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Abstract In this paper, we propose an improved trust region method for solving unconstrained 

optimization problems. Our algorithm resolve the subproblem within the trust region centered at 

some point located in the direction of the negative gradient, while the current iteration point is 

on the boundary set. Moreover, a nonmonotone technique is used to improve the algorithm 

efficiency. Theoretical analysis indicates that the new method preserves the global convergence 

under mild conditions. 
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1. Introduction 

Consider the following nonlinear system of equations: 

                              
( ) 0,F x  .nx R                          (1) where : n nF R R  is 

a continuously differentiable mapping in the form         1 2, , ,
T

nF x F x F x F x  . Suppose 

that  F x has a zero, then the nonlinear system (1) is equivalent to the following nonlinear 

unconstrained least-squares problem 

    21min =
2

. . .n

f x F x

s t x R
                         (2) 

where .  denotes the Euclidean norm. 

   Nonlinear equations not only have great importance in theory but also have wide 

applications in reality. Many problems arising from chemical technology, economy, and 
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communications and so on, can be formulated as nonlinear equations. There are various 

methods for solving system of nonlinear equations, such as the Newton and the quasi-Newton 

methods [1-4], the spectral method [5,6], the Levenberg-Marquardt method [11,12],  

trust-region-based methods [7-10]. The trust-region method is a very popular way for nonlinear 

equations and have a number of attractive features. 

   Traditionally, the trust region methods are iterative algorithms. At each iterative point kx , 

the traditional TR methods obtain the trial step kd  using the following subproblem model: 

  21min
2

. . .

k k k

n
k

q d F J d

s t d R and d

 

  
                     (3) 

where      , ,k k k k k kf f x F F x J F x    , and 0k   is trust region radius. Typically, the 

trust region is a ball centered at the current iteration point kx . But by a simple analysis, we find 

that not all of the function values at the points within the traditional trust region area are smaller 

than the function values at the current point. Actually, the objective function increases in the 

area where the angle between the search direction and the negative gradient direction is an 

obtuse one. It is distinct that only when the angle between the search direction and the negative 

gradient one is an acute one, then the objective function will descend. It means that about half 

of the trust region does not work. 

   To overcome this disadvantage of the traditional trust regions, Zhou [13] raised a new center 

of the trust region and improved the trust region method. Similar to [13], we give a new trust 

region subproblem as follows: 

  2 21 1 1min
2 2 2

. . + .

n

T T T
k k k k k k k k

d R

k k
k

k

q d F J d F d F J d J J d

Js t d
J


    


 

       (4) 

where d  is the trial step, k k
k

k

Jx
J


  is the center, k  is the radius of the improved trust 

region. 

This approach is to remove half of the ball whose intersection angle with the direction of the 
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negative gradient is an obtuse one. It chooses some point located in the direction of the 

negative gradient as the center of the improved trust region and chooses the distance between 

the center and the current point as the radius of the improved trust region. 

   It is well known that the nonmonotone technique is one of the most interesting techniques 

for improving the iterative algorithms in optimization. The classical nonmonotone line search 

technique by Grippo et al. [14] replaces the usual (monotone) Armijo rule by the test 

( )( ) ( ) ( ) .T
k k k l k k kf x d f x f x d                      (5) 

where 

   
 

   
0
max , 0,1,2, , (0,1 2),

0 0, 0 ( ) min ( 1) 1, , 0.

k jl k j m k
f f k

m m k m k N N

 
  

     


 

In 1993, Deng et al. in [15] made some changes and applied it to the trust region method, 

and proposed a non-monotone trust region method for unconstrained optimization. Theoretical 

analysis and numerical results show that algorithms with non-monotone strategy are more 

effective than algorithms without it. 

Zhang and Hager [16] proposed another non-monotone line search method, they replaced 

the maximum function value with an average of function values. In detail, their method finds a 

step-size k  satisfying the following condition: 

( ) ( ) .T
k k k k k kf x d C f x d                         (6) 

where 

1 1 1
1 1

( ), 0.
1, 0.

