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Abstract 

This work describes analytical formulation and computer simulation to approximate effective 

engineering properties of sandwich composite panels. The sandwich composite structures are 

composed of thin, stiff face-sheets bonded to a relatively thick lightweight core in between. 

Such structures demonstrate high strength and stiffness potential to weight ratios and energy 

absorption capacity in many aerospace engineering applications. Nonetheless, the structures 

are influence by detrimental dynamic behaviour of aircraft during service life that may be 

threat to human life and structural integrity. Thus, to ensure the reliable and safe performance 

of aircrafts dire need exists to study and better understand engineering properties of sandwich 

structures at pre-design stage to avert the detrimental threats. Majority of the existing studies 

consist of routine experimental testing to ascertain engineering properties on ad-hoc basis to 

improve performance capability without addition weight penalty. A very few analytical and 

simulation studies can be found in the area due to the complexity involved with mathematical 

modelling of mechanical properties of the sandwich panels. Current work is based on 

developing analytical formulation and computer simulation of the effective properties using 

MATLABTM software. Subsequently, the simulation generated quantities were validated 

against the benchmark data results available in the literature and found to be in good 

agreement. Findings have established suitability of the simulation for the engineering 

properties. The proposed study is a positive effort to supplement the existing studies in the 

field. The study may be easily modified and utilized to approximate engineering properties of 

similar panels and use them to accommodate stiffness.  
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1 Introduction 

Sandwich structures consist of stiff and strong skins front and rear panels separated by a light 

weight core in between [1]. They posses high strength-to-weight and stiffness-to-weight 

ratios, energy absorption characteristics, capability of multifunctional design, good vibration 

reduction, relatively low cost, and stress wave attenuation [2]. Owing to the superior 

properties sandwich structures being widely used in aerospace and maritime, civil and 

military, medical and sporting goods.  

 

 During service life an aircraft may influence by dynamics of overall body structures that can 

be detrimental to its integrity. Therefore, investigations are needed at pre-design stage for 

reliable mechanical properties to be used to build safe and efficient sandwich structures [3]. 

Majority of the previous studies are experimental, and relevant ones are selected to refer 

below. The mechanical property evaluations are studied following standard test method for 

tensile properties of polymer matrix composite materials [4], [5] for sandwich composite 

structures. Characterization of syntactic foams and metal matrix syntactic foam core and their 

sandwich composites suggested using a 3–point bending tests [6]. The crack propagation was 

investigated through the alumina particles for failed specimens instead of interfacial failure. 

Axial-compressive properties of polymer matrix composite materials with unsupported gage 

section by shear loading were investigated in [7]. In-plane shear response of polymer matrix 

composite materials by tensile test of a 45 laminate is reported in [8]. Axial-compressive 

strength and energy absorption of sandwich panels with Aluminium foam-filled corrugated 

cores were studied in [9]. It was noted that shear deformation might result in disintegration of 

joint structure leading to catastrophic failures during future operations [10].   

The facings are loaded primarily in tension or compression to resist flexural while the core 

made up of lightweight and soft material resists the shear stresses are reported in [11]. 

Engineering properties using three-point flexural tests of sandwich beams with aluminium 

foam-filled corrugated cores were carried out in [12]. The equivalent flexural rigidity 

properties of sandwich composite panels were analysed in [13]. Shear characterization of 

sandwich core material properties using four-point flexural are detailed in [14]. Insight into 

the shear behaviour of composite sandwich panels with foam core can be seen in [15].  

Study on axial-compressive properties of syntactic foams for marine applications using three-

point flexural tests of sandwich structures were performed in [16]. Studies of foam density 
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variations in composite sandwich panels under high velocity impact loading were conducted 

in [17], [18]. Engineering properties were utilized of metal and polymeric foam sandwich 

plates under low velocity impact to investigate relative performance in [19]. An investigation 

on the flexural properties of balsa and polymer foam core sandwich structures reported 

influence of core type and contour in [20].  

Engineering properties of composite sandwich panels with cores made of aluminium 

honeycomb and foam investigated the effects of different types of core materials on the 

failure mechanisms under four-point bend flexural tests in [21]. They concluded that the yield 

stress of the core material was a key parameter in controlling the failure mechanism of the 

sandwich structure in the further study [22]. The effect of different types of core material 

engineering properties on the flexural behaviour of sandwich composites was investigated in 

[23]. Engineering properties to study damage characteristics analysis of GFRP-balsa 

sandwich beams under four-point fatigue flexural were carried out in [24].  Three-point 

flexural deflection and failure mechanism map of sandwich beams with second-order 

hierarchical corrugated truss core was conducted in [25].  

Scaling effects in the mechanical response of sandwich structures based on corrugated 

composite core properties are reported in [26]. Engineering properties of single- and double-

layer aluminium corrugated core sandwiches were determined under quasi-static and dynamic 

loadings in [27]. Modelling of axial and shear stresses in multilayer sandwich beams with 

stiff core layers properties are presented in [28]. Improvement of the mechanical performance 

of the perforated foam core sandwich composites by stitching was experienced in [29]. 

Effective engineering properties were used to study performance failure analyses of 

adhesively bonded steel corrugated sandwich structures under transverse, transverse shear 

strength, load resistance, and energy absorption under three-point flexural test [30].  

Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced axial-

compressive performance according to [31]. Experimental and numerical investigation of 

skin/lattice stiffener debonding growth in composite panels under flexural loading can be 

found in [32].  Numerical analysis of flexural strengthening of timber beams reinforced with 

CFRP strips are given in [33].  Analytical investigation of perforation of aluminium–foam 

sandwich panels under ballistic impact can be seen in [34].  Analytical study of high velocity 

impact on sandwich panels with foam core and Aluminium face-sheets are reported in [35], 

[36].   A numerical analysis approach for evaluating elastic constants of sandwich structures 
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with various cores is presented in [37]. Experimental and numerical investigation of a blunt 

rigid projectile penetrating into a sandwich panel having aluminium foam core have been 

investigated in [38]. A numerical study engineering properties on the impact behaviour of 

foam-cored cylindrical sandwich shells subjected to normal and oblique impacts are 

described in [39], [40]. Many research studies have explored new types of sandwich 

structures by changing the type, density, and engineering properties of the material used for 

the core [41]. The study demonstrated that deformation and failure characteristics of the foam 

core play a very important role in determining the mechanical performance of the sandwich 

structure.  

Experimental and numerical research on the low velocity impact behaviour of hybrid 

corrugated core sandwich structure properties was investigated in [42]. Effect of the skin 

thickness, core densities, and indenter shape on the impact behaviour and failure mechanisms 

of engineering properties of sandwich structures have also been described. 

