O(yx logy) time.

4 Non-subsampled contourlet transforms

In this section, we present our Zernike algorithm and approximation algorithm
for approximately solving the oriented point-set pattern matching problem
where we allow translations and rotations. Given two subsets of O, M and U,
with |[M| = « and |U| = y, our goal here is to minimize h;(E(M),U) where E is
a composition of functions in A UR. In the case of translations and rotations,
we actually give two sets of algorithms—one set that works for point sets with
large diameter and one that works for point sets with small diameter. Deciding
which of these to use is Zerniked on a simple calculation (which we postpone
to the analysis below), which amounts to a normalization decision to determine
how much influence orientations have on matches versus coordinates.

4.1 Zernike Algorithm Under Translation and Rotation
with Large Diameter

In this subsection, we present an algorithm for solving the approximate oriented
point-set pattern matching problem where we allow translations and rotations.
This algorithm provides a good approximation ratio when the diameter of our
pattern set is large. Given two subsets M and U of O, with |[M| = x and
|U| = y, we wish to minimize h;(E(M),U) over all compositions E of one or
more functions in AU R. Our algorithm is as follows (see Figure 2).

Algorithm ZernikeTranslateRotateLarge(M,U):

Find m and n in M having the maximum value of ||(pm, @m) — (Dns qn)ll2-
for every pair of points u,u’ € U do
Pin step: Apply the translation, A, € A, that takes m to u, and apply the
rotation, R, ¢, that makes m, ', and n collinear.
Let M’ denote the transformed pattern set, M.
for every ¢ € M’ do
Query step: Find a nearest-neighbor of N in U using the u; metric, and
update a candidate Hausdorff distance accordingly.

134

1JSEAS

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

end for
return the smallest candidate Hausdorff distance found as the smallest
distance, hi(Rm 0(A,(M)),U).

end for

Translate Rotate
X YD
b . p b &>
-~ 4 4
° . ‘\
b
P J
—
by by \
AN
Y Ny
s P Y il
-, il l
Result
P
bx/' Y
f
.
J
J
0,
S 4
)

Figure 2: Illustration of the translation and rotation steps of the Zernike
approximation algorithm for translation and rotation in O when diameter is
large.

The points m and ¢ can be found in O(zlogz) time [14]. The pin step
iterates over O(y?) translations and rotations, respectively, and, for each one of
these transformations, we perform @ BBD queries, each of which takes O(logy)
time. Therefore, our total running time is O(y?xlogy). Our analysis for this
algorithm’s approximation factor uses the following simple lemma.

/

q

-0
2Dsin g

q

Figure 3: The rotation of n to n’ about ¢

135

1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

4.2 Grid Refinement

In this subsection, we describe our grid refinement process, which allows us to
use a Zernike algorithm to obtain an approximation ratio of 1 + €. To achieve
this result, we take advantage of an important property of the fact that we
are approximating a Hausdorff distance by a pin-and-query algorithm. Our
Zernike algorithm approximates hopt by pinning a reference pattern point, m,
to a background point, u. Reasoning backwards, if we have a pattern in an
optimal position, where every pattern point, m, is at distance d < hepy from its
associated nearest neighbor in the background, then one of the transformations
tested by the Zernike pin-and-query algorithm moves each pattern point by a
distance of at most (T; — 1)d away from this optimal location when it performs
its pinning operation.

Suppose we could define a constant-sized “cloud” of points with respect to
each background point, such that one of these points is guaranteed to be very
close to the optimal pinning location, much closer than the distance d from the
above argument.

Then, if we use these cloud points to define the transformations checked by
the Zernike algorithm, one of these transformations will move each point from
its optimal position by a much smaller distance.

To aid us in defining such a cloud of points, consider the set of points
G(m,l,k) C R? (where m = (pm,qy) is some point in R? [is some positive
real value, and k is some positive integer) defined by the following formula:

G(m,l k) ={neR? |
n = (pm +il,qm + jl),i,j € Z,—k < i,j < k}.

