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Abstract 
Data type and the amount in the society is growing in a 
speedy fashion which is caused by emerging new services 
as cloud computing, internet of things and location-based 
services, the era of big data has arrived. As data has been 
fundamental resource, how to manage and utilize big data 
better has attracted much attention. Especially, with the 
development of internet of things(IOT), the processing of  
large amount of real-time data has become a great 
challenge in research and applications. Recently, cloud 
computing technology has attracted much attention with 
high-performance, but how to use cloud computing 
technology for large-scale real-time data processing has 
not been studied. This paper basically studies on the 
application known as SMART and all the components 
used in it. Moreover, it presents an overview on Apache 
Flink. 
Keywords: SMART, data-processing, Apache Spark, 
Apache Flink. 
 

I. INTRODUCTION 
 
 Big data[1] is a collection of large  datasets  that are so 
large or complex that traditional data 
processing application software is not sufficient to deal 
with them. Challenges include capture, storage, 
analysis, data curation, 
search, sharing, transfer, visualization, querying, updating 
and information privacy. There is doubt that the amount of 
data now available are indeed large, but that’s not the most 
relevant characteristic of this new data 
ecosystem. Analysis of data sets can find new correlations 
to "spot business trends, prevent diseases, combat crime 
and so on. Scientists, business executives, practitioners of 
medicine, advertising and governments alike regularly 
have difficulties with large data-sets in areas 
including Internet search, finance, urban informatics, 
and business informatics. Scientists encounter various 
limitations including several environmental search, 
biology, and environmental research. MapReduce[2] (MR) 
is a programming framework adopted by many companies 
for Big Data processing, that executes “map, merge and 
reduce” data transformations. It addresses applications 
only based in batch model, normally in  
 
 

homogeneous environments such as large clusters in data 
centers.  
 
Hadoop[4], a popular MR implementation, is considered 
an industrial standard to Big Data, but it does not provide 
services that can be composed and combined in multi-
cloud or hybrid infrastructures to support different types 
of applications. Other transformations, such as event 
driven systems are hence necessary. 
 

This work considers a large variety of data 
sources, ranging from wireless sensor nodes instrumenting 
open and indoor environments to large corporate 
databases, passing by social networks and broadcast 
media, where there is a clear need for standardization. 
Observing this large domain spectrum, this work proposes 
a modular framework for Big Data analysis called Small & 
Medium-sized Enterprise Data Analytic in Real Time 
(SMART) that aims to simplify the deployment of Big 
Data services by Small & Medium sized Enterprises 
(SMEs). 
 

Apache Flink is an open source stream 
processing framework developed by the Apache Software 
Foundation. The core of Apache Flink is a distributed 
streaming dataflow engine written in Java and Scala. Flink 
executes arbitrary dataflow programs in a data parallel and 
pipelined manner. Parallel functions help creating more 
time for processing. Flink's pipelined runtime system 
enables the execution of bulk/batch and stream processing 
programs. Furthermore, Flink's runtime supports the 
execution of iterative algorithms respectively. Flink 
provides a high-throughput, low-latency streaming engine 

as well as support for event-time processing[7] and state 
management. Flink applications are fault-tolerant in the 
event of machine failure. Programs can be written 
in Java, Scala, Python, and SQL and are automatically 
compiled and optimized into dataflow programs that are 
executed in a cluster or cloud environment[6].  

II. RELATED WORK 
 

Previous work can be divided into the following topics: 
frameworks for Big Data analysis, and techniques for 
managing data and application deployment in hybrid 
infrastructure and across multiple clouds. 
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A. Frameworks for big data analysis 
 
MR is a programming framework that abstracts the 
complexity of parallel applications by partitioning and 
scattering data sets across hundreds or thousands of 
machines, and by bringing computation and data closer 
together. Map and Reduce phases are handled by the 
programmer, whereas the Shuffle is performed while a task 
is being carried out. The data is serialized and distributed 
across machines that compose the Distributed File System 
(DFS). The application executions are represented as a 
Directed Acyclic Graph (DAG) under a batch processing 
model, which can provide high-latency response when 
applied to stream processing where data arrives constantly 
to be processed. 
 