A very few analytical studies are available on the topic because of the complexity of 

mathematical equations that govern properties of sandwich structures. However, experiments 

are time and resources consuming and require ancillaries which can be avoided by using 

computer simulations. The engineering property information is very important in order to use 

the materials as core and skins in sandwich composite systems. The computer simulations can 

efficiently predict energy absorption and peak loads for a variety of combinations of 

materials and geometry by considering competing mechanisms. On the basis of conducted 

analyses, it can be concluded that engineering properties of this type of materials may also be 

computed efficiently, reliably, and economically. 

2 Materials and methods 

2.1 Equivalent plate transformation 

A sandwich panel of length a, width b and thickness ℎ0 = 𝐻 is referred to a Cartesian co-

ordinate system 𝑥1, 𝑥2, 𝑥3(0 ≤ 𝑥1 ≤ 𝑊, 0 ≤ 𝑥2 ≤ 𝑏,−𝐻/2 ≤ 𝑥3 ≤ 𝐻/2) and assumed to be 

symmetric with respect to the mid-plane 𝑥3 = 0, with the face thickness ℎ𝑓 and the core 

thickness 𝐻𝐼 = 2ℎ𝑐. The length of the plates are set to 5 m, the width to 3 m and the height to 

0.27 m. They are subjected to a uniformly distributed load (3 kN/m2) and are simply 

supported on four edges. The plates are free to expand/retract in x- and y-direction along two 

sides. The boundary condition is assigned a width of 5 centimetres when using solid elements 

to ensure a good transfer of the support force to the three layers without the risk of local 
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distortion corrupting the result. A linear boundary condition is used for the shell elements. 

The transformation is executed in two steps, see Figure 1.The first step transforms the 

sandwich structure to a three layered plate and the second part translates the three layers into 

one layer. The first transformation is mainly done by loading the structure in different ways 

and measuring displacements. The equivalent stiffness of the cores are then obtained from 

simple formulas that treat shear and flexural deflection. The second transformation, however, 

is derived analytically from assumptions regarding the behaviour and equilibrium of a three 

layered sandwich plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the two steps in the transformation between a structured sandwich 
plate to an equivalent one layered plate. 

Top face-sheet layer (skin) = HT 

   Bottom face-sheet layer (skin) = HB 

Intermediate-Core layer = HI 

Panel geometry: structured sandwich  
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Generally, the top and bottom face sheets are assigned stiffer properties compared to the core. 

Engineering constants for top-layer, core-layer, and bottom-layer properties consisting of 

Young’s (elastic) moduli, three Poisson’s ratios, and three shear moduli are given in Table 1, 

Table 2, and Table 3, respectively. These properties are chosen from [3], a total of 7 sets of 

material properties having different parameters are presented. The last two material sets have 

a stiffer core compared to the face sheets. This is not a realistic case and is chosen only on the 

basis to study and understand the behaviour of the different transformations better. To ensure 

that the chosen materials have a realistic behaviour, a check of the load-deflection 

verification analysis is performed.  

Table 1: Top-layer mechanical properties sets 1-7 

Five sets have stiffer face sheets 
𝐸𝑥𝑥 𝐸𝑦𝑦 𝐸𝑧𝑧 𝜈𝑥𝑥 𝜈𝑦𝑦 𝜈𝑧𝑧 𝐺12 𝐺13 𝐺23 

100.6e9          20.e9          20.e9          0.2 0.3 0.1 5e9 10e9 7e9 
210.6e9          210.6e9          210.6e9          0.3 0.3 0.3 80.7e9 80.7e9 80.7e9 
100.6e9          20.e9          20.e9          0.2 0.3 0.1 5e9 10e9 7e9 
2000.6e9          1000e9          500.e9          0.05 0.06 0.05 200e9 100e9 400e9 
206e9          2e9          50.e9          0.15 0.26 0.12 5e9 3e9 1e9 

Two sets have a weaker face sheets compared to the core 
2e9          5e9          10e9          0.2 0.1 0.3 5e9 0.3e9 0.1e9 
0.2e9          5e9          0.3e9          0.12 0.11 0.23 0.05e9 0.03e9 0.01e9 
 

Table 2: Core-layer mechanical properties sets 1-7 

Five sets have stiffer face sheets 
𝐸𝑥𝑥 𝐸𝑦𝑦 𝐸𝑧𝑧 𝜈𝑥𝑥 𝜈𝑦𝑦 𝜈𝑧𝑧 𝐺12 𝐺13 𝐺23 

2e9   0.2e9   0.2e9   0.1 0.2 0.1 0.1e9 0.5e9 0.3e9 
0.36e9   0.36e9   0.36e9   0.08 0.08 0.08 0.097e9 0.097e9 0.097e9 
2e9   0.2e9   0.2e9   0.1 0.2 0.1 0.1e9 0.5e9 0.3e9 
0.02e9   0.04e9   0.5e9   0.1 0.1 0.05 0.5e9 0.9e9 01e9 
0.02e9   0.046e9   0.2e9   0.13 0.22 0.09 0.4e9 0.09e9 0.1e9 

Two sets have a stiffer core compared to the face sheets 
200e9   100e9   300e9   0.23 0.12 0.3 10e9 0.5e9 2e9 
200e9   1000e9   600e9   0.15 0.12 0.23 100e9 6e9 10e9 
 

Table 3: Bottom-layer mechanical properties sets 1-7 

Five sets have stiffer face sheets  
𝐸𝑥𝑥 𝐸𝑦𝑦 𝐸𝑧𝑧 𝜈𝑥𝑥 𝜈𝑦𝑦 𝜈𝑧𝑧 𝐺12 𝐺13 𝐺23 

210.4e9       210.4e9       210.4e9       0.3 .3 0.3 80.7e9 80.7e9 80.7e9 
20.4e9       100.4e9       100.4e9       0.3 .31 0.29 10.e9 5e9 7e9 
20.4e9       100.4e9       100.4e9       0.3 .31 0.29 10.e9 5e9 7e9 
400e9       200e9       40e9       0.1 .1 0.29 50.e9 53e9 71e9 
15e9       40e9       1e9       0.15 .11 0.15 2.e9 3e9 24e9 

Two sets have a weaker face sheets compared to the core 
10e9       20e9       2e9       0.12 .15 0.2 5e9 1e9 5e9 
1e9       2e9       22e9       0.17 .14 0.15 0.5e9 10e9 1e9 
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2.2 Derivations of equivalent properties of a three layered sandwich structure 

The transformation is performed for nine deferent elastic parameters, three Young’s modulus, 

three shear modulus and three Poisson’s ratio. No interaction between the different 

parameters is assumed. There are two different investigated approaches when transforming 

the elastic moduli E11 and E22, see figure 3.1.1, either assume a constant modulus based on 

axial loaded deformation [1], or constant flexural rigidity. It is not apparent which of these 

base assumptions simulate the reality best, consequently both variations have to be 

investigated further in an extensive verification. 