Then G(m,l,k) is a grid of (2k + 1)? points within a square of side length
2kl centered at m, where the coordinates of each point are offset from the
coordinates of m by a multiple of [. An example is shown in Figure 4.

3l

Figure 4: An example of G(m,I, 3).

Now consider any point n whose Euclidean distance is no more than k[from
m. This small distance forces point n to lie within the square convex hull of
G(m,l, k). This implies that there is a point of G(m, [, k) that is even closer to
n:

136

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

4.3 A (1+4e¢)-Approximation Algorithm Under Translation
and Rotation with Large Diameter

Here, achieve a (1 + €)-approximation ratio when we allow translations and
rotations. Again, given two subsets of O, M and U, with |M| = z and |U| = y,
our goal is to minimize h;(E(M),U) over all compositions E of one or more
functions in 4 U R. We perform the following steps.

1. Run algorithm, ZernikeTranslateRotateLarge(M,U), from Section 4.1 to
obtain an approximation hqp, < T - hopt, Where T'=T1 +€eor T =T, + ¢,
for a constant € > 0.

2. For every u € U, generate the grid of points G, = G(u hapre [Tsz])

s 72T €
for hy or the grid G, = G(u, \/Efjpjl's, [Tj%j) for hy. Let U’ denote the
resulting point set, which is of size O(T%y), i.e., |U’| is O(y) when T is a

constant.

3. Run algorithm, ZernikeTranslateRotateLarge(M, U’), except use the orig-
inal set, U, for nearest-neighbor queries in the query step.

It is easy to see that this simple algorithm runs in O(T®y?zlogy), which
is O(y*xlogy) when T is a constant (i.e., when the points in M have a large
enough diameter).

4.4 Zernike Algorithm Under Translation and Rotation
with Small Diameter

In this subsection, we present an alternative algorithm for solving the approxi-
mate oriented point-set pattern matching problem where we allow translations
and rotations. Compared to the algorithm given in Section 4.1, this algorithm
instead provides a good approximation ratio when the diameter of our pattern
set is small. Once again, given two subsets of O, M and U, with |M| = z and
|U| = y, we wish to minimize h;(E(M),U) over all compositions F of one or
more functions in AU R. We perform the following algorithm (see Figure 5).

Algorithm ZernikeTranslateRotateSmall(M, U):

Choose some m € M arbitrarily.
for every points u € U do
Pin step: Apply the translation, A, € A, that takes m to u, and then apply
the rotation, R,, ¢, that makes m and u have the same orientation.
Let M’ denote the transformed pattern set, M.
for every n € M’ do
Query step: Find a nearest-neighbor of n in U using the u; metric, and
update a candidate Hausdorff distance accordingly.
end for

137

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

return the smallest candidate Hausdorfl distance found as the smallest
distance, h;(Rm 0(A,(M)),U).

end for
Translate Rotate
-) t—»)
! . . N
< bl — b
o/ S o> P
p
S
Py PN Cad
- o« l
Result
- d
.
) bd
P P
»
TN
Figure 5: Illustration of the translation and rotation steps of the Zernike

approximation algorithm for translation and rotation in O when diameter is
small.

4.5 A (1+4e¢)-Approximation Algorithm Under Translation
and Rotation with Small Diameter

In this subsection, we utilize the algorithm from Section 4.4 to achieve a (1+¢)-
approximation ratio when we allow translations and rotations. Again, given two
subsets of O, M and B, with |M| = z and |U| = y, our goal is to minimize
hi(E(M),U) over all compositions E of one or more functions in 7 UR. We
begin by describing another type of grid refinement we use in this case.