B. Hybrid infrastructure and multi-cloud 
 
Organizations are increasingly relying on infrastructure 
from multiple providers as a means to increase tolerance to 
failures and avoid provider lock-in. When considering 
multiple clouds (i.e. hereafter also termed as multi-cloud), 
application deployment becomes complex as each 
individual cloud may have specific configuration 
parameters, and its resource availability and utilization can 
change dynamically. There is therefore a need for 
automatic configuration of complex cloud services at 
different abstraction levels. Users need means for 
efficiently mapping the computing requirements of their 
services to available resources. The lack of knowledge 
about the underlying infrastructure can lead to inefficient 
allocations where either allocated resources are not fully 
used or the Quality of Service (QoS) of applications is 
compromised due to allocating insufficient resources. As 
optimal allocation is difficult to achieve, an approximation 
strategy is generally acceptable. Enterprises and 
governments often organize their data across multiple 
cloud sites or availability zones in order to maintain 
resource proximity; create data stores with organizations 
that share common goals; and keep data replicas across 
regions for redundancy purposes. However, under certain 
scenarios data needs to be analyzed globally. When 
considering MR, one way of doing this is to aggregate 
data in a single data center, and another is to execute 
individual instances of MR jobs on each data set 
separately and then aggregate the results. 
Flink follows a technique that applies data-stream 
processing as the model for batch processing, real- time 
analysis and continuous streams both in the programming 
model and in the execution engine. In combination with 
durable message queues that allow quasi-arbitrary replay 
of data streams (like Apache Kafka or Amazon Kinesis), 
stream processing programs make no distinction between 
processing the latest events in real-time, continuously 

aggregating data periodically in large windows, or 
processing terabytes of historical data. Instead, these 
different types of computations simply start their 
processing at different points in the durable stream, and 
maintain different forms of state during the computation. 
Through a flexible windowing mechanism, Flink 
programs can compute both early and approximate, as well 
as delayed and accurate, results in the same operation, 
obviating the need to combine different systems for the 
two use cases. Flink supports different notions of time 
(event-time, ingestion-time, processing-time) in order to 
give programmers high flexibility in defining how events 
should be correlated.  
 

III. INFRASTRUCTURE MODEL 
 
Different cloud infrastructures have their own 
configuration parameters, and the availability and 
performance of offered resources can change dynamically 
due to several factors, including the degree of over-
commitment that a provider employs. In this context, 
solutions are needed for the automatic configuration of 
complex cloud services. Cloud infrastructure comprising 
heterogeneous hardware environments may need the 
specification of configuration parameters at several levels 
such as the operating systems, service containers and 
network capabilities. As users, who need to execute 
applications, may not know how to map their requirements 
to available resources, this lack of knowledge about the 
cloud provider infrastructure will lead either to 
overestimating or underestimating required capacity; both 
are equally bad as the former leads to waste of resources 
whereas the second sacrifices QoS.  
 

Hybrid infrastructure, is a collection of many 
cloud providers with heterogeneous environments and 
configurations, which often needs something which can 
manage data inputs. The orchestrator must be 
decentralized in order to improve data distribution in the 
network. The infrastructure enables the use of highly 
heterogeneous machines. When considering the use of a 
public cloud to extend the capacity of a community cloud, 
or desktop grid, several scenarios and data strategies are 
possible. The extent to which a set of data-distribution 
strategies is applicable to a given scenario depends on how 
much bandwidth is available. If one considers MR, two 
distinct DFS implementations may be required to handle 
data distribution in two scenarios, namely low-bandwidth 
and high-bandwidth. 
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Fig 1. Smart Architecture 

 
The work performed on MR for hybrid Fig 1 illustrates the 
solution proposed here to model a hybrid system which 
depicts a Global Dispatcher and Global Aggregator to be 
used on the infrastructure for services that use multiple 
data abstractions. The Global Dispatcher which is located 
outside the cloud has all the middleware functions for 
handling task assignment, and management of user-
provided data. It is a centralized data storage system that 
manages policies for splitting data and distributing it in 
accordance with the needs of each system.. The Global 
Aggregator takes data output from both systems and 
merges them in order to obtain the final data set. 