The assumptions regarding the transformation of the elastic modulus in z-direction is only 

compression because of the low height to length ratio. This means that there is no flexural in 

this direction, thus the transformation is only based on the assumption of axial loaded 

deformation for both methods. 

 

2.2.1 Equivalent axial-compressive modulus 

For determining the in-plane Young’s modulus E11 and E22, the following setup of the plate 

and loading is used as depicted in Figure 2 based on [1].  

 

Figure 2: Assumed load in x-direction and y-direction for transformation based on axial 

loaded (distributed over all layers) deformation  

Assume loading of the plate in x-direction (direction 1) and that the load is divided to all 

layers, see fig.. where T-top layer, I-interface layer, B-bottom layer:  

𝑃11 =  𝑃11𝑇 + 𝑃11𝐼 + 𝑃11𝑩           (1) 

Which is the same as:  

𝜎11.𝐴11 =  𝜎11𝑇 .𝐴11𝑇 + 𝜎11𝐼 .𝐴11𝐼 + 𝜎11𝑩 .𝐴11𝑩          (2) 
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That can be rewritten as, 

𝜎11 =  𝜎11𝑇 . 𝐴11
𝑇

𝐴11
+ 𝜎11𝐼 . 𝐴11

𝐼

𝐴11
+ 𝜎11𝑩 . 𝐴11

𝐵

𝐴11
           (3) 

Where area elements are, 

𝐴11 = 𝐻.𝑊, 𝐴11𝑇 = 𝐻𝑇 .𝑊 ,𝐴11𝐼 = 𝐻𝐼 .𝑊 ,  𝐴11𝐵 = 𝐻𝐵.𝑊                (4) 

Let 

𝛼𝑇 =  𝐻𝑇
𝐻

, 𝛼𝐼 =  𝐻𝐼
𝐻

 , 𝛼𝐵 =  𝐻𝐵
𝐻

         

 (5) 

Substitute (5) and (4) into (3), simplify and receive: 

𝜎11 =  𝜎11𝑇 .𝛼𝑇 + 𝜎11𝐼 .𝛼I + 𝜎11𝐵 .𝛼𝐵         (6) 

Divide equation (6) by 𝜀11: 

𝜎11
𝜀11

= 𝜎11𝑇

𝜀11
 .𝛼𝑇 + 𝜎11

𝐼

𝜀11
 .𝛼𝐼 + 𝜎11𝐵

𝜀11
 .𝛼𝐵          (7) 

Which gives the transformation of 𝐸11 based on axial loaded deformation: 

𝐸11 = 𝐸11𝑇 .𝛼𝑇 + 𝐸11𝐼 .𝛼I + 𝐸11𝐵 .𝛼𝐵         (8) 

The same procedure can be used to determine 𝐸22 

𝐸22 = 𝐸22𝑇 .𝛼𝑇 + 𝐸22𝐼 .𝛼I + 𝐸22𝐵 .𝛼𝐵         (9) 

 

2.2.2 Equivalent  constants-flexural method   

The computation of the equivalent moduli of 𝐸11 and 𝐸22 for the flexural method is based on 

flexural stiffness. The following procedure is based on the setup, which can be seen in Figure 

3. The flexural stiffness of the plate is treated as a sandwich composite beam, which 

simplifies the theoretical analysis. In order to formulate level position of the neutral axis, the 

following procedure has to be followed. 
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Figure 3: Assumed load and deflection for the transformation based on flexural rigidity 

Consider a three layered sandwich structure, see Figure 4. In order to calculate at shifted 

level the neutral axis situated, the following procedure has to be performed.  

 

 

 

 

 

  Figure 4 : Strain and fore equilibrium 

 

To establish the relation between the different strains of the three layers, where H is the total 

of the sandwich plate and W is the width: 

 𝜀𝑇
𝑥−𝐻𝑇2

=  𝜀𝐵
𝑥−𝐻+𝐻𝐵2

 ⟹  𝜀𝐵 =  
𝜀𝐵�𝑥−𝐻+

𝐻𝐵
2 �

𝑥−𝐻𝑇2
 ,  𝜀𝐼 =  

𝜀𝑇�𝑥−
𝐻
2�

𝑥−𝐻𝑇2
      (10) 

 Establish the global equilibrium and rewriting: 

M  M 

 Z,3 

 Y,2 

     I 

   T 

    B 

  HT 

   HI 

     HB 

FT 

FI 

FB 

x 

  Neutral Axis 

𝜀𝐵 

 

𝜀𝐼 

 

𝜀𝑇 
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𝐹𝑇 + 𝐹𝐼 + 𝐹𝐵 = 0 ⟹  (𝜀.𝐸.𝐴)𝑇 +  (𝜀.𝐸.𝐴)𝐼 + (𝜀.𝐸.𝐴)𝐵 = 0    (11) 

Insert equation (11) and (12) into equation (14) gives: 

 𝜀𝑇 .𝐸𝑇 .𝐴𝑇 +
𝜀𝑇�𝑥−

𝐻
2�

𝑥−𝐻𝑇2
.𝐸𝑇 .𝐴𝑇 +

𝜀𝑇�𝑥−𝐻+
𝐻𝐵
2 �

𝑥−𝐻𝑇2
.𝐸𝐵.𝐴𝐵 = 0     (12) 

Solve this equation for x and receive:  

𝑥 =  −𝐸𝐵𝐻𝐵
2+2𝐸𝐵𝐻𝐻𝐵+𝐸𝑇𝐻𝑇

2+𝐸𝐼𝐻𝐻𝐼
2(𝐸𝐵𝐻𝐵+𝐸𝐼𝐻𝐼+𝐸𝑇𝐻𝑇)          (13) 

Assuming that the flexural rigidity of the plate will stay constant yields following expression:  

𝐷 = 𝐷𝑇 + 𝐷𝐼 + 𝐷𝐵           (14) 

Where 𝐷𝑇 ,𝐷𝐼  𝑎𝑛𝑑 𝐷𝐵 as:  

