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Abstract 
We investigate in this paper the parametric resonances of a forced modified Rayleigh-Duffing oscillator.We 
analyze the related equation by method of multiple scales and we obtain primary resonance, super-harmonic, 
sub-harmonic resonances order-two and order-three. We obtain also regions where steady-state subharmonic 
responses exist. We also use the amplitude-frequency curve to demonstrate the effect of various parameters on 
the response of the system. It is obtained the jump and hysteresis phenomenon in the system behaviors and bi-
stability phenomenon in the evolution of the amplitude of the oscillations of the system. It is noted that the pure 
and unpure quadratic damping parameters and parametric excitation affect the nonlinear order-two sub-
harmonic and order-two super-harmonic and cubic damping parameters, cubic restoring parameter and 
amplitude of external force influence all types of nonlinear resonances obtained. 
 
Keywords:Modified Rayleigh-Duffing, parametric resonances, sub-harmonic, super-harmonic, 
resonanceshysteresis. 
 
1. Introduction 
Many problems in physics, chemistry, biology, etc., are related to nonlinear self excited 
oscillators [1]. For example, the self-excited oscillations in bridges and airplane wings, the beating of a heart and 
the nonlinear model of a machine tool chatter [2]. A self-excited oscillator is a system which has some external 
source of energy upon which it can be drawn. Self-excited systems have a long history in the field of mechanics 
[3, 4]. One of key problems in the theory of nonlinear  oscillations is a search of possibilities to estimate their 
amplitude and period analytically. In 
Refs. [5-7] the nonlinear ship rolling response can be rewritten as follow: 
 

2 | | | | | | 	 ⋯ 	 ⋯ cos 	 , (1) 
 
where  and are internal and external frequencies respectively, ,  and  arelinear, quadratic nonlinear 
and cubic nonlinear damping coefficients respectively and  are restoring coefficients. is the external 
excitation amplitude. In this case, (Francescutto and  Contento [5])  are used experimental results and parameter 
identification technique to study bifurcations in ship rolling, application of the extended Melnikov's method are 
used by W. Wu and L. McCue [7] to analyze ship motion without the constraint of small linear damping. Two 
roll motion models are analyzed here. One is a simple roll model with nonlinear damping and cubic 
restoring moment. The other is the model with biased restoring moment. In the other hand (Miguel  and  
Sanjuan [8]) analyzed the effect of nonlinear damping on the universal escape oscillator. 
 

∑ 	 | | 	 ∑ cos 	 , (2) 
 
where	 		is the nonlinear damping and  restoring coefficients. In these papers, the authors are obtained the 
resonances states in their system and they are shown the resonance curve is highly affected by nonlinear 
damping. Parametric perturbations are characterized by parameters periodically in time changing and they are 
described by homogeneous differential equations of motion. Many works on self-excited, parametrically and 
externally excited are well known and deeply investigated in the literature separately. Minorski [9] is one of the 
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first authors considering the interaction between two different types of perturbations. Warminski [10] 
emphasizes the differences in modelling ideal and non-ideal systems for a chosen class of self-excited, 
parametric and externally excited vibrations (see  also [11, 12]). Recently, many of those studies lead to the 
parametric excitation combined with self-excited system and subjected to an external force which quite often 
takes the form 

; 	  (3) 

where ; is a nonlinear damping function. The effect of nonlinear damping on a nonlinear oscillator was 
investigated previously in [13], showing among other things how it affected the evolution of fractalization of 
phase space. 
Autoparametric resonance plays an important part in nonlinear engineering while posing interesting 
mathematical challenges. The linear dynamics is already nontrivial whereas the nonlinear dynamics of such 
systems is extremely rich and largely unexplored [14-17]. Tina Marie Morrison in her thesis [18], have 
investigated the dynamics of a system consisting of a simple harmonic oscillator with small nonlinearity, 
damping and parametric forcing in the neighborhood of 2:1 resonance near a Hopf bifurcation: 
 

є 1 є 	 є cos 2 	 є( 		 		 =0. (4) 
 