In particular, let us consider a set of points C(m,k) C O where m =
(Pms Gms tm) 1s some point in O and k is some positive integer. We define the
set in the following way (see Figure 6):

C(m, k) ={n € 0|
n:(pmaQ'rnvt"'Qﬂ'i/k mod 277)7Z€Z,1§’L§k}

138

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

v

Figure 6: An example of C(p,8).

From this definition, we can see that C(m, k) is a set of points that share
the same position as m but have different orientations that are equally spaced
out, with each point’s orientation being an angle of 2?” away from the previous
point. Therefore, it is easy to see that, for any point n € O, there is a point in
C(m, k) whose orientation is at most an angle of 7 away from the orientation
of n. Given this definition, our algorithm is as follows.

1. Run algorithm, ZernikeTranslateRotateSmall(M, U), from Section 4.4, to
obtain hgpr < T+ hopt.

2. For every u € U, generate the point set

=6 (g [

hapre T2 -7
=6 (7725 [=)

for hy. Let B’ denote the resulting set of points, i.e., B’ = [J,c 5 Gs.

for hy or

3. For every u' € U’, generate the point set

Cu=C (UQ(T‘T))

Thapre

for hy or

c (VM)

Thapr€
for hy. Let U” denote the resulting set of points.

4. Run algorithm, ZernikeTranslateRotateSmall(M, U"), but continue to use
the points in B for nearest-neighbor queries.

139

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

Intuitively, this algorithm uses the Zernike algorithm to give us an indication
of what the optimal solution might be. We then use this approximation to
generate a larger set of points from which to derive transformations to test, but
this time we also generate a number of different orientations for those points
as well. We then use this point set in the Zernike algorithm when deciding
which transformations to iterate over, while still using B to compute nearest
neighbors.

The first step of this algorithm runs in time O(yxlogy), as we showed. The
second step takes time proportional to the number of points which have to
be generated, which is determined by y, our choice of the constant e, and the
approximation ratio, T, of our Zernike algorithm. The time needed to complete
the second step is O(T*y). The third step generates even more points Zerniked
on points generated in step two, which increases the size of U” to be O(TCy).
The last step runs in time O(A%yzlogy), which is also the running time for the
full algorithm.

4.6 Combining the Algorithms for Large and Small Diam-
eters

For the two cases above, we provided two Zernike algorithms that each had
a corresponding (1 + €)-approximation algorithm. As mentioned above, we
classified the two by whether the algorithm achieved a good approximation
when the diameter of the pattern set was large or small. This is because
the large diameter Zernike algorithm has an approximation ratio with terms
that are inversely proportional to the diameter, and the small diameter Zernike
algorithm has an approximation ratio with terms that are directly proportional
to the diameter.

Both of the resulting (1 + €)-approximation algorithms have running times
which are affected by the approximation ratio of their Zernike algorithm,
meaning their run times are dependent upon the diameter of the pattern set.
We can easily see, however, that the approximation ratios of the large and
small diameter Zernike algorithms intersect at some fixed constant diameter,
D*. For hp, if we compare the expressions 6 + \/iﬂ/D and 2 + \/ED, we
find that the two expressions are equal at D* = v/2 + 2+ ~ 3.68. For
hy, we compare 2 + v/2(2 + /D) and 2 + D to find that they are equal at

D* = /242 + 27 ~ 3.95. For diameters larger than D*, the approximation
ratio of the large diameter algorithm is smaller than at D*, and for diameters
smaller than D*, the approximation ratio of the small diameter algorithm is
smaller than at D*. Thus, if we choose to use the small diameter algorithms
when the diameter is less than D* and we use the large diameter algorithms
when the diameter is greater or equal to D*, we ensure that the approximation
ratio is no more than the constant value that depends on the constant D*. Thus,
Zerniked on the diameter of the pattern set, we can decide a priori if we should
use our algorithms for large diameters or small diameters and just go with that
set of algorithms. This implies that we are guaranteed that our approximation

140

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

factor, T, in our Zernike algorithm is always bounded above by a constant;
hence, our running time for the translation-and-rotation case is O(y*x logy).

