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Abstract 

This paper deals with a continuous production based two-stage supply chain system of a manufacturing facility that 
operates under a just-in-time (JIT) environment. The facility consists of raw material suppliers, manufacturer, and 
retailers who are involved with their respective inventories. This research considers that the production of finished 
goods in one cycle starts immediately after the production or uptime of the previous cycle to minimize the downtime 
of the facility and thus makes the process continuous. Considering this scenario, inventory models are formulated as 
integer non-linear programming problems for raw material and finished goods. Two algorithms are developed to solve 
the model and to estimate the optimum number of orders and shipments, and the optimum production quantity and 
minimum total system cost for both decentralized and centralized supply chain systems. The solutions are confirmed 
through numerical examples and illustrated the effectiveness of the method with sensitivity analyses. 
 
Key words: Supply Chain System, Continuous Production, JIT Delivery. 
 
1. Introduction 
Production and supply chain management play an important role on the current economy. The fluctuating demand of 
various products and increasing expectations influence the social economy as well as the business enterprises in 
focusing their attention on the appropriate control of their supply chain. The continuous development of business 
environment has made it necessary to improve the knowledge and techniques of supply chain management. Supply 
chain philosophy enables an individual business organization to achieve superior productivity and minimizes its 
system cost by satisfying the service level requirements.  

 
Fig. 1 A typical supplier-manufacturer-buyer supply chain model 

A typical supply chain system contains raw materials supplier, manufacturer of finished products and customers. The 
raw materials are procured from the suppliers and stored in inventory storage area at production centers. The finished 
goods are manufactured in the production centers and stored in warehouses, which, in turn, are shipped to the buyers 
or retailers. To improve productivity and reduce manufacturing costs, the just-in-time (JIT) technology has often been 
adopted by many production systems. In supply chain system with just-in-time (JIT) mechanism, the finished product 
output rate is controlled by the demands of the customers. Fig. 1 represents the supply chain system with just-in-time 
(JIT)mechanism.
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1.1 Literature Review 
 

Recent interest in supply chain management centers on the coordination among various members of a supply chain, 
comprising of manufacturers, distributors, wholesalers and retailers. Sharing information among members of the 
supply chain is one important mechanism for good coordination in a supply chain. These information flows have a 
direct impact on the production scheduling, inventory control and delivery plans in a supply chain. In just-in-time 
(JIT) driven systems, the supplier and producer have to coordinate their raw material supply and finished goods 
production according to the buyers’ demands to maintain minimum inventory. In reality, the manufacturer ends up 
carrying large inventories in distribution centers or warehouses and delivers limited shipments requested by retailers. 
Sarker and Parija (1994) analyzed the stated problem with a single-buyer and single-supplier system with JIT delivery. 
Hill (1995) complied a viewpoint on Sarker and Parija’s (1994) work considering integer number of shipments for 
average finished goods stock. Later, Sarker and Parija (1996) extended their research in optimal multiple ordering 
policies from a single supplier for single product manufacturing batch to minimize the total cost of production. Nori 
and Sarker (1996) developed a multi-product production system with a single-facility scheduling scheme considering 
two situations: (1) fixed setup cost, and (2) variable setup cost under a JIT delivery policy. Later Parija and Sarker 
(1999) studied a multi-retailer system by introducing the problem of determining the production start time, the cycle 
length and raw material order frequency for an infinite planning horizon. 
 
Goyal (1995) and Aderohunmu et al. (1995) proposed models for joint supplier-buyer policy considering only the 
finished goods related costs in a JIT manufacturing environment. Grout (1997) developed a mathematical model to 
analyze the configuration of on-time 34Tdelivery34T incentives in a contract between a buyer and a single supplier of raw 
materials when early shipments are prohibited. Sarker and Khan (1999) proposed an ordering policy for raw materials 
to meet the requirements of a production facility that must deliver finished goods according to customers’ demand at a 
fixed point of time with quality certification of the products. Khan and Sarker (2002) developed another model for a 
manufacturing system that estimates production batch sizes for a JIT delivery system and incorporated a JIT raw 
material supply system. Zhou et al., (2004) presented a general time-varying demand inventory lot-sizing model with 
waiting-time-dependent backlogging and a lot-size-dependent replenishment cost. They derived the model's cost 
function for a “shortages followed by inventory” replenishment policy. Wang and Sarker (2005) studied the assembly-
type supply chain system (ATSCS) controlled by kanban mechanism with JIT delivery policy. They developed a 
heuristic which divides the ATSCS into several small size problems, and then conquers them individually. Wang and 
Sarker (2006) extended the previous model to a multi-stage supply chain system considering a 34TJIT 34T 34Tdelivery34T policy. In 
2006, Sarker and Diponegoro studied an exact analytical method to obtain an optimal policy for a more general class 
of problem with multiple suppliers, non-identical buyers, finite production rate and finite planning horizon. Kim et al. 
(2008) examined the relationship benefits of buyer-supplier over lot-for-lot with single setup single 33Tdelivery33T systems. 
Also, they suggested two policies so that the supplier can satisfy customers' demand with single setup 
multiple 33Tdelivery, 33Tmultiple setup multiple 33Tdelivery. 33TDiponegoro and Sarker (2006) developed an ordering policy for 
raw materials and determined an economic batch size for a product in a manufacturing system that supplies finished 
products to customers for a finite planning horizon. They considered the JIT delivery policy with lost sale problem 
due to shortage.  
 