( ) , 1, 1.

k

k kk k k k
k k

k

f x k
k

C QQ C f x
Q k

Q


  
 


    

　

ｋ １. 　
       (7)   

And 1 min max min[ , ], [0,1)k      and max min[ ,1)   are two chosen parameters. This strategy 

has been applied to a nonmonotone trust-region framework by Ahookhosh and Amini [17], 

where the ratio is 

( ) .
( ) (0)

k k k k
k

k k k k

ared f x d Cr
pred q d q

 
 


                  (8) 

If 1kr  , the trial step kd  is accepted and it is called as a successful iteration. This leads 
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us to the new point 1kx  , and the trust region radius is updated. If not, the iteration is 

unsuccessful, and the trial point is rejected. 

   The rest of this paper is organized as follows. In Section 2, the new algorithm will be 

introduced. The convergence analysis is investigated in Section 3. Finally, some conclusions are 

addressed in Section 4. 

2. Algorithm 

Inspired by the ideas introduced above, we use an improved trust region method, which the 

trust region centered at some point located in the direction of the negative gradient, and we use 

the non-monotone strategy proposed by Zhang and Hager [15].  

Now, we outline our algorithm as follows: 

Algorithm 2.1 

Initial: Choose a starting point 0
nx R , an initial trust region radius 0 , and constants 

1 2 2 3 10, 0, 0 1, 0 1 .              Set 0.k   

Step 1: If kF   holds, stop; otherwise, go to step 2. 

Step2: Solve trust region subproblem (4) and obtain kd . 

Step3: Compute kC  by (7) and kr  by (8). If 1kr  , let 1k k kx x d   ;Otherwise, let 

1 .k kx x   Set 

 

2 3 2
1

1

, , .

, , .

k k k k
k k

kk

k k

d J J
if r

J

otherwise

  




  
     


 

         (9) 

Step 4: increment k  by 1 and go to Step 1. 

3. Convergence analysis 

This section gives some convergence results under the following assumptions. 

(H1) Let the level set     0x f x f x   be bounded. 

(H2)  F x  is continuously differentiable on an open convex set 1  containing  ,  kF  

is bounded. 
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(H3) The Jacobian of  F x  is symmetric, bounded and positive definite on 1 , i.e., 

there exist positive constants 0M m   such that 

  ,F x M x    .                  (10) 

and 

 2 , ,T nm d d F x d x d R     .           (11) 

Lemma 3.1 If kd  is the solution of (4), then  

     1 min ,
2

k k
k k k k k T

k k

J F
pred d J F

J J

     
  

            (12) 

holds. 

Proof. The proof is similar to Lemma 3.1 in [18]. 

Lemma 3.2 Let kx be the sequence generated by Algorithm 2.1. For any fixed 0k  , we have  

                     1 1k k kf C C                            (13) 

Proof. Let 0k   be an arbitrary fixed integer. By the definition of kr  and 1kr  , we have 

       1 1 1

1

0

min , 0.
2

k k k k k k k

k k
k k k T

k k

C f q q d pred d

J F
J F

J J

 



    

     
  

            (14) 

Thus, 1k kC f  . Then, by the definition of kC , we obtain that 

1 1 1 1 1 .k k k k k k k k
k k

k k

Q C f Q f fC f
Q Q

      
    

So  

.k kC f                           (15) 

On the other hand, we have 

1
1

1 1

.k k k k k k k k
k k

k k

Q C f Q C CC C
Q Q

 


 

 
                      (16) 

From (15) and (16), Lemma 3.2 holds. 

Lemma 3.3 Suppose that (H1)-(H3) hold and the sequence  kx  be generated by Algorithm 
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2.1. Then the sequence  kC  is convergent. 

Proof. The proof is similar to Corollary 3.1 in [17]. 