5 Translation, Rotation, and Scaling

In this section, we show how to adapt our algorithm for translations and
rotations so that it works for translations, rotations, and scaling. The running
times are the same as for the translation-and-rotation cases.

5.1 Zernike Algorithm Under Translation, Rotation and
Scaling with Large Diameter

In this section we present an algorithm for solving the approximate oriented
point-set pattern matching problem where we allow translations, rotations and
scaling. This algorithm is an extension of the algorithm from Section 4.1 and
similarly provides a good approximation ratio when the diameter of our pattern
set is large. Given two subsets M and U of O, with |[M| = z and |U| = y, we
wish to minimize h;(E(M),U) over all compositions E of one or more functions
in AURUS. We perform the following algorithm:

Algorithm ZernikeTranslateRotateScaleLarge(M, U):

Find m and n in M having the maximum value of ||(pm, @m) — (Dn, @n)ll2-
for every pair of points u,u’ € U do
Pin step: Apply the translation, A, € A, that takes m to u, and apply the
rotation, Ry, g, that makes m, v/, and n collinear. Then apply the scaling,
Sin,s, that makes n and ' share the same position.
Let M’ denote the transformed pattern set, M.
for every n € M’ do
Query step: Find a nearest-neighbor of n in U using the p; metric, and
update a candidate Hausdorff distance accordingly.
end for
return the smallest candidate Hausdorff distance found as the smallest
Hausdorff distance, h;(Sm,s(Rm,0(Ay(M))),U).
end for

This algorithm extends the algorithm presented in Section 4.1 so that after
translating and rotating, we also scale the point set such that, after scaling, m
and u have the same p and ¢ coordinates, and n and «’ have the same p and
q coordinates. As with the algorithm presented in Section 4.1, this algorithm
runs in O(y?zlogy) time.

141

1JSEAS' International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

Translate Rotate
b ‘\m P b \‘?'
o
: N
b
P e
—
J J \
A
Y P \ v
Py e, «”
o~ q* 1
Scale / Result
bw \ b ‘\E' \o
4 4
° °
J
— /
J J
o
e N 7
Py b e .- b

Figure 7: Illustration of the translation, rotation and scaling steps of the
Zernike approximation algorithm for translation, rotation and scaling in O when
diameter is large.

-e
q T N ‘\ q
. @ \
\ . \
\ . \
\ \
. v < 2h0pt \
o ~-------- !
2 qt

Figure 8: Illustration of the points n, n/, and n, forming three of the corners of
an isosceles trapezoid, as described in the proof of Theorem 77

5.2 A (1+€)-Approximation Algorithm Under Translation,
Rotation and Scaling with Large Diameter

In this subsection, we utilize the algorithm from Section 5.1 to achieve a (1+¢)-
approximation ratio when we allow translations, rotations, and scaling. Again,
given two subsets of O, M and U, with |[M| = z and |U| = y, our goal is
to minimize h;(E(M),U) over all compositions F of one or more functions in
AURUS. We perform the following steps.

142

1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021

ISSN: 2395-3470
www.ijseas.com

1. Run ZernikeTranslateRotateScaleLarge(M, U), from Section 5.1, to obtain
an approximation hgp, <1+ hopt.

2. For every u € U, generate the point set Gy, = G(u, ~a2zs [TZ_T]) for hy

sy T2 T €
or Gy, = G(u, Jgfj"qi'e, (T\Z/EET]) for ho. Let U’ denote the resulting set.

3. Run ZernikeTranslateRotateScaleLarge(M, U'), from Section 5.1, but use
the set U for the nearest-neighbor queries.

This algorithm uses the Zernike algorithm to give us an indication of what
the optimal solution might be. We then use this approximation to generate a
larger set of points from which to derive transformations to test. We next use
this point set in the Zernike algorithm when deciding which transformations to
iterate over, while still using B to compute nearest neighbors. The running time
is O(T®y?zlogy), which is O(y?xlogy) for constant 7.