𝐷𝑇 = 𝐸11𝑇 . 𝐼11
𝑇

𝑊
  and 𝐼11𝑇 = 𝑊. 𝐻𝑇

3

12
+ 𝑊.𝐻𝑇 . 𝑥2 so       

 𝐷𝑇 = 𝐸11𝑇 �𝐻𝑇
3

12
+ 𝐻𝑇 . 𝑥2� , 𝐷𝐼 = 𝐸11𝐼 �𝐻𝐼

3

12
+ 𝐻𝐼 �𝑥 −

𝐻𝑇
2
− 𝑥2�

2
�    (15) 

𝐷𝐵 = 𝐸11𝐵 �𝐻𝐵
3

12
+ 𝐻𝐵(𝐻 − 𝑥)2�        (16) 

The single layer stiffness: 𝐷 = 𝐸𝐸𝑄 . 𝐻
3

12
       (17) 

Using equations (11), (16) and (17) in (12), the elastic modulus (𝐸𝐸𝑄) based on flexural 

rigidity can be expressed: 

𝐸𝐸𝑄 =
12𝐸𝑇�

𝐻𝑇
3

12+
𝐻𝑇�−𝐸𝐵𝐻𝐵

2 +2𝐸𝐵𝐻𝐻𝐵+𝐸𝑇𝐻𝑇
2+𝐸𝐼𝐻𝐻𝐼�

2

4�𝐸𝐵𝐻𝐵+𝐸𝐼𝐻𝐼+𝐸𝑇𝐻𝑇�
2 �

𝐻3   

+ 
12𝐸𝑩�

𝐻𝐵
3

12+𝐻𝐵�
𝐻−𝐸𝐵𝐻𝐵

2 +2𝐸𝐵𝐻𝐻𝐵+𝐸𝑇𝐻𝑇
2+𝐸𝐼𝐻𝐻𝐼

2𝐸𝐵𝐻𝐵+2𝐸𝐼𝐻𝐼+2𝐸𝑇𝐻𝑇
�
2
�

𝐻3   

+ 
12𝐸𝑰�

𝐻𝐼
3

12+𝐻𝐼�
𝐻𝐼
2 + 𝐻𝑇2 − 

−𝐸𝐵𝐻𝐵
2 +2𝐸𝐵𝐻𝐻𝐵+𝐸𝑇𝐻𝑇

2+𝐸𝐼𝐻𝐻𝐼
2𝐸𝐵𝐻𝐵+2𝐸𝐼𝐻𝐼+2𝐸𝑇𝐻𝑇

�
2
�

𝐻3        (18) 

Equation (18) can be used to express both E11 and E22. 
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2.2.3 Equivalent elastic constants in z-direction 

The equivalent elastic engineering modulus in z-direction can be described as compression of 

the plate over its thickness. This process is also used in both transformational methods, axial-

compressive and flexural derived from [1]. 

 

 

 

 

 

 

 

Figure 5: Assumed load in z-direction evenly distributed over the face sheet. 

Assume load in z-direction (direction 3), see fig--. The force P33 is distributed over the whole 

bottom an top face sheets:  

𝜎33 = 𝑃33
𝐴33

            (19) 

All stresses must be transformed to all layers of the plate, which leads to 

𝜎33 = 𝜎33𝑇 +  𝜎33𝐼 +  𝜎33𝐵          (20) 

The strains of each layer can be expresses as:  

𝜀33𝑇 = 𝜎33𝑇

𝐸33𝑇
, 𝜀33𝐼 = 𝜎33𝐼

𝐸33𝐼
 , 𝜀33𝐵 = 𝜎33𝐵

𝐸33𝐵
         (21) 

The total displacement can be expressed by the sum of the contribution from all layers 

𝛿33 = 𝛿33𝑇 +  𝛿33𝐼 + 𝛿33𝐵 = 𝜀33𝑇 .𝐻𝑇 + 𝜀33𝐼 .𝐻𝐼 + 𝜀33𝐵 .𝐻𝐵     (22) 

𝜀33 = 𝛿33
𝐻

=  
𝜀
33.𝐻𝑇
𝑇

𝐻
+

𝜀
33.𝐻𝐼
𝐼

𝐻
+

𝜀
33.𝐻𝐵
𝐵

𝐻
         (23) 

P33 

P33 

 Z, 3 

 Y, 2 

  HT 

HB 

 HI 
H 
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Divide equation (23) by 𝜎33 and acquire and applicate  

𝜀33
𝜎33

=  
𝜀
33.𝛼𝑇 
𝑇

𝜎33
+

𝜀
33.𝛼𝐼
𝐼

𝜎33
+

𝜀
33.𝛼𝐵
𝐵

𝜎33
         (24) 

Solve for 𝐸33 to get the equation for the transformation of the elastic modulus in z-direction: 

1
𝐸33

=  𝛼
𝑇

𝐸33𝑇
+ 𝛼𝐼

𝐸33𝐼
+ 𝛼𝐵

𝐸33𝐵
 ⟹  𝐸33 = 1

𝛼𝑇

𝐸33
𝑇 + 𝛼𝐼

𝐸33
𝐼 +𝛼𝐵

𝐸33
𝐵

       (25) 

2.2.4 Equivalent shear moduli 

This section treats the calculation of the equivalent shear moduli, the expressions are obtained 

for both the axial-compressive and flexural methods [1].  

The shear stiffness 𝐺12 is obtained by summation of the stiffness of the individual, see Figure 

6, layers in the same manner as for 𝐸11calculated from the axial loaded deflection. The 

equation for transformation will therefore become: 

𝐺12 = 𝐺12𝑇 .𝛼𝑇  + 𝐺12𝐼 .𝛼𝐼 + 𝐺12𝐵 .𝛼𝐵         (26) 

 

Figure 6: Assumed shear load for moduli G13 and G23. The load is evenly distributed over the 

top sheet and fixed at the bottom. 