 Fig 2. Apache Flink component stack 
 
Apache Flink, which is the base infrastructure of the 
SMART framework as shown in Fig 2. Its flexible 
pipeline enables several map-reduce and extended 
functions like Map, MapPartition, Reduce, Aggregate, 
Join and Iterative. It can be used in order to allow this 
cloud extension. The setting will be transparent to users 
because a middleware in a top level abstracts the 
complexity away from the users.The different layers of the 
stack build on top of each otherand raise the abstraction 
level of the program representations they accept: 

• The API layer implements multiple APIs that 
create operator DAGs for their programs. Each 
API needs to provide utilities like serializers, 
comparators which describes the interaction 
between its data types and the runtime. All 
programming APIs are translated to an 

intermediate program representation that is 
compiled and optimized via a cost-based 
optimizer. 
• The Flink Common API and Optimizer layer 
takes programs in the form of operator DAGs. 
The operators are specific (e.g., Map, Join, Filter, 
Reduce, FlatMap, MapPartition, ReduceGroup, 
Aggregate, Union, Cross, etc) and the data is in 
non-uniform type. The concrete types and their 
interaction with the runtime are specified by the 
higher layers. 
• The Flink Runtime layer receives a program in 
the form of a JobGraph. A JobGraph is a generic 
parallel data flow with arbitrary tasks that 
consume and produce data streams. The runtime 
is designed to perform very well both in settings 
with abundant memory and where memory is 
scarce.  

 
SMART approach take advantage of cloud, 

multi-cloud and hybrid infrastructures to provide support 
for SME service operation.The heterogeneous resources, 
in this scale, impose challenges to the data management 
and synchronizations, task distributions, result 
aggregations and failure tolerance mechanisms. The 
strategy to avoid the input data aggregation in a single data 
center for Big Data analysis promotes less data movement 
and reduces bandwidth needs. The new architecture 
improves SME competitiveness, because it allows them to 
choose the best resources with lowest prices. Many of the 
Flink features listed below–state management, handling of 
out-of-order data, flexible[3] windowing–are essential for 
computing accurate results on unbounded datasets and are 
enabled by Flink’s streaming execution model. 

Apache Flink follows a technique that embraces 
data-streaming and batch streaming as shown in Fig 3, as 
the unifying model for real-time analysis, continuous 
streams, and batch processing both in the programming 
model and in the execution engine. In combination with 
durable message queues that allow quasi-arbitrary replay 
of data streams (like Apache Kafka or Amazon Kinesis), 
stream processing programs make no distinction between 
processing the latest events in real-time, continuously 
aggregating data periodically in large windows, or 
processing terabytes of historical data. Instead, these 
different types of computations simply start their 
processing at different points in the durable stream, and 
maintain different forms of state during the computation. 
Flink programs can compute both early and approximate 
through a highly flexible windowing mechanism, as well 
as delayed and accurate, results in the same operation, 
ignoring the need to combine different systems for the two 
use cases. Flink supports different notions of time (event-
time, ingestion-time, processing-time) in order to give 
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programmers high flexibility in defining how events 
should be correlated.  
 