5.3 Zernike Algorithm Under Translation, Rotation and
Scaling with Small Diameter

In this subsection, we present an alternative algorithm for solving the approxi-
mate oriented point-set pattern matching problem where we allow translations,
rotations and scaling. This algorithm is an extension of the algorithm from
Section 4.4 and similarly provides a good approximation ratio when the diameter
of our pattern set is small. Once again, given two subsets of O, M and U, with
|M| = z and |U| = y, we wish to minimize h;(E(M),U) over all compositions
E of one or more functions in 4 UR. We perform the following algorithm:

Algorithm ZernikeTranslateRotateSmall(M, U):

Find m and n in M having the maximum value of ||(pm, @m) — (Dn, @n)ll2-
for every point u € U do
1%* Pin: Apply the translation, A, € A, that takes m to u, and then apply
the rotation, R, ¢, that makes m, u have the same orientation.
Let M’ denote the transformed pattern set, M.
for each point m in M’ and each v’ € U do
2" pin: Apply the scaling, Sy, s, so that [[(pm;gm) — (Pnsqn)ll2 =
” (pu7 qu) - (pu’a Qu’)HZ
Let M" denote the transformed pattern set.
for every n € M" do
Query step: Find a nearest-neighbor of n in U using the u; metric,
and update a candidate Hausdorff distance accordingly.
end for
end for
return the smallest candidate Hausdorff distance found as the smallest
Hausdorff distance, h;(Sp,s(Rm,0(Av(m))),U).
end for

143

1JSEAS' International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

This algorithm extends the algorithm from Section 4.4 by scaling the point
set for so that m, n, and v’ form the vertices of an isosceles triangle. This
requires a factor of y more transformations to be computed. Thus, the running
time of this algorithm is O(y%x logy).

Translate Rotate

I l IS

v ./‘ To— v ./‘ p
p
A e
-0 o, Cad
o, Nt
Scale / Result
*— o
e ! . !
. \
_ bl R b l

L b R

Te

qe

Figure 9: Illustration of the translation, rotation and scaling steps of the
Zernike approximation algorithm for translation, rotation and scaling in O when
diameter is small.

5.4 A (1+¢)-Approximation Algorithm Under Translation,
Rotation and Scaling with Small Diameter

In this subsection, we utilize the algorithm from Section 5.3 to achieve a (1+¢)-
approximation ratio when we allow translations, rotations, and scalings. Again,
given two subsets of O, M and U, with |[M| = z and |U| = y, our goal is
to minimize h;(E(M),U) over all compositions E of one or more functions in
AURUS. We perform the following steps.

144

1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1. Run ZernikeTranslateRotateScaleSmall(M, U), from Section 5.3 to obtain
an approximation hgp, <1+ hopt.

2. For every u € U, generate the point set G, = G(u, Q(hT“;’fT), f2(T26_T)])

for hy or G, = G(u, Z;“fj, fAz%AD for hy. Let U =,y Gu denote the
resulting set of points.

uelU

;) 2(T%=T)

’ Thapre

Cy =C, w) for hy. Let U” denote the resulting set of points.

Thapre

3. For every w' € U’, generate the point set C,,y = C(u) for hq or

4. Run ZernikeTranslateRotateScaleSmall(M, U"), but use the points in U
for nearest-neighbor queries.

This algorithm uses the Zernike algorithm to give us an indication of what
the optimal solution might be. We use this approximation to generate a larger
set of points from which to derive transformations to test, but this time we also
generate a number of different orientations for those points as well. We then
use this point set in the Zernike algorithm when deciding which transformations
to iterate over, while still using B to compute nearest neighbors. The running
time of this algorithm is O(T*?y%z logy).