 

Expressing the shear strain and displacement for all layers according to figure 3.17 

𝛿13𝑇 = 𝛾13𝑇 .𝐻𝑇 , 𝛿13𝐼 =  𝛾13𝐼 .𝐻𝐼 , 𝛿13𝐵 = 𝛾13𝐵 .𝐻𝐵       (27) 

T 

  I 

  B 

W 

Z,3 

Y,2 

𝜹𝟏𝟑𝑩  
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𝛿13 = 𝛿13𝑇 + 𝛿13𝐼 +  𝛿13𝐵 = 𝛾13𝑇 .𝐻𝑇 + 𝛾13𝐼 .𝐻𝐼 + 𝛾13𝐵 .𝐻𝐵     (28) 

Combining equations (27) and (28) give, 

𝛾13 =  𝛿13
𝐻

= 𝛾13𝑇  . 𝐻
𝑇

𝐻
+ 𝛾13𝐼 .𝐻

𝐼

𝐻
+ 𝛾13𝐵 . 𝐻

𝐵

𝐻
       (29) 

𝛾13 = 𝛾13𝑇  .𝛼𝑇 + 𝛾13𝐼 .𝛼𝐼 + 𝛾13𝐵 .𝛼𝐵        (30) 

Dividing all terms by 𝜏13gives, 

𝛾13
𝜏13

= 𝛾13𝑇 .𝛼𝑇 + 𝛾13𝐼

𝜏13
.𝛼𝐼 + 𝛾13𝐵 .𝛼𝐵        (31) 

1
𝐺13

= 𝛼𝑇
𝐺13𝑇

+ 𝛼𝐼
𝐺13𝐼

+ 𝛼𝐵
𝐺13𝐵

           (32) 

Which gives the transformation for 𝐺13and 𝐺23:  

𝐺13 = 1
𝛼𝑇
𝐺13
𝑇 + 𝛼𝐼

𝐺13
𝐼 +𝛼𝐵  

𝐺13
𝐵

  ⟹ 𝐺23 = 1
𝛼𝑇
𝐺23
𝑇 + 𝛼𝐼

𝐺23
𝐼 + 𝛼𝐵

𝐺23
𝐵

       (33) 

 

2.2.5 Poisson’s ratios 

 Poisson’s ratio is a measure of how much an object expands/contracts transversely during 

axial loading. A positive value Poisson’s ratio gives contraction, which is the normal case, 

and a negative one gives expansion. The following procedure is used to obtain values for both 

transformation methods [1]. Assuming loading of 𝑃11in direction1, each component will then 

have a displacement in direction 2 that can be expressed as:  

𝛿2𝑇 = −𝜈12𝑇 . 𝜀11𝑇 .𝑊,𝛿2𝐼 = −𝜈12𝐼 . 𝜀11𝐼 .𝑊, 𝛿2𝐵 = −𝜈12𝐵 . 𝜀11𝐵 .𝑊     (34) 

The total displacement in direction 2 can be obtained by following expressions:  

𝛿2 = 𝛼𝑇 . 𝛿2𝑇 + 𝛼𝐼 . 𝛿2𝐼 + 𝛼𝐵. 𝛿2𝐵        (35) 

Combining equation (41) with (40) and obtain following expressions: 

𝛿2 = −𝛼𝑇 . 𝜈12𝑇 . 𝜀11.𝑊−𝛼𝐼 . 𝜈12𝐼 . 𝜀11.𝑊−𝛼𝐵. 𝜈12𝐵 . 𝜀11.𝑊     (36) 

Total displacement for the 2-direction can also be expressed as 𝛿2 = −𝜈12. 𝜀11.𝑊 which in 

turn gives: 



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-7, Issue-10, October 2021 
ISSN: 2395-3470 

www.ijseas.com 

240 
 

−𝜈12. 𝜀11.𝑊 = −𝛼𝑇 . 𝜈12𝑇 . 𝜀11𝑇 .𝑊−𝛼𝐼 . 𝜈12𝐼 . 𝜀11𝐼 .𝑊−𝛼𝐵. 𝜈12𝐵 . 𝜀11𝐵 .𝑊   (37) 

Divide both sides of equation (43) with −𝜀11.𝑊 gives’ 

𝜈12 =  −𝛼𝑇 . 𝜈12𝑇  . 𝜀11
𝑇

𝜀11
+ 𝛼𝐼 . 𝜈12𝐼  . 𝜀11

𝐼

𝜀11
+ 𝛼𝐵 . 𝜈12𝐵  . 𝜀11

𝐵

𝜀11
       (38) 

Using the relation that all members suffer the same strain 𝜀11, i.e.: 

 𝜀11𝑇 = 𝜀11𝐼 = 𝜀11𝐵 = 𝜀11 putting into equation (38) gives, 

𝜈12 = 𝛼𝑇 . 𝜈12𝑇 + 𝛼𝐼 . 𝜈12𝐼 + 𝛼𝐵 . 𝜈12𝐵          (39) 

Considering 𝜈13 instead under the stress 𝜎11 which is defined as 

 𝜈13 = −𝜀33
𝜀11

. Displacement for 3-direction can be established as:  

𝛿3𝑇 = −𝜈13𝑇 . 𝜀11𝑇 .𝐻𝑇, 𝛿3𝐼 = −𝜈13𝐼 . 𝜀11𝐼 .𝐻𝐼, 𝛿3𝐵 = −𝜈13𝐵 . 𝜀11𝐵 .𝐻𝐵    (40) 

 𝛿3 = 𝛿3𝑇 +  𝛿3𝐼 + 𝛿3𝐵 = −𝜈13𝑇 𝜀11𝑇 𝐻𝑇 − 𝜈13𝐼 𝜀11𝐼 𝐻𝐼 − 𝜈13𝐵 𝜀11𝐵 𝐻𝐵    (41) 

Rewriting equation (41) by𝛿3 = −𝜈13. 𝜀11.𝐻  

−𝜈13. 𝜀11.𝐻 = −𝜈13𝑇 𝜀11𝑇 𝐻𝑇 − 𝜈13𝐼 𝜀11𝐼 𝐻𝐼 − 𝜈13𝐵 𝜀11𝐵 𝐻𝐵      (42) 

Which is the same as,  

𝜈13 = −𝜈13𝑇
𝜀11𝑇 𝐻𝑇
𝜀11.𝐻

− 𝜈13𝐼
𝜀11𝐼 𝐼
𝜀11.𝐻

− 𝜈13𝐵
𝜀11𝐵 𝐻𝐵
𝜀11.𝐻

       (43) 

Step for deriving 𝜈12 , 

𝜈13 = 𝛼𝑇 . 𝜈13𝑇 + 𝛼𝐼 . 𝜈13𝐼  + 𝛼𝐵. 𝜈13𝐵         (44) 

In the same manners,  

𝜈23 = 𝛼𝑇 . 𝜈23𝑇 + 𝛼𝐼 . 𝜈23𝐼  + 𝛼𝐵. 𝜈23𝐵         (45) 

3. Results and discussions 

3.1 Computer code in MATLABTM to predict engineering constants 

The selected mathematical formulations for engineering constants derived in the above 

Section 2.1 are programmed in MATLABTM code. Simulations for compression and flexural 

methods of the simply supported plate were selected. Three material properties were utilized 
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as initial engineering constant quantities for top-layer, core-layer, and bottom-layer consisting 

of Young’s moduli, Poisson’s ratios, and Shear moduli given in Table 1, Table 2, and Table 

3, respectively. The seven material property sets with different parameters were chosen from 

[3]. Geometric and engineering properties for set of material properties given in [3] were 

utilized to simulate sandwich composite panels. Computer program developed in 

MATLABTM as shown in Table 4 is executed to predict the effective engineering constants: 

Young’s and Shear moduli, and Poisson’s ratios for all the cases. Simulations were also 

carried out for the last two material sets that have a stiffer core compared to the face sheets, 

not a realistic case, and are chosen only on the basis to study and better understand the 

behaviour of the different transformations for possible improvements. To ensure that the 

chosen materials have a realistic behaviour, comparative checks of the load-displacement 

curve plots are drawn.  