Diponegoro and Sarker (2007) studied operational policies for a lean supply chain system considering single supplier 
and single buyer with fixed delivery size, and time dependent delivery quantity with trend demand. Diponegoro and 
Sarker (2007) solved the problem by a closed-form heuristic, which provided near optimal solutions and tight lower 
bounds. Banerjee et al. (2007) established a mathematical model of a supply chain structure consists of a single 
manufacturer with multiple retailers and suppliers. Rau and OuYang (2008) presented a new integrated production–
inventory policy under a finite planning horizon and a linear trend in demand by assuming that the supplier makes a 
single product and supplies it to a buyer with a non-periodic and just-in-time (JIT) replenishment policy. Mungan et 
al. (2010) studied an integrated 33TJIT based33T inventory model for high-tech industries under continuous price decrease 
over finite planning horizon. Chen and Sarker (2010) proposed a multi-supplier optimal model to decide the batch size 
of supplier’s production, and delivery frequencies of different buyers to the manufacturer using shared transportation 
costs. Hoque (2011) developed a generalized single-supplier multi-buyer supply chain model by synchronizing supply 
chains with equal-sized or unequal-sized lots.  
 
Yu and Dong (2014) studied of a production lot sizing problem consisting of customers, one retailer, and one 
manufacturer with random demand. The authors assumed that the retailer replenishes inventory as well as the 
manufacturer starts production cycle when the manufacturer's inventory falls to or below zero. Chen and Sarker 
(2014) considered a manufacturing system with 35TJIT 35Tprocurement and supply where they developed an integrated 
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optimal model of inventory lot-sizing vehicle routing of multi-supplier single-manufacturer with milk-
run 35TJIT 35T 35Tdelivery35T. During the inventory model development, the authors considered that the production cycle starts 
after the inventory falls down to zero. Eduardo Cardenas-Barron et al. (2014) proposed an alternative heuristic 
algorithm for a multi-product Economic Production Quantity (EPQ) vendor–buyer integrated model with Just in Time 
(JIT) philosophy, a budget constraint, and similar inventory situation as above. Omar and Sarker (2015) considered a 
just-in-time (JIT) manufacturing system to synchronize JIT purchasing and selling in small lot size as a means of 
minimizing the total supply chain cost. The authors proposed an optimal policy where the shipment intervals as well 
as the lot sizes are varied. Torkabadi and Mayorga (2017) considered on the implementation of Just-In-Time (JIT) in a 
multi-stage, and multi-product supply chain with Kanban, ConWIP, and a hybrid PCP. Considering the uncertainty, 
the authors evaluated performances of policies via a Fuzzy AHP method. 53TWang and Ye (2018) studied the 53TJust in time 
(JIT) and Economic order quantity (EOQ) models with carbon emissions in a two-echelon supply chain with single 
manufacturer and 18Tn 18T retailers. In their model, they proposed that the manufacturer and retailers could adopt either a JIT 
mode or an EOQ mode in which every retailer could decide its own optimal lot size.  
 
Kim and Shin (2019) proposed that the third-party logistics service provider would determine the optimal order 
quantity, considering defective items under the VMI and JIT conditions. They designed a mathematical decision-
making problem based on the EPQ /EOQ with defective items, which provides the optimal order quantity for TPL 
service providers under VMI and JIT. Leuveano et al. (2019) dealt with the problem of transportation and quality 
within a Just-in-Time (JIT) inventory replenishment system including an integrated vendor-buyer lot-sizing model by 
considering transportation and quality improvements into a JIT environment. Nobil et al. (2020) developed a 
multiproduct economic production quantity inventory model for a vendor–buyer system in which several products are 
manufactured on a single machine and vendor delivers the products to customer in small batches. The aim of this 
study was to determine the optimal cycle length and the number of delivered batches for each product so that the total 
inventory cost is minimized. 53TChinello 53T et al. (2020) proposed a practical framework for identifying the main drivers of 
inventory optimization, using simulation modeling on a) a multi-echelon supply chain model. Recently, Biswas and 
Sarker (2020) proposed a JIT based inventory model for multiple product production and delivery from a single 
facility lot sizing model. 
 
In this research, a single stage production facility is considered that purchases raw materials from multiple suppliers 
and processes them to deliver in a fixed quantity of finished products to multiple retailers (or customers) at a fixed-
interval of time. In previous research [Fig. 2], it is observed that the production cycle of a manufacturing facility 
continues up to certain period of time (uptime) to produce the required inventory to satisfy the demand of that cycle. 
The next production cycle begins after all the inventory shipped to the customer leaving no or zero inventory at the 
warehouse. This research focused on this issue and considers that the uptime or production of a cycle starts 
immediately after the uptime of the previous cycle and the setup time [Fig. 3]. Therefore, the system does not remain 
idle until the finished goods inventory falls to zero like Fig. 2. This research also considers that the raw materials are 
replenished instantaneously to the manufacturing system to meet the JIT operation. This research deals with 
decentralized supply chain manufacturing system composed of production with multiple suppliers and multiple 
supplier operating under JIT delivery (fixed deliveries at fixed intervals). Though, some researchers used random 
demand in their model, but in this research deterministic modes are considered to avoid additional complexity. 
 
During the model development, all of the previous researchers considered that the system remains idle until the 
shipments are made. Fig. 2 shows the production with just-in-time (JIT) delivery.  