 
In the present work we consider the modified Rayleigh-Duffing oscillator modeled by the following equation: 
 

є | 1 | | | є є є 	 є cos 	 є cos . (5) 
 
Our interest in understanding the behavior of this equation is motivated by many applications. The first is a 
model of the El Nino Southern Oscillation (ENSO) coupled tropical ocean-atmosphere weather phenomenon 
[19,20] in which the state variables are temperature and depth of a region of the ocean called the thermocline. 
The annual seasonal cycle is the parametric excitation. The model exhibits a Hopf bifurcation in the absence of 
parametric excitation. The second application involves a MEMS device [21,22] consisting of a 30  diameter 
silicon disk which can be made to vibrate by heating it with a laser beam resulting in a Hopf bifurcation. 
The parametric excitation is provided by making the laser beam intensity vary periodically in time. Other 
applications of our system are described in [23]. 
We focus our attention on the study of the differents resonances which can exist in the forced parametric 
modified Rayleigh-Duffing oscillator. We seek approximate solutions to Eq. (5) by using the method of multiple 
scales (MMS)and we find the peak amplitude of resonances phenomenon. We study the effects of certains 
parameters of this oscillator on the differents resonances. Finally, we study the chaotic motion of this oscillator 
by simulation in the sub-harmonic and super-harmonic regions. 
 
2. Resonances of the forced modified Rayleigh-Duffing oscillator 
 
We use the method of multiple scales (MMS) to seek approximate solutions to Eq.(5). The analysis reveals the 
existence of various super-harmonic and subharmonic resonances. The method of multiple scales supposed that 
the approximate steady solution of first order for Eq.(5) is of the form [24] 
 

, є , є , ….			 6  

where є .. Then є 15 	, 2є … with 
	

 

Substituting Eq.(6) into Eq.(5) and equating the coefficients of the same power of small parameter  є, one 
obtains 
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In  order є  :   	 	 , 7  
In  order є : 

	 2 – 	 	
( 8) 

 
The solution for Eq.(7) is    
 

	 ⋀ 	 	 	 9 , 
 
 where 
 

		⋀ ,			  ,(10) 

 stands for complex conjugate of preceding terms. Substituting the solution  from Eq.(9) into Eq.(8), and 
expanding the terms on the right hand side, we obtain 
 
 

	 2 ωA’ iμωA 3iμ ̅ 	 6 	 ⋀ 	 3 ̅ 6 ⋀ ̅
2 ⋀ 	 +[-i ⋀Ω+6i ̅⋀ 3 ⋀ 6 ⋀ ̅ 3 ⋀ 2 	⋀ 	 3i ⋀ 		 +[-
i 		 iμ ⋀ ⋀ ⋀ 	 3 ⋀ 	⋀

	⋀ Ω ⋀] 	 	 ̅ ⋀ ̅ ⋀ ̅ 2 ⋀ ̅ 	 	 ⋀

⋀ ⋀ 	 	 	 2 ̅ 2 ⋀  (11) 
 
where NST is non resonance terms. We need to eliminate coefficients of 	 that constitute the secular terms 
and would make the solutions unbounded. Thesolvability condition is thus set by equating the coefficients of 

	 terms to zero. 
 
 
2.1 Superharmonic resonances 
 
In this case, we consider  first  2 є 	and after 3 є  where  is a 
detuning parameter. 
 
2.1.12 є  
If 2 є  the condition for elimination of secular terms in Eq.(11) is 

2 ωA’ iμωA 3iμ ̅ 	 6 	 ⋀ 	 3 ̅ 6 ⋀ ̅ 2 ⋀ +( ⋀

⋀ ⋀ )=0, (12) 
with є . To this order, A is considered to be a function to  only. Then, substituting the polar form 
Eq.(10) into Eq.(12) and equating the real and imaginary 
parts, one gets 

3 ⋀ 	 ⋀ ⋀ ⋀ 							
, (13) 

⋀ ⋀ 							 ⋀ ⋀ 							
, (14)  

with =  Writting   =  to  find the stable period solution, we obtain 
 

3 ⋀ 	 ⋀ ⋀ ⋀ 							
, (15) 
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3
⋀ 1

8
⋀ sin 							 ⋀ ⋀ cos 							

, 16  

 
 
Considering equations Eq.(15) and Eq.(16), the frequency-response curve for superharmonic resonance is 

3
⋀ 1

8
1
2

3 ⋀
3
8

	

⋀ ⋀ ⋀
17 . 