 

Table 4: MATLABTM Code for equivalent properties of sandwich panels 

Clc;  close all;  clear all;  format('shortE');  

 %% INPUT -TOP FACE SHEET (UPPER FLANGE);  ET=[23e9, 18e9, 20e9]; NU1T=[0.3, 0.3, 0.3];  

 NUT=[NU1T, NU1T(1)/ET(1)*ET(2), NU1T(2)/ET(1)*ET(3), NU1T(3)/ET(2)*ET(3)];  

 GT=[2.6e9, 600e6, 600e6]; 30 HT=0.0156; %% INTERMEDIATE-WEB (CORE); EI=[0, 0, 7e9]; NU1I=[0.3, 0.3, 0.3];  

 NUI=[NU1I, NU1I(1)/EI(1)*EI(2), NU1I(2)/EI(1)*EI(3), NU1I(3)/EI(2)*EI(3)]; GI=[0.3333e9, 0.140625e9, 0.1046e9]; HI=0.1938;  

 %% BOTTOM FACE SHEET (BOTTOM FLANGE);EB=[23e9, 18e9, 20e9];NU1B=[0.3, 0.3, 0.3];  

NUB=[NU1B, NU1B(1)/EB(1)*EB(2), NU1B(2)/EB(1)*EB(3), NU1B(3)/EB(2)*EB(3)];  

GB=[2.6e9, 600e6, 600e6]; HB=0.0156;  %% %% CHECK; EC=[ET;EI;EB]; NUC=[NUT;NUI;NUB];  

 for i=1:length(EC);  if NUC(i,1) > sqrt(EC(i,1)/EC(i,2));  disp('ERROR not valid material properties'); i ;  end  

 if NUC(i,2) > sqrt(EC(i,1)/EC(i,3)); disp('ERROR not valid material properties'); i ; end  

 if NUC(i,3) > sqrt(EC(i,3)/EC(i,2)); disp('ERROR not valid material properties'); i ; end  

 if 1−NUC(i,1)*NUC(i,4)−NUC(i,3)*NUC(i,6)−NUC(i,2)*NUC(i,5)− 2*NUC(i,4)*NUC(i,6)*NUC(i,2) < 0;  

 disp('ERROR not valid material properties'); i ; end ;end% CHECK OF ASSUMPTIONS  

 H=HT+HI+HB; xNx=(−EB(1)*HB^2+2*EB(1)*H*HB+ET(1)*HT^2+EI(1)*H*HI)/(2*(EB(1)*A-10;  

HB+EI(1)*HI+ET(1)*HT));  xNy=(−EB(2)*HB^2+2*EB(2)*H*HB+ET(2)*HT^2+EI(2)*H*HI)/(2*(EB(2)*...  

HB+EI(2)*HI+ET(2)*HT));74 if xNx>HT+HI | xNx<HT; 75 disp('ERROR neutral axis is not in the core in x−direction');  

End; if xNy>HT+HI | xNy<HT ; disp('ERROR neutral axis is not in the core in y−direction'); end;  

 %% CONTROL OF RELATIONS BETWEEN SHEAR VALUES FOR ACCURATE TRANSFORMATION  

for e=2:3;diffG=max([GT(e),GI(e),GB(e)])/min([GT(e),GI(e),GB(e)]); 83 if diffG≥1e3;  

disp('WARNING! LARGE DIFFERENCE IN SHEAR MODULUS. THIS MAY LEAD TO INACCURATE RESULT'); end; end;%% 

ALGORITHM; at=HT/H; ai=HI/H; ab=HB/H; E11=at*ET(1)+ai*EI(1)+ab*EB(1);E22=at*ET(2)+ai*EI(2)+ab*EB(2);  

 E33=1/(at/ET(3)+ai/EI(3)+ab/EB(3));  

 Eeq11=(12*ET(1)*(HT^3/12 + (HT*(− EB(1)*HB^2 + 2*EB(1)*H*HB + ET(1)*HT^2 + ... EI(1)*H*HI)^2)/(4*(EB(1)*HB + EI(1)*HI + 

ET(1)*HT)^2)))/H^3 + (12*EB(1)*(HB^3/12 + ... HB*(H − (− EB(1)*HB^2 + 2*EB(1)*H*HB + ET(1)*HT^2 + 

EI(1)*H*HI)/(2*(EB(1)*HB + EI(1)*HI ... + ET(1)*HT)))^2))/H^3 + (12*EI(1)*(HI^3/12 + HI*(HI/2 + HT/2 − (− EB(1)*HB^2 + ... 

2*EB(1)*H*HB + ET(1)*HT^2 + EI(1)*H*HI)/(2*(EB(1)*HB + EI(1)*HI + ET(1)*HT)))^2))/H^3;  

Eeq22=(12*ET(2)*(HT^3/12 + (HT*(− EB(2)*HB^2 + 2*EB(2)*H*HB + ET(2)*HT^2 + ... EI(2)*H*HI)^2)/(4*(EB(2)*HB + EI(2)*HI + 

ET(2)*HT)^2)))/H^3 + (12*EB(2)*(HB^3/12 + ... HB*(H − (− EB(2)*HB^2 + 2*EB(2)*H*HB + ET(2)*HT^2 + 
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EI(2)*H*HI)/(2*(EB(2)*HB + EI(2)*HI ... + ET(2)*HT)))^2))/H^3 + (12*EI(2)*(HI^3/12 + HI*(HI/2 + HT/2 − (− EB(2)*HB^2 + ... 