 

Fig. 2 Inventory models with just-in-time (JIT) delivery with downtime 
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In fact, large production industries (refineries, paper mills, sugar mills, etc.) do not let their production system be idle, 
because it incurs a high cost to shut down and restart their equipment. Also, some industries (such as automotive 
assembly plants, etc.) follow the production schedules of eight, twelve, and sixteen hours. Moreover, the 
manufacturing industries have multiple suppliers of raw materials and multiple buyers for finished products. The 
production of these industries can be categorized into semi-continuous production where the subsequent production 
cycle (uptime) starts just after completion of prior production uptime. Also, these industries carry the inventories from 
one cycle to the other and may deliver the finished goods combing with the new produced finished goods. During 
production, the manufacturer also delivers the finished goods to multiple buyers following the JIT delivery method to 
lower finished goods handling cost. Previous researchers ignored these types of models due to complexity of the 
problem.  
The current research is based on the facts encountered in supply chain systems of different manufacturing systems, 
such as computer/electronics industries, sheet-metal industries, refineries, and paper industries. For example, to 
manufacture filing cabinet, metal sheets and L-angles are obtained from steel industries. The delivery of the finished 
cabinets depends on the downstream market demand. Similarly, computer and automobile industries procure various 
items and maintain supply chain both upstream and downstream to sustain uniform flow of products. Also, the 
manufacturing industries tires to utilize their system by producing more finished products, and they do not stop 
production until the inventory falls to zero. This is an important issue which researchers ignored while forming their 
model. The problem for this research is established by researching the shortcomings of the previous researchers. First, 
the researchers did not consider the minimization of downtime of the production systems, but Sarker and Khan (1999) 
proposed a model that happened to be minimizing inactive time of the production facility. In their model they did not 
consider the delivery during the production or up time. Therefore, this case is considered in the present research. 

2. Problem Description  
This part of the paper deals with the supply chain system considering just-in-time (JIT) technique and considers a 
continuous manufacturing system, which has minimum downtime between successive production cycles. In a supply 
chain system, when the production quantity exactly matches the demand of a cycle time, it is called perfect matching. 
Therefore, the perfect matching is the situation when there are no finished goods remaining after the shipments are 
completed to the customers at the end of a production cycle. To find an economic order quantity (EOQ) for the raw 
materials, and an economic manufacturing quantity (EMQ) for the production facility with prefect matching, the 
following costs are considered: raw material ordering cost, raw material inventory cost, manufacturing setup cost, and 
finished goods inventory carrying cost. In this section, an expression for the generalized cost function is developed 
that may be used to determine an optimal batch quantity for the production run with reduced downtime. 
 
2.1 Notation 
 
To develop the model for determining the interactions between raw materials and finished goods demand, following 
definitions and notation are used: 
DRf  R: Demand for finished goods, units/year. 
DRr R: Demand for raw materials, units/year. 
f : Conversion factor of the raw materials; f = DRf R/ DRr R= QRf R/ Qr. 
hRf R: Holding cost of finished goods, $/units/year. 
hRr R: Holding cost of raw materials, $/units/year. 
IRf R: Total finished goods inventory, units. 

TI  : Average finished goods inventory, units. 
IRr R: Total raw materials inventory, units. 

rI  : Average raw materials inventory, units. 
IRpsR : Total finished goods inventory with downtime, units. 

sI  : Average finished goods inventory with downtime, units/year. 
ARrR : Ordering cost of raw material, $/order. 
ARfR : Manufacturing setup cost, $/batch. 
L : Time between successive shipments of finished goods, years, L = k/DRfR. 
m : Number of orders for raw materials; n ≥ m ≥ 1. 
n : Number of full shipments of finished goods per cycle time. 
P : Production rate, units/year. 
QRfR : Quantity of finished goods manufactures per setup, units/batch. 
QRrR : Quantity of raw materials required for each batch; QRr R= QRf R/ f. 
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TRPR : Production time (uptime), years; TR1R = QRfR/ P = nk/P. 
TRDR : Pure consumption time, years (downtime);  
T : Total cycle time, years; T = nL. 
TRSR : Setup time, years; TRsR < L. 
ETCRfR : Total cost of finished goods, $. 
ETCRrR : Total cost of raw materials, $. 
ETC(m, n) : Total cost function, $/year. 
ETCRsR(m, n) : Total cost function with downtime, $/year. 

sI  : Average finished goods inventory for with downtime, units/year. 
k : Fixed quantity of finished goods per shipment at a fixed interval of time,  

  units/shipment; k = QRfR/n = LDRfR. 

2.2 Assumptions 
 

To develop the mathematical model and to simplify the solution methodology, some assumptions considered are as 
follows: 

1. Production rate is constant and finite. 
2. Production rate is greater than the demand rate, P > DRfR. 
3. Production facility considers as just-in-time (JIT) delivery and supply of finished products and raw materials, 

respectively. 
4. Production facility operates under the condition, where succeeding production cycles start immediately after 

the production period of preceding cycles. 
5. There is only one manufacturer and one raw material supplier. 
6. Only one type of product is produced in each cycle. 
7. Finished goods delivery is in a fixed quantity at a regular interval. 

 

2.3 Average Inventory and Total Cost Function 
 
In this part of the research, the production rate, P is assumed to be greater than the demand rate, DRfR, so that there 
should be an inventory build-up during production.  Fig. 3 shows the inventory build-up due to processing of finished 
goods from raw material, where top part of the Fig. 3 represents the inventory of the raw material supply, and the 
lower part represents the on-hand finished goods inventory in the warehouse.  
 