 
At steady-state, the relationship between the response amplitude and the detuning parameter  is 

⋀ 1
8

⋀
	

⋀ ⋀
	

1
2

3 ⋀
3
8

	 . 18  

The peak amplitude would verify the following equation: 
 

⋀
	

⋀ ⋀
	

1
2

3 ⋀
3
8

	 , 19  

Thus, we obtain that the corresponding value of  is 
⋀ 1

8
. 20  

 
We can conclude that: 

 the peak value of  is independent of  and λ, 
  and λ,affect the peak location and as they increase, | | increases. 

We plot now the frequency-response curve from Eq.(17). In Fig. 1, the frequency-response curve are plotted for 
fixed values of linear and nonlinear parameters. The nonlinear resonance curve show characteristic jumps and 
pronounced hysteresis phenomena. The system hence has multi-stable solutions, and will be the site of 
oscillations increasingly important to achieve a state of equilibrium that depends on the dissipative components 
of the system, or to a breaking of a component of the system. Near the resonant frequency, the system can 
accumulate energy. 
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Fig. 1 Superharmonic resonance in the space (a,) for  = 0.05; = 0.3;  λ = 1;  = 0.25;   = 0.5;   = 0.3; F = 
0.2. 
 
2.1.2  3 є  
If  the first term and the term which have 3  0 as an exponential argument of the right member of Eq.(11) are 
the secular terms. The condition for the elimination of secular terms is 
 

2 ωA’ iμωA 3iμ ̅ 	 6 	 ⋀ 3 ̅ 6 ⋀ ̅ 2 ⋀
i ⋀ ⋀ ⋀ , 21  

 
Following the analysis done in the previous section for the 2 super-harmonic resonance, we rewrite	  and 
separate the equation into real and imaginary parts. 
Using  = 	T1-Ɵ, we  arrive at a  homogeneous set of equations in    and  
 

3 ⋀ 	 ⋀ cos
⋀ 							

, (22) 
⋀

⋀ sin
⋀ 							

. (23)  

Steady-state solution  = 0 lead to 
⋀ 1

8
	

1
2

3 ⋀ 	

⋀
.		 24  
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We determine the detuning parameter   from Eq.(24) 
 

3
⋀

±
⋀

3 ⋀ 	 	, 

(26) 
 And corresponding value of  is 

3
⋀

 (27). 

 
Therefore, we notice that the peak amplitude and frequency of this resonance are affected by third order non 
linearity parameters and by the forcing amplitude but the parametric excitation term and the coefficients of the 
quadratic nonlinear terms do not contribute to the resonance at first order. We plot in Fig. 2 the frequency-
response curve giving by Eq.(24). This curve also proves that the amplitude of the resonance frequency 
increases with the external exciting force to which the order-three resonance super-harmonic. The nonlinear 
resonance curve show characteristic jumps and pronounced hysteresis phenomena. 

 
 
Fig. 2 Superharmonic resonance in the space(a,	 ); for  = 0.005;  = 1;   = 0.25; F = 0.5. 
 