2*EB(2)*H*HB + ET(2)*HT^2 + EI(2)*H*HI)/(2*(EB(2)*HB + EI(2)*HI + ET(2)*HT)))^2))/H^3; 

G12=at*GT(1)+ai*GI(1)+ab*GB(1);G21=G12;G13=1/(at/GT(2)+ai/GI(2)+ab/GB(2));G31=G13; G23=1/(at/GT(3)+ai/GI(3)+ab/GB(3)); 

G32=G23; test=at*GT(3)+ai*GI(3)+ab*GB(3);  

 NU12=at*NUT(1)+ai*NUI(1)+ab*NUB(1); NU13=at*NUT(2)+ai*NUI(2)+ab*NUB(2); NU23=at*NUT(3)+ai*NUI(3)+ab*NUB(3);  

KINA_EG=[E11,E22,E33,G12,G13,G23]';  EQ=[Eeq11, Eeq22, E33, G12, G13, G23]';  

NUU=[NU12, NU13, NU23]';  %% OUTPUT  KINA_EG EQ  format('short'); NUU 

 

3.2 Results and discussions 

Simulations were performed utilizing axial-compression and flexural methods for the input 

data given in tabular forms below for Top-, Core-, and Bottom-layer in rows: 3-5 taken from 

[3]. The simulation generated data quantities are also presented for comparison against the 

corresponding engineering constant quantities in rows: 11-12 of the same tables. It can be 

seen that elastic, shear moduli, and Poisson’s 5 sets of realistic materials under corresponding 

columns match well in Table 5, Table 6, Table 7, Table 8, and Table 9. Similarly, last two 

unrealistic material data sets that have a stiffer core compared to the face sheets, the un-

realistic cases confirm transformations are shown in Table 10, and Table 11. In both the 

realistic and un-realistic cases, generated data exhibit good correlation. The data quantities 

illustrated are according to the expectation and no outlier (abrupt change) can be seen.  Better 

overall correlation is achieved according to the transformation results based on constant 

flexural rigidity and axially loaded deflection. Close correlation can be seen for flexural 

method in all sets except for set 7 where the core (as a web) is much stiffer compared to the 

sheets (as flanges). Intra comparison of the flexural and compression transformation gives 

that flexural results are more accurate result than the axial-compressive ones. Even though 

the result differs substantially from the reference one in some cases. It can be seen that the 

elastic, shear moduli, and Poisson’s ratios quantities depicted in the tables under 

corresponding columns the input data quantities. 

 
 
Table 5: Initial values of material parameters set 1 

Given material  stiffness parameters [Pa] 
Layer Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 16.6e9          9.58e9 9.58e9 0.31 0.31 0.29 5.12e9 4.87e9 3.72e9 0.03 
CORE 6.55e9   0.17e9 5.52e9 0.33 0.33 0.1 0.483e9 5.45e9 0.345e9 0.19 
BOT 12.4e9       6.21e9 6.21e9 0.31 .31 0.29 3.6e9 3.38e9 2.41e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 

Model: three-point beam flexural method 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
15.4e9          6.77e9 5.93e9 0.324 0.324 0.156 1.58e9 4.84e9 0.466e9 
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Model: axial-compressive 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
8.75e9   2.33e9 5.93e9 0.324 0.324 0.156 0.583e9 5.84e9 0.466e9 
 

Table 6: Initial values of material parameters set 2 

Given material  stiffness parameters [Pa] 
Exx Eyy Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 210.6e9          210.6e9          210.6e9          0.3 0.3 0.3 80.7e9 80.7e9 80.7e9 0.03 
CORE 0.36e9   0.36e9   0.36e9   0.08 0.08 0.08 0.097e9 0.097e9 0.097e9 0.19 
BOT 210.4e9       210.4e9       210.4e9       0.3 .3 0.3 80.7e9 80.7e9 80.7e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 
Model: three-point beam flexural method 

Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
178e9          178e9          0.511e9 0.145 0.145 0.145 24.0e9 0.138e9 0.138e9 

Model: axial-compressive 
Model Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
62.5e9   62.5e9   0.511e9 0.145 0.145 0.145 24.0e9 0.138e9 0.138e9 
 

Table 7: Initial values of material parameters set 3 

Given material  stiffness parameters [Pa] 
Layer Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 100.6e9          20.e9          20.e9          0.2 0.3 0.1 5e9 10e9 7e9 0.03 
CORE 2e9   0.2e9   0.2e9   0.1 0.2 0.1 0.1e9 0.5e9 0.3e9 0.19 
BOT 20.4e9       100.4e9       100.4e9       0.3 .31 0.29 10.e9 5e9 7e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 

Model: three-point flexural 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
34.8e9          26.4e9          6.56e9 0.148 0.232 0.135 2.48e9 0.68e9 0.418e9 

Model: axial-compressive 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
16.2e9   20.9e9   6.56e9 0.148 0.232 0.135 2.48e9 0.68e9 0.418e9 
 

Table 8: Initial values of material parameters set 4 

Given material  stiffness parameters [Pa] 
Layer Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 2000.6e9          1000e9          500.e9          0.05 0.06 0.05 200e9 100e9 400e9 0.03 
CORE 0.02e9   0.04e9   0.5e9   0.1 0.1 0.05 0.5e9 0.9e9 01e9 0.19 
BOT 400e9       200e9       40e9       0.1 .1 0.29 50.e9 53e9 71e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 

Model: three-point flexural  
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
673e9          337e9          0.708e9 0.094 0.096 0.078 31.8e9 1.27e9 1.42e9 

Model: axial-compressive 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
296e9   148e9   0.708e9 0.094 0.096 0.078 31.8e9 1.27e9 1.42e9 
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Table 9: Initial values of material parameters set 5 

Given material  stiffness parameters [Pa] 
Layer Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 206e9          2e9          50.e9          0.15 0.26 0.12 5e9 3e9 1e9 0.03 
CORE 0.02e9   0.046e9   0.2e9   0.13 0.22 0.09 0.4e9 0.09e9 0.1e9 0.19 
BOT 15e9       40e9       1e9       0.15 .11 0.15 2.e9 3e9 24e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 

Model: three-point flexural 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
15.0e9          3.69e9          0.270e9 0.136 0.201 0.104 1218e9 0.126e9 0.140e9 

Model: axial-compressive 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
5.01e9   7.66e9   0.270e9 0.136 0.201 0.104 1.21e9 0.26e9 0.140e9 
 

Table 10: Initial values of material parameters set 6 

Given material  stiffness parameters [Pa] 
Layer Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 2e9          5e9          10e9          0.2 0.1 0.3 5e9 0.3e9 0.1e9 0.03 
CORE 200e9   100e9   300e9   0.23 0.12 0.3 10e9 0.5e9 2e9 0.19 
BOT 10e9       20e9       2e9       0.12 .15 0.2 5e9 1e9 5e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 

Model: three-point flexural 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
91.8e9          57.3e9          7.58e9 0.206 0.123 0.282 8.02e9 0.509e9 0.667e9 