For the finished product production, it is assumed that, the production of cycle 1 starts (at a finite rate of P) TRsR time 
units after the end of the uptime of the previous cycle (i.e., at time A) and the first delivery of k/2 units for cycle 1 is 
made at L time units after the previous delivery. Since, the cycles overlap (uptime of succeeding cycle with downtime 
of preceding cycle), at the same time (every L time units) k/2 units are delivered both from the downtime of previous 
cycle and uptime of following cycle. Therefore, at fixed time period L, total k units are being delivered which satisfies 
customers’ demand. As the produced item during L-TRsR time units is exactly k/2 amount for cycle 1, so there is no 
inventory after the delivery made at the end of L time units. After L time units, production starts again and for every L 
time units, shipments of k/2 units from each cycle are made. During L time period, Y amount of finished goods are 
produced and after shipping k/2 units, the remaining items are Y – k/2 ≥ 0. Thus, the finished goods inventory build-up 
forms a saw-tooth pattern during the production uptime TRPR. Clearly, QRfR = PTRPR units are produced in a cycle. After the 
end of the production, shipments of k/2 units at every L time units are made to the customers during the downtime, 
TRDR, which is followed by the new cycle.  
 
During the down time of a cycle, finished goods are not produced for that cycle, and the on-hand inventory depletes at 
regular intervals (every L time units) from the end point of the production period to the end of cycle. Thus, the later 
part of the inventory cycle (TRDR period) forms a staircase pattern (under curve GH'). The finished products are 
delivered in n shipments (where n ≥ 1) of k/2 equal quantities at each T time period. Since, the uptime of all cycles and 
the downtime of their previous cycles coincide, the total delivery, in L time period, becomes 2(k/2) = k amount. 
 
The pattern of raw material inventory is shown in Fig. 3(a) where QRrR is the raw materials required and these QRrR units 
are ordered in m instantaneous replenishments of QRrR/m units. It is assumed that each unit of finished goods produced 
requires f units of raw material, so that QRrR = fQRrR. Again, in this research the raw materials are ordered and converted 
to finished goods during the production time or uptime, TRPR. Thus, the time weighted inventory of raw material held in 
a cycle is given by  
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Fig. 3 Supply chain inventory of (a) raw materials; (b) finished goods 

Hence, the total cost for the raw material can be expressed as 
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As shown in Fig. 3(b), the production of cycle 2 begins at point A', which is setup time, TRsR, after the end of production 
period (uptime) of cycle 1. Hence, the machines or the production cycle will not remain idle till the end of the 
shipments of the finished products after previous cycle. That is why, the overlapping parts Area HGH ′ and 
Area A B C D E G H′ ′ ′ ′′ ′′ ′ ′  are combined inventories during T time period denoted by Area .HGG H′ ′  The delivery 
follows the just-in-time (JIT) system and so does the raw material supply. Fig. 3(b) shows that the on-hand inventory 
does not increase after production stops at the end of TRPR in cycle 1. The quantity produced in TRPR time units should 
meet the customer’s demand for period T such that QRfR = nk, where n is the number of full shipments to customers per 
cycle and is assumed to be an integer for an infinite planning horizon. The raw materials for production are ordered 
during the time TRPR time period. If IRTR, IRPR, and IRDR are denoted as total finished product inventory, inventory produced at 
time TRPR and inventory shipped at time TRDR, respectively, then the total finished product inventory during T time period 
can be written as  

T P DI I I= − .         (3) 
Also, from Fig. 3, it is found that the total cycle time T is 
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Now, from Fig. 3(b), IRPR and IRDR can be calculated as  

2 2P P
nk nkI T T= + , and       (5) 

2( 1)
2D

f

n n kI
D
−

= .        (6) 

Therefore, using Eq. (3), Eq. (5), and Eq. (6), the total finished product inventory is found to be 
2 2

2 2 2
s

T
f f

Tn k kI nk
D D

 
= + −  

 
.       (7) 

Therefore, the average finished product inventory of the entire cycle can be found as  
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Hence, the total cost function for the finished goods inventory can be written as 

( )
2

f f f
f f F f f f s

f f

D D h kETC n A I h A nk D T
Q nk D

  
 = + = + + −     

.   (9) 

Therefore, the total cost function for both raw material and finished product inventories for this problem can be 
written as 

2 2
( , )

2 2
f r f fr

r f f f s
f

mD A D hn k h kETC m n ETC ETC A nk D T
mfP nk nk D

  
 = + = + + + + −     

.  (10)  

Upon simplification which yields   
22 1( , )

2 2 2
f r f f f f fr

s
f

D A D A nkh D hk hn m kETC m n T
m fP n k n k D

      
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.   (11)  

 
2.4 Problem Formulation 
 
The total cost function for this part of research is a non-linear integer programming problem with has integer variables 
m and n. The problem can be expressed as a minimization problem as follows: 
 
Problem: Find m and n to 

Minimize:  
22 1( , )

2 2 2
f r f f f f fr

s
f

D A D A nkh D hk hn m kETC m n T
m fP n k n k D
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  (12) 

Subject to:  1n m≥ ≥         (13) 
    and  are integer.m n        (14) 
Next section describes the solution methodology, numerical examples and special case of the proposed problem. 
 