2.2 Subharmonic resonances 
 
The sub-harmonic resonance takes place if  2 є or  3 є  
 
2.2.1  = 2 є  
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The first term and the term with 	  in Eq.(11) contribute to secular terms. The condition of the 
elimination of secular terms is 
 
 

2 ωA’ iμωA 3iμ ̅ 	 6 	 ⋀ 	 3 ̅ 6 ⋀ ̅ 2 ⋀
1
2

̅

⋀ ̅ ⋀ ̅ 2 ⋀ ̅ 0, 28  
 
. We substitute the polar notation for A Eq.(10) in Eq.(28), and equate the real 
and imaginary parts, then let with  = 2  

1 6 ⋀ 	 ⋀ cos 2 ⋀ sin 							, (29) 

2 3
⋀

⋀ sin 2 ⋀ cos 	.						 (30)  

Seeking steady-state, we let  = 0and we eliminate  dependence to get the frequency response equation as 

2 3
⋀ 1

4
	 1 6 ⋀ 	

⋀
2 ⋀

.		 31  

For this equation we have the trivial solution 0 and another set of solutions which verify the following 
equation: 

⋀
	 1 6 ⋀ 	 ⋀

⋀
. (32) 

We obtain finaly the non trivial solutions of the form 
 

	 , 33  
Where 

= 
	

4 2
⋀

12 1 24 ⋀ , 34  

 

= 
	

16	 2
⋀

16 1 24 ⋀ 16	 ⋀

8 64 ⋀ . 35  

 
For non trivial solutions, it follows from Eq.(33) that both the radical and the first term must be positive, i.e. the 
non trivial solutions for a are real only when  >0and . In Fig. 3 the frequency-response (Eq. (33)) is 
plotted. This curve shows that the sub-harmonic resonance in order-two appear and the maximumamplitude 
corresponding to resonance increases as the resonance frequency augment remaining in the field imposed by the 
conditions of occurrence of this resonance with the order. 
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Fig. 3 Subharmonic resonance in the space (a,	 ) for  = 0.05; = 0.3;  λ = 1;  = 0.1;   = 0.5;   = 0.1; F = 
0.5. 
 
 
2.2.2   є  
If we insert  3 є  in Eq.(11), the solvability condition takes the form 

2 ωA’ iμωA 3iμ ̅ 	 6 	 ⋀ 	 3 ̅ 6 ⋀ ̅ 2 ⋀
3 ⋀ ⋀ ⋀ ⋀ , 36  

 
Substituting the polar notation for A Eq.(10) into Eq.(36), and setting  = 3   . Nest we put  = 0 
and eliminate, then the frequency-response equation is 
 
 
 

⋀
	 9 ⋀ 	

⋀
. (37) 

 
The solutions for Eq. (37) are either a = 0 or 
 

	 , 38  
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Where 

= 
	

72 9 ⋀ 24 3 ⋀

18 9 2 ⋀ , 39  

 

= 
	

64	 9 ⋀ 64 3 ⋀ . 40  

 
Since  is always positive, we need 0 and . 
We numerically simulate Eq.(38) (see Fig. 4) and we note the same comments as in the case of the sub-
harmonic resonance of order-two but the resonance amplitudes for resonance are significant in this case i.e. the 
order-three. 

 
 
Fig. 4 Subharmonic resonance in the space(a,	 ) ) for  = 1.2; λ = 1;   = 0.001;   = 1; F = 0.2. 
 
2.3 Primary resonance 
In this state, we put that є . The closeness between both internal and 
external frequencies is given by  1 є In these conditions after some algebaic manipulations, we obtain 
 

	 2 ωA’ iμωA 3iμ ̅ ̅ 3 ̅ 1
2

	 . 41  
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Equating resonant terms at 0 from Eq.(41), we obtain: 
 
 

2 ωA’ iμωA 3iμ ̅ ̅ 3 ̅ 1
2

	 42  

After the same algebraic manipulations in other resonant states, the amplitude of oscillations of primary resonant 
states is governed by the following nonlinear algebraic equation. 
 

.(43) 

 
The obtained results are reported in Fig.5 where a jump and hysteresis phenomena are found. These phenomena 
indicate that the solutions obtained are multiple and multistable. For example, when parameter  is less than 
0.529412, there is one solution but beyond the number of solution ranges from two to three. The primary 
resonance obtained is thus richer in number of solutions that sub-harmonic and super-harmonic resonances. 
 