Model: axial-compressive 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
142e9   74.6e9   7.58e9 0.206 0.123 0.282 8.02e9 0.509e9 0.667e9 
 

Table 11: Initial values of material parameters set 7 

Given material  stiffness parameters [Pa] 
Layer Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 h(m) 
TOP 0.2e9          5e9          0.3e9          0.12 0.11 0.23 0.05e9 0.03e9 0.01e9 0.03 
CORE 200e9   1000e9   600e9   0.15 0.12 0.23 100e9 6e9 10e9 0.19 
BOT 1e9       2e9       22e9       0.17 .14 0.15 0.5e9 10e9 1e9 0.05 

Simulation generated equivalent material  stiffness parameters [Pa] 

Model: three-point flexural 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
84.9e9          423e9          2.63e9 0.150 0.193 0.215 70.5e9 0.260e9 0.088e9 

Model: axial-compressive 
Exx Eyy Ezz Vxx Vxx Vzz G12 G13 G23 
141e9   705e9   2.63e9 0.150 0.193 0.215 70.5e9 0.260e9 0.088e9 
 

3.3 Verification of the analysis 

Since sandwich plate may work like a plate resting on two supports as an upper flange for the 

global beam frame systems that can compliment verification and establish a reliable 

evaluation of the two different transformation methods. Likewise, deflection between two 
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girders is close to pure bending which favour the transformation based on constant flexural 

rigidity. Furthermore, loading in the other direction is a combination of bending and axial 

loading that does not make it apparent which of the two transformation methods that should 

be favoured. Thus, transformation method verified by comparison of the deflection is 

selected.  

The simulation generated data results by the axial-compression and flexural methods, the 

deflection quantities U3 are plotted against reference [3] quantities in x-directions. 

Comparisons of the deflection quantities by axial-compressive and flexural methods against 

referred method for input data set 1 and set 2 are plotted in Figure 7 and Figure 8 

respectively. Comparison of flexural and referred curves illustrate slight different but similar 

downward trend. Nonetheless, it can be seen that the deflection curve representing axial-

compressive quantities show much more deflection when compared to the flexural and 

referred curves. This means a situation may have occurred where extensional moduli E11 and 

E22 for a certain allowed deflection were not stiff enough, and result in a larger deflection 

(outlier).  

Comparisons of the deflection quantities by axial-compressive and flexural methods against 

referred method for input data set 3, 4, and 5 are plotted Figure 9, Figure 10, and Figure 11, 

respectively. Comparison of flexural and referred curves illustrate slight different but similar 

downward trend in Figure 9 and Figure 10, however the curves swap their positions in 

Figure 11 where referred curve exhibits relatively larger deflection quantities than flexural 

ones. Nonetheless, the deflection curve representing axial-compressive method curve shows 

larger deflection compared to the flexural and referred curves. The comparisons confirmed 

that weaker extensional moduli E11 and E22 resulted in a larger deflection (outlier). The 

simulated deflection is a combination of flexural and shear deflection. However, deflection 

caused by flexural usually contributes much more to the total deflection, compared to shear 

deflection. Comparisons of the deflection quantities by axial-compressive and flexural 

methods against referred method for input data set 6 and 7 are plotted Figure 12, Figure 13, 

respectively. Comparison of axial-compressive, flexural, and referred curves illustrate slight 

difference in quantities but similar downward trend though flexural and referred curves swap 

their positions in Figure 12. A reverse pattern can be observed in Figure 13 where flexural 

method curve exhibits larger deflection quantities than the referred and axial-compressive 

ones. Furthermore, the deflection curve representing referred method shows smaller 

deflection compared to the flexural and referred curves. The comparisons confirmed that 
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stronger extensional moduli E11 and E22 resulted in a smaller deflection. The last material set 

gives a bad correlation. This may be a result from the large difference between the layers for 

material parameters G13 and G23. The equations used for the transformation have very similar 

properties as an equation used to calculate. This means that a very small value affects the 

transformed shear modulus to a large extent.  

  

Figure 7: Deflection U3 along x-direction for parameter set 1. 

 

Figure 8: Deflection U3 along x-direction for parameter set 2. 
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Figure 9: Deflection U3 along x-direction for parameter set 3. 

 

 

Figure 10: Deflection U3 along x-direction for parameter set 4. 
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Figure 11: Deflection U3 along x-direction for parameter set 5. 

 

 

Figure 12: Deflection U3 along x-direction for parameter set 6. 
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Figure 13: Deflection U3 along x-direction for parameter set 7. 

It was observed that the elastic, shear moduli, and Poisson’s ratios quantities agree well with 

referred quantities depicted in the tables. The transformation methods are normally verified 

by comparison of the deflection. Since deflection is a combination of bending and shear, and 

contributes much more to the total deflection compared to shear. Furthermore, flexural 

method is preferred for the optimization purposes in practice despite results might differ to 

some extent. 

The graphical visualisation of computer simulations generated data by axial-compression and 

flexural methods for both the realistic and un-realistic data cases exhibit similar trends. The 

data quantities illustrated are according to the expectation. Close correlation is observed for 

flexural method in all sets except for set 7 where the core (web) is much stiffer compared to 

the sheets (flanges).  Intra comparison of the flexural and compression transformation gives 

that flexural results are more accurate result than the axial-compressive ones. Even though 

the result differs substantially from the reference one in some cases.  

 

4. Conclusions 

Analytical and simulation analyses of sandwich composite panels were performed to 
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techniques. All relationships have been established for a certain thickness of the sandwich 

plate and stiffness. Selected results were compared to the data results available in literature 

and found to be within the acceptable agreement up to (±8%) deviations. Based on 

comparison the results, the following conclusions are extracted:   

1. Overall the transformation based on constant flexural rigidity method seems to have 

better correlation, more stable, and not varying as much between the different parameter 

sets than the other axial deformation and referred methods. 

2. The stiffness (E11) affects the longitudinal deflection, the other direction (E22) pure 

bending, it is much more viable to increase E22 instead of E11 to decrease the deflection, 

and vice versa for a case with opposite stiffness division 

3. Overcapacity of shear stiffness G13 and G23 utilizes the material until linear strain limits, 

and relation between G23 and E22 provides linear strain.  

4. A change in the Poisson’s ratio (stiffness ratio) could greatly affect the strain over the 

thickness structure. 

5. The axial-compression method gives unacceptable and bad correlation for some 

parameter sets, as the real case is combination depends on the direction.  

 

Analysis can be useful not only to approximate engineering properties but also to 

accommodate stiffness in different directions for orthotropic materials by changing the fibre 

direction, adding ribs, truss, or other stiffness altering features.   
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