3. Solution Method of the Proposed Problem 
 
3.1 Proof of Convexity 
 
The total cost function developed for the problem is a nonlinear integer programming (NLIP) problem. Since ETC is a 
function of (m, n), it is sufficient to show that ETC(m, n) is convex for m, n ≥1. All the parameter used in this model 
are non-negative, i.e., , , , , , , , 0 and , 1f r f r fP D A A h h k f m n≥ ≥ . Hence, it is required to prove that the principal 
minors of the Hessian matrix of Eq. (11) are positive. The Hessian of TCRPMR can be found by partial differentiation 
with respect to m and n as follows: 

   ( , ) ,H m n
 

=  
 

 


       (15) 
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where 
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From Eq. (15), the first principal minors of Hessian ( , )H m n is found as 

   
2

1 3

2
( , ) ( )fr

r f
Dk hH m n mA A

mfP n k
= = + + .      (16)  

Hence, 1( , ) 0H m n ≥  as all parameters are positive. Using Eq. (15) the second principal minor for the objective 
function can be found as 

2 2
2

2 3 4 2

2
( , ) f f r f rkD A h D A

H m n
m nfP n k

= − = −   .      (17) 

Therefore, from Eq. (17) it can be confirmed that 2 ( , ) 0H m n ≥ if and only if 
3 3

2
1
2

f r

f r

A h k n
mfPD A

  ≥ 
 

,       (18) 

which confirms that the total cost function is a quasi-convex function.  
 
3.2 Solution Method 
 
Considering the problem described above, it is found that this problem can be not be solved using the traditional 
minimization techniques as n and m are depended on each other. Therefore, it can be solved using the incremental or 
enumeration method used by Giri and Sharma (2015) and Sarker and Parija (1994). Using the decentralized decision-
making policy, the cost of the supply chain can be divided into two parts i.e., (a) raw material supply and inventory 
cost [presented in Eq. (2)], and (b) finished product setup and inventory cost [presented in Eq. (9)]. These costs can be 
minimized separately to find the local optimal for both decision variables m and n. In this decentralized decision-
making policy, the number of shipments (n) to the retailers influences the manufacturer’s demand for the number of 
raw materials supply (m) from the supplier. Therefore, the optimal value of n P

*
P can be determined by the enumeration 

technique to satisfy the following condition generated as 
* * *( 1) ( ) ( 1)f f fETC n ETC n ETC n− ≥ ≤ + .      (19) 

Using Eq. (9) with n P

*
P-1, n P

*
P, and nP

*
P+1, Eq. (19) can be written as  

*
* ( 1)

2( 1)
f f

f f s
f

D h kA n k D T
Dn k

  
 + − + −  −    

*
* 2

f f
f f s

f

D h kA n k D T
Dn k

  
 ≥ + + −     

 

     *
* ( 1)

2( 1)
f f

f f s
f

D h kA n k D T
Dn k

  
 ≤ + + + −  +    

.  (20) 

Upon simplification and taking the positive roots, the boundary condition of n P

*
P can be evaluated as  

*
2 2

8 81 11 1 1 1
2 2

f f f f

f f

D A D A
n

h k h k

   
   + − ≤ ≤ + +
      

     (21) 

which will generate two values as * *
1 2,  and n n . Now using the following argument, the n P

*
P can be found as 

* * *
1 2 arg min { ( ), ( )}f fn ETC n ETC n=       (22) 

Similarly, for integer shipments of raw material supply, m P

*
P can be achieved using the following condition 

* * *( 1) ( ) ( 1)r r rETC m ETC m ETC m− ≥ ≤ + .     (23) 
Using Eq. (2), Eq. (22), and Eq. (23), it can be found that 
 

* * **2 2 *2 2 *2 2

* * * * * *

( 1) ( 1)

2( 1) 2 2( 1)
f f fr r r

r r r
m D m D m Dn k h n k h n k hA A A

n k m fP n k m fP n k m fP

− +
+ ≥ + ≤ +

− +
.  (24) 

Hence, the boundary conditions of m P

*
P can be found as follows: 
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*3 3 *3 3
*1 4 1 41 11 1

2 2 2 2
r r

f r f r

h n k h n km
fPD A fPD A

   + +   − ≤ ≤ +
      

 and    (25) 

generates two values as well as Eq. (21) with * *
1 2,  and m m , which can be eliminated by 

* * *
1 2 arg min { ( ), ( )}r rm ETC m ETC m= .      (26) 

Finally, using Eq. (21), Eq. (22), Eq. (25), Eq. (26), Eq. (2) and Eq. (9) the following algorithm is developed to solve 
the decentralized supply chain problem. 
 
Algorithm1: Determining Number of Orders and Shipments for Decentralized Operation 

Step 1: Set the values of , , , , , , ,  and f r f r fP D A A h h k f as the initial values. 
Step 2: Solve n P

*
P using Equations (21) and (22) 

Step 3: Solve m* using Equations (25) and (26) 
Step 4: Find the optimal solution of ETC(m P

*
P, n P

*
P) by satisfying the following relations provided in Eq. (12), Eq. 

(13), Eq. (14), Eq. (19) and Eq. (23). 
 
Also, the algorithm for centralized supply chain optimization for the proposed problem is presented as follows:  
Algorithm2: Determining Optimum Number of Orders and Shipments for Centralized Operation 

Step 1: Set the values of , , , , , , ,  and f r f r fP D A A h h k f and j = 0 as the initial iteration 

Step 2: Set * * * *
0 0=  and = j jm m n n= =  and n P

*
P from Algorithm 1 as starting basic solution and solve for ETCRj=0R(m P

*
P, n P

*
P) 

using Eq. (12) 
Step 3: Set * *

1 = 1j j jn n= + + , and compute ETCRj=j+1R(m P

*
P, n P

*
P), 

if ETCRj=j+1R(m P

*
P, n P

*
P) = ETCRj=jR(m P

*
P, n P

*
P) or ETCRj=j+1R(m P

*
P, n P

*
P) > ETCRj=jR(m P

*
P, n P

*
P) 

go to Step 5,  
if ETCRj=j+1R(m P

*
P, n P

*
P) < ETCRj=jR(m P

*
P, n P

*
P)  

else go to Step 3 
Step 4: Set * *

0 1 0= 1jm m= + + , and compute ETCRj=j+1R(m P

*
P, n P

*
P), 

if ETCRj=j+1R(m P

*
P, n P

*
P) = ETCRj=jR(m P

*
P, n P

*
P) or ETCRj=j+1R(m P

*
P, n P

*
P) > ETCRj=jR(m P

*
P, n P

*
P) 

go to Step 5,  
if ETCRj=j+1R(m P

*
P, n P

*
P) < ETCRj=jR(m P

*
P, n P

*
P)  

else go to Step 4 
Step 5: Stop, optimum solution achieved ETCRj=jR(m P

opt
P, n P

opt
P). 