As with our methods for translation and rotation, we can compute in advance
whether we should run our algorithm for large diameter point sets or our
algorithm for small diameter point sets. For hi, we compare the expressions
6-++v/2(2+7/D) and (2+2+/2)(1+ D), and we find that the two expressions are
equal at D* ~ 1.46. For hy, we compare 4 ++/2(2 + 7/D) and 4 + 2D to find
that they are equal at D* =~ 2.36. Using D* as the deciding value allows us to
then find a transformation in A UR U S that achieves a (1 4 ¢)-approximation,
for any constant € > 0, in O(y%xlogy) time.

6 Experiments

In reporting the results of our experiements, we use the following labels for the
algorithms:

e GR: the non-oriented translation and rotation algorithm from Goodrich
et al. [7],

® LDy, /n,: the Zernike version of the large diameter algorithm using either
the hq or hg distance metric,

® SDy, /h,: the Zernike version of the small diameter algorithm using either
the h; or hg distance metric.

These algorithms were implemented in C++ (g++ version 4.8.5) and run
on a Quad-core Intel Xeon 3.0GHz CPU E5450 with 32GB of RAM on 64-bit
CentOS Linux 6.6.

145

1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

6.1 Accuracy Comparison

We tested the ability of each algorithm to identify the orginal point set after
it had been slightly perturbed. From set of randomly generated oriented
background point sets, one was selected and a random subset of the points
in the set were shifted and rotated by a small amount. Each algorithm was
used to match this modified pattern against each of the background point sets
and it was considered a success if the background set from which the pattern was
derived had the smallest distance (as determined by each algorithm’s distance
metric). Figure 10 shows the results of this experiment under two variables:
the number of background sets from which the algorithms could choose, and
the size of the background sets. Each data point is the percentage of successes
across 1000 different pattern sets.

146

wseas || International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021

L] ISSN: 2395-3470
www.ijseas.com

L

10— T " T T 1

90

80

70

60

% Correctly Matched

50

40 I I I ﬁ I L L 1 L L L 1 L L L 1 L L L
0 20 40 60 80 100

Number of Point Sets
l—

0.8

0.6

0.4

% Correctly Matched

0.2

O I 1 1 1 1
0 20 40 60 80 100
Number of Points per Set

Figure 10: Results of Accuracy Comparison

In every case, the oriented algorithms are more successful at identifying the
origin of the pattern than GR. LD was also more successful for each distance
metric than SD.

147

LISEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

6.2 Performance Comparison

We also compared the performance of the LD and SD algorithms against GR
as we increased the pattern size and the background size. The most significant
impact of increasing the background size is that the number of nearest neighbor
queries increase, and thus the performance in this case is dictated by quality
of the nearest neighbor data structure used. Therefore in Figure 11 we use the
number of nearest neighbor queries as the basis for comparing performance. As
the FD and GR algorithms only differ in how the nearest neighbor is calculated,
they both perform the same number of queries while the SD algorithm performs
significantly fewer nearest neighbor queries.

For pattern size, we compared running time and the results are shown in
Figure 12. In this case, LD is slower than GR, while SD is signifcantly faster
than either of the others.

107¢ T T T T 3
g 10
) 3]
S :
510
o f z
Z 10't I
: e ;
Z 1000 e LDGR |-

: -~ SD ;

100 L L L L]

0 200 400 600 800 1000
Size of Background Set

Figure 11: Comparison of nearest neighbor queries as function of background
size

148

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

1JSEAS

IOOO; -
g 100 3
O PUBSSS
c - :

10? e LD |7
r - SD 1
[= GR ||
1 p | | | | | | | | |
0 200 400 600 800 1000
Size of Pattern Set

Figure 12: Comparison of running time as a function of pattern size

7 Conclusion

We present distance metrics that can be used to measure the similarity
between two point sets with orientations and we also provided fast algorithms
that guarantee close approximations of an optimal transformation. In the
appendices, we provide additional algorithms for other types of transformations
and we also provide results of experiments. Extensive experiments have been
done by using the proposed technique and existing competitive techniques on
fingerprint recognition data. It has been concluded that the proposed technique
outperforms existing fingerprint recognition techniques in terms of accuracy
and sensitivity by 1.371% and 1.291%, respectively. Therefore, the proposed
technique is more efficient for real time fingerprint recognition systems.