Lemma 3.4 Suppose that (H1)-(H3) hold and the sequence  kx  be generated by Algorithm 

2.1. Then we have 

lim lim .k kk k
C f

 
                      (17) 

Proof. The proof is similar to Lemma 3.1 in [17]. 

(H4) Let x  stands for the unique solution of Equation (1) in 1 , F  is Holder continuous 

at x , i.e. there are constants 1M  and   such that for every x  in a neighborhood of x , 

    1 .F x F x M x x
                       (18) 

Theorem 3.1 Let (H1)-(H4) hold, Algorithm 2.1 either terminates in finite steps or generates a 

sequence of iterations  kx , such that 

lim inf 0.kk
F


                         (19) 

Proof. We assume that Algorithm 2.1 does not terminate in finite steps and lim inf 0,kk
F


  

that is, there exists a positive constant 0  , such that 

kF  .                           (20) 

for all k . 

   We define I  to be the set of integers k , which satisfies 2kr  . 

   We make the connections (10), (11), (12), (15), (17), (20) and  f x  being bounded below, 

and we have 

     1 1 2
1

2

2
2

min ,
2

min ,
2

k k k k k
k k I k I

k k
k k k T

k I k k

k k k
k I

C f f f pred

J F
J F

J J

mJ F
M





 



 
  





      

    
  
   
 

  





 

The formula above indicates that 
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2min ,k
k I

m
M




    
 

 .                 (21) 

   If the set I  is finite, then from (9) we know that 1 3k k    for all sufficiently large k . 

Because of 3 1  , the sequence  k  converges to zero. If the set I  is not finite, then from 

Formula (21) we have  

lim 0.kk I
                          (22) 

   We also know that  

2 . (23)

k k k k
k k

k k

k k k k
k

k k

k k

k

J Jd d
J J

J Jd
J J

 
  

 
  

  

 

             

   From Lemma 3.2 in [9], there exist constants 3 3 0M m   such that 

3 3 .k k km F d M F                         (24) 

We apply (8), (10), (15), (18), (24) that 

 
 

   

 

 

2 2

2

2

2

1 1
2 2

1
2

1
2

1
2

1
2

. (25)

k k k k k k

k k k k

k k k k

T T T
k k k k k k

T T T
k k k k

k k k k k

k k

k

ared pred f x d C pred

f x d f pred

F F d F pred

d F J F d F F J d

d F J J d

d F F J M d F J

M d F J

O d



  



 





    

   

   

      

  

     

  



        

where    1 1, 0,1 .k kF F x d       

Because of Formula (22), the formula 
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2min , .k k
m
M
    

 
                   (26) 

By the definition of kpred , Lemma 3.1, (20), (23), (24) and (26), we obtain 

 

 

 

2

2

2

2

1 1
4 2
1 min ,
2

1 min ,
2

. (27)

k k k k k k

k k k

k k
k k k T

k k

k k

k k k k k

k

O d m F d J F

mJ F
M

J F
J F

J J

pred d

d J F J d

O d



  

   
 
    
  

 

 



            

From (25) and (27), it is not difficult to get 

1 0.k k
k

k

ared pred
r

pred


                    (28) 

for sufficient large k . 

   From Formula (9), we know that there exists a positive constant   such that k
    for 

all large k . This contradicts (22). 

4. Conclusion 

In this paper, we propose an improved trust region method for solving unconstrained 
optimization problems. Different with traditional trust region methods, our algorithm does not 
resolve the subproblem within the trust region centered at the current iteration point, but within 
an improved one centered at some point located in the direction of the negative gradient, while 
the current iteration point is on the boundary set. Moreover, to improve the algorithm efficiency, 
we use a nonmonotone technique. Under mild conditions, we obtain the global convergence. 

For further research, we should study this trust-region method where the Jacobian matrix is 
replaced by other update matrix (such as quasi-Newton). Moreover, numerical experiments for 
large practical problems should be done in the future. 
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