Next section evaluates the results using numerical values and the algorithm presented above. 
 
3.3 Computational Results 
 
In this section, the numerical tests are presented using the solution procedures for the perfect matching supply chain 
system and six sets of data, which have been chosen from different hypothetical scenarios. The sets of examples 
presented in Table 1. The optimal results for all six problems are computed as Example 1 and are presented in Table 2. 
A sample computation is presented using data set of Problem 1 from Table 1 and the solution technique discussed in 
Section 3.2. 

9TTable 1: Data set for numerical computation for perfect matching problem 

Parameters Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 
P (units/year) 3,600 3,600 6,000 7,000 8,000 11,000 
DRfR (units/year) 2,400 2,400 3,000 5,200 5,200 7,200 
ARrR ($/order) 150 100 150 200 200 300 
ARfR ($/setup) 50 100 60 70 200 250 
hRrR ($/unit/year) 1 10 3.5 4 4 10.5 
hRfR ($/unit/year) 2 10 5 15 25 45 
f 2 3 3 2.5 3 4 
k(units/shipment) 100 100 150 200 300 350 
TRsR (years) 0.001 0.002 0.002 0.003 0.005 0.006 
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Using Algorithm 1 and Algorithm 2 the optimum decentralized and centralized results for all six problems are 
presented in Table 2 and Table 3, respectively for the decentralized and centralized supply chain systems. 

 
9TTable 2: Results using Algorithm 1 and given data set for decentralized supply chain 

Parameters Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 
m P

* 1 1 1 1 1 1 
n P

* 4 2 2 2 1 1 
Q P

*
P  400 200 300 400 300 350 

ETCRfR (n P

*
P) $797.60 $2,676.00 $1,710 $5,293.00 $10,641.67 $21,870.15 

ETCRfR (m P

*
P) $911.11 $1,218.52 $1,513.13 $2,618.29 $3,474.17 $4,286.03 

ETCP

*
P( m P

*
P, n P

*
P) $1,708,17 $3,894.52 $3,223.13 $7,911.29 $14,115.83 $26,106.90 

9TTable 3: Results using Algorithm 2 and given data set for centralized supply chain 

Parameters Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 
m P

* 1 1 1 1 1 1 
n P

* 7 3 3 2 1 1 
Q P

*
P  700 300 450 400 300 350 

ETCRfR (n P

*
P) $548.31 $841.67 $1,029.53 $5,012.05 $10,641.67 $21,870.15 

ETCRfR (m P

*
P) $969.03 $2,776.00 $1885.00 $3,054.86 $3,474.17 $4,286.03 

ETCP

*
P( m P

*
P, n P

*
P) $1,517.34 $3,617.67 $2,914.53 $7,911.29 $14,115.83 $26,106.90 

 
After comparing Table 2 and Table 3 results, it can be concluded that when delivery quantity increases, both 
algorithms generate the same results. This phenomenon can be observed in sensitivity analysis section. 
 
3.3 Special Case 
 
If there is no overlapping in between the cycles, which means during the downtime no production or uptime takes 
place, then the inventory diagram in Fig. 3 becomes similar to Giri and Sharma (2015) [also, Mungan et al. (2010), 
Chen and Sarker (2010), Diponegoro and Sarker, (2002, 2006, 2007); Sarker and Diponegoro (2006, 2009); Sarker 
and Parija, (1994, 1996)] model shown in Fig. 4.  In this case the cycle time, T, becomes s P DT T T T nL= + + =  
and there is downtime during the pure shipment or downtime and each cycle delivers k units of finished goods every L 
time units. Therefore, the finished goods inventory, IRPR, from Eq. (5) will convert to IRPSR when  
  2 /s s D s s P sT T T T T T T nk P→ + = + + = + .     (27) 
Applying Eq. (27) in Eq. (5) it can be found that 

2 2 2 21 2 1
2 2 2 2 2

f
s s s

f f f f

Dn k k nk n k kI nk T nk T
D D P D P D

      = + − + = − + −              
  (28) 

 
Fig. 4 Finished products inventory with downtime, respectively. 
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and the average inventory becomes 

1
2 2

f
s f s

f

Dnk kI D T
P D

   
= − + −          

.       (29) 

Therefore, the total cost function given in Eq. (9) converts to  

( ) 1
2 2

f f f
f f s

f

A D Dnk kETC n h D T
nk P D

   
= + − + −          

,     (30) 

which is similar to Giri and Sharma (2015) [also, Mungan et al. (2010), Chen and Sarker (2010), Diponegoro and 
Sarker, (2002, 2006, 2007); Sarker and Diponegoro (2006, 2009); Sarker and Parija, (1994, 1996)] cost function 
model for infinite planning horizon. 
 