 
 
Fig. 5 Primary resonance in the space (a,	 ) ) for  = 0.5; λ = 1;   = 0.5;   = 1; F = 0.5.  
 
3.1 Effects of parameters on super-harmonic resonance 
 
Figs. 6-9 show the effects of the parameters of the system on super-harmonic resonance at order two and Figs. 
10 and 11 illustrate the effects of parameters system on super-harmonic resonance of order-three. Only cubic 
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parameters affect the super-harmonic resonance of order three while all parameters of the systems have effects 
on super-harmonic resonance of order two. Figs. 6, 8, 9 show respectively that each of the system parameters 
F,	 , ,	 ,  λincreases the frequency and the resonant amplitude. The frequency and amplitude of resonance 
increases when one of the parameters is increasing. The hysteresis phenomenon becomes very pronounced when 
each of its parameters is increasing. Through Figs. 7 (a) and (b) the influences of the unpure cubic parameter k2 
and pure cubic parameter  on such oscillationshas been checked. In these cases we note that the hybrid cubic 
parameterdoes not affect the resonance amplitude but increases the resonant frequency. The resonant amplitude 
decreases when the cubic parameter increases and therefore the hysteresis disappears. Figs.10(a); (b) and Figs. 
11(a); (b) show the influences of λ, , F,   respectively on super-harmonic resonance order-three. We noticed 
that these parameters are the same e_ects as the order-two super-harmonic resonance case. 
 

 
 
Fig. 6 Effects of (a) : F, (b) :  on the frequency-response curves of the order-two super- 
harmonic resonance with the parameters of Fig.1 
 
3.2 Effects of parameters on sub-harmonic resonance 
 
In this part, we search for the effects of the parameters F,	 , ,	 ,  λ, 		 	 . Only cubic parameters affect 
the sub-harmonic resonance of order three (see Figs.16, 17) while all parameters of the systems have effects on 
super-harmonic resonance of order two (see Figs.12-15). From Figs. 12,14, 15, we conclude that the range of 
frequency where a response can be obtained is more important when each of parameters F,	 , ,	 ,  λ  increase. 
When the amplitude of the parametric excitation force is zero (  = 0), the order-two resonance sub-harmonic 
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curve holds its shape and destroyed when this parameter is not zero and becomes large. When this parameter is 
set non-zero, the shape of the resonance curve is destroyed when the parameters other than the cubic damping 
parameters increase. Through Figs. 13 (a) and (b) the influences of the unpure cubic parameter k2 and pure cubic 
parameter 	 on such oscillations has been checked. In these cases we note that the hybrid cubic parameter does 
not affect the resonance amplitude but the range of frequency where a response can be obtained is more 
important when parameter  discreases. It also noticed that the shape of the resonance curve is destroyed when 

 becomes small.  
From these pictures, we notice that the unstables amplitude scan been obtained when the shape of the resonance 
curve is destroyed. In the case of three-order sub-harmonic resonance, the cubic damping parameters, the cubic 
restoring parameter and amplitude of external force influenced the frequency response curve and shown the 
multistable solutions but the shape of this curve is not destroyed (see Figs.16, 17). 

 
 
Fig. 7 Effect  of (a) : , (b) :  on the frequency-response curves of the order-two super-harmonic resonance 
with the parameters of Fig.1. 
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Fig. 8 Effects of (a) : , (b) :  on the frequency-response curves of the order-two super-harmonic resonance 
with the parameters of Fig.1. 
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Fig. 9 Effects of λ on the frequency-response curves of the order-two super-harmonic reso-nance with the 
parameters of Fig.1. 
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Fig. 10 Effects of (a) : F; (b) : λ on the frequency-response curves of the order-three super-harmonic resonance 
with the parameters of Fig. 2. 
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Fig. 11 Effects of (a) : ; (b) :  on the frequency-response curves of the order-three super-harmonic resonance 
with the parameters of Fig. 2. 
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Fig. 12 Effects of (a) : ; (b) :  λ on the frequency-response curves of the order-two sub-harmonic resonance 
with the parameters of Fig. 3. 
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Fig. 13 Effects of (a) : ; (b) :  on the frequency-response curves of the order-two sub-harmonic resonance 
with the parameters of Fig. 3. 
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Fig. 14 Effects of (a) : ; (b) :  on the frequency-response curves of the order-two sub-harmonic resonance 
with the parameters of Fig. 3. 
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Fig. 15 Effects of F on the frequency-response curves of the order-two sub-harmonic resonance with the 
parameters of Fig. 3; (a) :  = 0; (b) :   = 0.3. 
 