References

[1] H. Alt and L. J. Guibas. Discrete geometric shapes: Matching, interpola-
tion, and approximation. Handbook of computational geometry, 1:121-153,
1999.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed
dimensions. Journal of the ACM (JACM), 45(6):891-923, 1998.

149

1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
ISSN: 2395-3470
www.ijseas.com

[3] D. E. Cardoze and L. J. Schulman. Pattern matching for spatial point
sets. In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 156-165. IEEE, 1998.

[4] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M.
Kleinberg, and D. Kravets. Geometric pattern matching under euclidean
motion. Computational Geometry, 7(1):113-124, 1997.

[5] M. Cho and D. M. Mount. Improved approximation bounds for planar
point pattern matching. Algorithmica, 50(2):175-207, 2008.

[6] M. Gavrilov, P. Indyk, R. Motwani, and S. Venkatasubramanian. Geomet-
ric pattern matching: A performance study. In Proceedings of the fifteenth
annual symposium on Computational geometry, pages 79-85. ACM, 1999.

[7] M. T. Goodrich, J. S. Mitchell, and M. W. Orletsky. ~Approximate
geometric pattern matching under rigid motions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(4):371-379, 1999.

[8] P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric matching
under noise: Combinatorial bounds and algorithms. In SODA, pages 457—
465, 1999.

[9] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle. An identity-authentication
system using fingerprints. Proceedings of the IEEE, 85(9):1365-1388, 1997.

[10] T.-Y. Jea and V. Govindaraju. A minutia-Zerniked partial fingerprint
recognition system. Pattern Recognition, 38(10):1672-1684, 2005.

[11] X. Jiang and W.-Y. Yau. Fingerprint minutiae matching Zerniked on the
local and global structures. In Proceedings 15th International Conference
on Pattern Recognition. ICPR-2000, volume 2, pages 1038-1041, 2000.

[12] J. V. Kulkarni, B. D. Patil, and R. S. Holambe. Orientation feature for
fingerprint matching. Pattern Recognition, 39(8):1551-1554, 2006.

[13] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Handbook of Fingerprint
Recognition. Springer Science & Business Media, 2009.

[14] F. P. Preparata and M. I. Shamos. Computational geometry: an
introduction. Springer-Verlag, New York, NY, 1985.

[15] J. Qi, S. Yang, and Y. Wang. Fingerprint matching combining the global
orientation field with minutia. Pattern Recognition Letters, 26(15):2424—
2430, 2005.

[16] N. Ratha and R. Bolle. Automatic Fingerprint Recognition Systems.
Springer Science & Business Media, 2007.

150

International Journal of Scientific Engineering and Applied Science (IJSEAS) — Volume-7, Issue-5, May 2021
LISEAS ISSN: 2395-3470
www.ijseas.com

[17] M. Tico and P. Kuosmanen. Fingerprint matching using an orientation-
Zerniked minutia descriptor. IFEE Transactions on Pattern Analysis and
Machine Intelligence, 25(8):1009-1014, 2003.

[18] R. C. Veltkamp. Shape matching: similarity measures and algorithms. In
Shape Modeling and Applications, SMI 2001 International Conference on.,
pages 188-197. IEEE, 2001.

[19] H. Xu, R. N. J. Veldhuis, T. A. M. Kevenaar, and T. A. H. M. Akkermans.
A fast minutiae-Zerniked fingerprint recognition system. IEEE Systems
Journal, 3(4):418-427, Dec 2009.

151