Let Giri and Sharma (2015) [also, Mungan et al. (2010), Chen and Sarker (2010), Diponegoro and Sarker, (2002, 
2006, 2007); Sarker and Diponegoro (2006, 2009); Sarker and Parija, (1994, 1996)] model be “Deferred Production” 
(as there is a long downtime after the production stops at end of time period TRPR), and the model described in this paper 
for is “Accelerated production”. The operation schedule presented in Fig. 3 and Fig. 4 provide the number of 
shipments to the retailers are 3 and 6, respectively. Applying the parametric values given in Table 1, and using cycle 
time, T = nL = 3k/DRfR, the values of T, quantity produced, Q during T and downtime, TRsR in accelerated production for 
all six problems are computed and presented in Table 4. Similarly, for deferred production, the cycle time can be 
computed as T = 6k/DRfR and using the parametric values, the computed values of T, quantity produced, Q during T and 
downtime, TRDR also presented for Deferred production in Table 4. Finally, it can be observed that, in accelerated 
system produces, more finished products result than the deferred production for supply chain system.  
 

9TTable 4: Inventory produced in accelerated and deferred productio 9T9Tn 

Problems 

Accelerated Deferred Accelerated Deferred 
Cycle 
time 

(years) 

Quantity 
produced 

(units) 

Downtime 
(years) 

Cycle 
time 

(years) 

Quantity 
produced 

(units) 

Downtime 
(years) 

Quantity 
Produced 

(units/year) 

Quantity 
Produced 

(units/year) 
1 0.125 24.85 0.001 0.250 36.90 0.124 198.80 147.60 
2 0.125 24.70 0.002 0.250 36.30 0.123 197.60 145.20 
3 0.150 44.55 0.002 0.300 88.20 0.148 297.00 294.00 
4 0.115 45.25 0.003 0.231 55.08 0.113 392.17 238.68 
5 0.173 101.60 0.005 0.346 151.96 0.168 587.02 439.00 
6 0.146 98.93 0.006 0.292 144.24 0.140 678.38 494.54 

4. Sensitivity analysis 
This part of the research presents the sensitivity analyses of the total cost functions of the supply chain systems which 
have been discussed in previous sections. These analyses are performed based on the static values involved in the cost 
function. They are shipment quantity, raw material conversion factor, ratios of ordering and setup costs, and ratios of 
raw material and finished goods holding costs. 
 
4.1 Effect of Shipment Size (k) on Total Cost Functions 
 
In a just-in-time (JIT) delivery-based production system, the shipment size is an important factor. The total cost 
functions revolve around the shipment size, k. Also, k determines the on-hand inventory and its carrying costs. 
Therefore, it is necessary to perform a sensitivity analysis base on the variation of shipment size, k. To perform this 
analysis, it is necessary to evaluate the differentiations with respect to k of the Eq. (11) as follows: 

*2* *
* *

* * 2

( , ) 1( ) ( 1)
2

fr
r f f

Dn khdETC m n m A A h n
dk m fP n k

= − + + +      (31) 

Applying the parametric values for all the Examples from Table 1 in Eq. (31) and varying the values of k from 1 to 
800 units/shipment, the graphical presentations are shown in Fig. 5.  From Fig. 5, it can be observed that the total cost 
functions increase when k value varies from 1 to 300 units/shipment, after that the total costs become saturated in 
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straight lines, which are almost parallel to x-axis.  This is because whatever quantities are produced, are being shipped 
to the customers. Therefore, there is no inventory holding costs for finished products.  

4.2 Effect of Raw Material Conversion Factor (f) on Total Cost Functions 
 
Another important parameter here is raw material conversion factor, f, which is a determination factor of ordering 
required raw materials. In this section, the sensitivity analysis is performed for the system with respect to f. 
Differentiating Eq. (11) with respect to f it can be found that  

*2 2* *

* 2

( , ) 1
2

rn k hdETC m n
df m f P

= − .      (32) 

 
Fig. 5 Effect of shipment size k on the total system costs

 
Fig. 6 Effect of conversion factor f on the total system costs 

dE
TC

(m
* , 

n* )/d
k 

     k 

dE
TC

(m
* , n

* )/d
f 

f 



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-7, Issue-1, January2021 
                              ISSN: 2395-3470 

www.ijseas.com 

131 
 

Applying the parametric values (from Table 1) in Eq. (32) and varying the values of f from 1 to 10, the illustration is 
shown in Fig. 6. Fig. 6 shows that the change in total costs for all problems increases with the increase of f when f 
varies from 1 to 2.5, as the quantity of raw material ordering increases.  
 
4.3 Effect of Ordering (ARrR) and Setup Costs (ARfR) on Total Cost Functions  
 
Raw material ordering (ARrR) and setup (ARfR) costs have significant impact on the total cost functions. According to the 
formation of the total cost functions of the system [Eq. (11)], it can be observed that the ordering (ARrR), and setup (ARrR) 
costs are a linear operator for the cost functions. Therefore, the total cost will increase with the increase of both the ARrR 
and ARfR.  
 