3.3 Effects of parameters on primary resonant state 
 
In this subsection, we found the effects of parameters F; ; λ and  on primary resonance. Figs.18-21, show 
respectively the influence of F; ; λ and  on the frequency-response curves of the primary resonance in ( ; a) 
space. From these figures we noticed that the jump and hysteresis phenomenon are appeared when the amplitude 
of external excitation is increased. When the cubic damping parameters and cubic restoring parameter increase 
the peak value of a discreases. When  = 0 or  becomes large, the number of multiple solutions obtained 
discreases and the hysteresis phenomenon disappears (see Figs.19, 21). We conclude that the cubic damping 
parameters are seriously influenced the number of solutions obtained and affect the primary resonance. 
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Fig. 16 Effects of (a) : F; (b) : λ on the frequency-response curves of the order-three sub-harmonic 
resonancewith the parameters of Fig. 4. 
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Fig. 17 Effects of (a) :   ; (b) :  on the frequency-response curves of the order-three subharmonic resonance 
with the parameters of Fig. 4. 
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Fig. 18 Effects of F on the frequency-response curves of primary resonance with the parameters of Fig. 5. 
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Fig. 19 Effects of  on the frequency-response curves of primary resonance with the parameters of Fig. 5. 
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Fig. 20 Effects of λ on the frequency-response curves of primary resonance with the parameters of Fig. 5. 
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Fig. 21 Effects of  on the frequency-response curves of primary resonance with the parameters of Fig. 5. 
 
 
4 Conclusion 
 
In this paper, super-harmonic, sub-harmonic and primary resonant sates have been studied. Using the method of 
multiple scales, we obtained the primary resonance and the order-two and order-three for each type of other 
resonance. We found also in each case the maximum value of the amplitude of the oscillations for the system. 
We noted that in the case of two-order super-harmonic or sub-harmonic resonance, this maximum value depends 
on all the parameters of the system but in the case of order three, only the coefficients of the cubic terms 
parameters affect the maximum amplitude of the resonance. By fixing all the parameters of the system and 
varying only the amplitude of the parametric excitation above the critical value, the increasing amplitude of the 
parametric excitation provokes a rapid change in the amplitude of the response to the resonances. We obtained 
the jump and hysteresis phenomenon in the system behaviors and bi-stability phenomenon in the evolution of 
the amplitude of the oscillations of the system. The detection of each phenomena occurred due to the 
nonlinearity is very capital in the physical system motion. Because engineer must be able to recognize these 
phenomena when they occur and should understand their consequences and recommend appropriate measures to 
control or minimize large amplitudes motions. In general we note that effects due to cubic nonlinearities on the 
response curves have a significant from physical point of view. Our results confirm the different effect of 
damping parameters on the resonances states obtained by A. Francescutto et al. [5], K.W. Holappa et al.[6], 
Miguel A. F. Sanjuan [8], C. H. Miwadinou et al. [26], A. Zborowski and M. Taylan [27] and H. G. Enjieu 
Kadji [28]. It is important to note that around the resonance peaks, the amplitudes and accumulate energies of 
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the system device are higher than those received in any oscillations. In this case, this oscillator model can give 
more interesting applications in physical or engineering, particularly when the model is used as a MEMS device, 
Selkov model, Brusselator, ship rolling motion, ENSO phenomenon etc., but the model with high energies is 
very dangerous since it can give rise to catastrophe damage. 
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