  
Fig. 7 Effect of ARrR/ARfR on total system costs 

 
Table 5: Effect of ARrR/ARf Ron the total costs 

Ratio of ARrR/ARf Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

0.018 2751.63 6556.83 5299.77 11681.29 16889.17 26312.62 
0.078 2717.34 6716.83 5433.10 11551.29 16715.83 26106.90 
0.149 2683.06 6876.83 5566.43 11421.29 16542.50 25901.19 
0.233 2648.77 7036.83 5699.77 11291.29 16369.17 25695.47 
0.333 2614.48 7196.83 5833.10 11161.29 16195.83 25489.76 
0.457 2580.20 7356.83 5966.43 11031.29 16022.50 25284.05 
0.613 2545.91 7516.83 6099.77 10901.29 15849.17 25078.33 
0.815 2511.63 7676.83 6233.10 10771.29 15675.83 24872.62 
1.087 2477.34 7836.83 6366.43 10641.29 15502.50 24666.90 
1.474 2443.06 7996.83 6499.77 10511.29 15329.17 24461.19 
2.067 2408.77 8156.83 6633.10 10381.29 15155.83 24255.47 
3.091 2374.48 8316.83 6766.43 10251.29 14982.50 24049.76 
5.286 2340.20 8476.83 6899.77 10121.29 14809.17 23844.05 
13.333 2305.91 8636.83 7033.10 9991.29 14635.83 23638.33 
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Conversely, the ratio of ARrR/ARfR also plays an important role on the system cost. Therefore, a sensitivity analysis has 
been performed by increasing the ratio of ARrR/ARfR from 0.02 to 13, and the variation of the total cost function has been 
observed. The detailed results are presented in Table 5 and a graphical representation is shown in Fig. 7. According to 
the Fig. 7 and Table 5, it can be observed that total cost of the system decreases with the increase of ordering and 
setup cost ratio in linear fashion except for Example 2 and Example 3. 

4.4 Effect of Raw Material (hr) and Finished Goods (hf) Carrying Costs 
 
In the total cost function of a two-echelon inventory system, the raw material (hRrR) and finished goods (hRfR) carrying 
costs, play an important role. So, it is essential to find the impact in the total cost function, with variations in both the 
raw material (hRrR) and finished goods (hRfR) holding costs. The total costs decrease with the increase of the ratios of hRrR/hRf 
as the total cost functions are linearly dependent upon hRrR and hRfR. 
 

 
Fig. 8 Effect of hRrR/hRfR on the total system costs 

 

Table 6: Effect of hRrR/hRfR on the total costs 

Ratio of hRrR/hRf Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

0.034 12284.94 8132.48 11017.22 11988.37 15258.21 20839.28 

0.111 11555.4 7741.45 10431.66 11413.11 14687.96 20185.26 

0.200 10825.85 7350.42 9846.09 10837.86 14117.71 19531.25 

0.304 10096.31 6959.38 9260.53 10262.6 13547.46 18877.23 

0.429 9366.764 6568.35 8674.97 9687.343 12977.21 18223.21 

0.765 7907.675 5786.28 7503.84 8536.829 11836.71 16915.18 

1.000 7178.131 5395.25 6918.28 7961.571 11266.46 16261.17 

1.308 6448.587 5004.22 6332.72 7386.314 10696.21 15607.15 

1.727 5719.042 4613.18 5747.16 6811.057 10125.96 14953.13 

2.333 4989.498 4222.15 5161.59 6235.8 9555.71 14299.12 

3.286 4259.953 3831.12 4576.03 5660.543 8985.46 13645.10 

5.000 3530.409 3440.08 3990.47 5085.286 8415.21 12991.09 

9.000 2800.864 3049.05 3404.91 4510.029 7844.96 12337.07 
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Conversely, the ratio of raw material (hRrR) and finished goods (hRfR) carrying costs have different effects on the total cost 
ETC(m P

*
P, n P

*
P). Therefore, varying the ratio of hRrR/hRfR from 0.03 to 9.0, and using the parametric values (from Table 1) in 

Eq. (11), the effects system total cost, ETC(m P

*
P, n P

*
P) is presented in Fig. 8. Also, details computational results are 

presented in Table 6. From both Fig. 8 and Table 6 it is observed that the total cost functions decrease with the 
increase of the ratio of hRrR/hRfR.  

5. Conclusion 
The primary objective of this research was to determine the operational policy for a two-stage continuous production-
based supply chain system (the production of a cycle starts immediately after the end of its preceding cycle), and to 
minimize both the inventory and system cost.  This study presents an operations policy of a supply chain system with 
just-in-time (JIT) deliveries. A set of problems are categorized as a serial system with a fixed quantity and a fixed 
delivery interval in a perfect matching condition, where the finished goods produced are the same as the finished 
goods delivered to the customers. For the research, the optimum number of orders, optimum batch sizes, and optimum 
number of shipments were evaluated to minimize the total system cost. The operation policies prescribe the number of 
orders and the ordered quantities of raw materials from suppliers, production quantities, and number of shipments to 
the customers for an infinite planning horizon.  
 
In this research, the perfect matching problem is formed as non-linear integer (NILP) non-convex function, and the 
problems with rotation cycle is formed as non-convex mixed integer non-linear programming (MINLP) problem. The 
solution techniques were proposed using integer approximations, and divide and conquer rules. Based on these 
solution processes, this research used various numerical analysis based on numerical data found in previous research. 
Moreover, the total cost for the accelerated production (current research) is higher than the cost for the deferred 
production (found in literature), because the current research produced more finished products as the facility has less 
downtime or down time.  
 
The proposed models will allow the decision makers to quickly respond to the changes in demand and setup 
parameters by adjusting the cost parameters and the planning horizon. System performances such as work-in-process, 
inventory costs, and system cost can be reduced down to a significant level by implementing the prescribed policies 
and their solution techniques. Specific applications can be found in supply chains for refinery, paper mills, 
microchips, electronic industries, and retail industries. Prospective research issues such as time varying demand, 
variable production capacity, transportation cost, etc. can be pursued further concerning the supply chain system 
addressed in this research. 
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