 
Fig 3. Batch vs Stream Program 

 
 Flink has idea that there is a need for dedicated 

batch processing (dealing with static data sets). Complex 
queries over static data are still a good match for a batch 
processing abstraction. Moreover, batch processing is still 
needed for legacy implementations of streaming use cases, 
and for analysis applications where no efficient algorithms 
are yet known that perform this kind of processing on 
streaming data. Batch programs are special cases of 
streaming programs, where the stream is finite, and the 
order and time of records does not matter (all records 
implicitly belong to one all-encompassing window). 
However, to support batch use cases with competitive ease 
and performance, Flink has a specialized API for 
processing static data sets, uses specialized data structures 
and algorithms for the batch versions of operators like join 
or grouping, and uses dedicated scheduling strategies. The 
result is that Flink presents itself as a full-fledged and 
efficient batch processor on top of a streaming runtime, 
including libraries for graph analysis and machine 
learning. Flink is a top-level project of the Apache 
Software Foundation that is developed and supported by a 
large and lively community, and is used in production in 
several companies. 

The core of Flink is the distributed dataflow 
engine, which executes dataflow programs.There are two 
core APIs in Flink: the DataSet API for processing finite 
data sets (often referred to as batch processing), and the 
DataStream API for processing potentially unbounded 
data streams (often referred to as stream processing). 
Flink’s core runtime engine can be seen as a streaming 
dataflow engine, and both the DataSet and DataStream 
APIs create runtime programs executable by the engine. 
On top of the core APIs, Flink bundles domain-specific 
libraries and APIs that generate DataSet and DataStream 
API programs, currently, FlinkML for machine learning, 

Gelly for graph processing and Table for SQL-like 
operations. 

IV RESULTS AND DISCUSSIONS 
 
A. Batch Processing:  
For batch processing we used Terasort benchmark which 
was initially developed as a benchmark for evaluating 
Apache Hadoop Map reduce jobs. This benchmark has 
been used by many performance validations and 
competitions, hence considered as one of the most popular 
applications to benchmark batch processing applications. 
It was enhanced further to benchmark Apache Flink and 
Apache Spark by modifying the Map Reduce 
functionality. His experimental analysis provided a great 
foundation to start our analysis. We could reuse his 
experimental code developed for Terasort as it was already 
analyzed and accepted as a fair analysis to compare the 
performance by the open source communities. 
 
B. Stream Processing[5]:  
For stream processing we researched two main stream 
processing benchmarks. They were Intel HiBench 
Streaming benchmark  and Yahoo Stream benchmark, 
which were recently developed to cater the requirement of 
comparing stream data processing. We evaluated Yahoo 
Stream benchmark as it includes a more realistic demo of a 
sample application which simulates an advertising 
campaign. But We Karamalized HiBench to make it 
reproducible via Karamel. 
 
C. Word-count in java: 
Flink program programs look like regular programs that 
transform collections of data. Each program consists of the 
same basic parts: 

 Obtain an execution environment, 
 Load/create the initial data, 
 Specify transformations on this data, 
 Specify where to put the results of your 

computations, 
 Trigger the program execution 

Depending on the type of data sources, i.e. bounded or 
unbounded sources, you would either write a batch 
program or a streaming program where the DataSet API is 
used for batch and the DataStream API is used for 
streaming. This guide will introduce the basic concepts 
that are common to both APIs but please see 
our Streaming Guide and Batch Guide for concrete 
information about writing programs with each API. 
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Program:- 

 
 

 
 

Fig 6. Apache Flink Web Dashboard 
 
Apache Flink Dashboard basically depicts the overview of 
the running programs in the system in Fig 6. As shown in 
figure, we can see the no of running, finished and 
cancelled jobs in the system. We get an overview of the 
cluster resources and running jobs. Likewise we can also 
see the task slots, task managers and available task slots. 

 
In order to face the emerging challenges in cloud-

based Big Data processing, this work presented a 
framework consisting of composable data-analysis 
services that can be combined to address needs of specific 
applications. Focusing on applications for small and 
medium-sized organizations, the framework offers a 
flexible and lightweight approach that allows these 
organizations to take advantage of Big Data analysis in the 
cloud without incurring in the maintenance of heavy cloud 
infrastructures. Another important aspect to be highlighted 
is that of handling heterogeneous data sources, which 

makes the proposal applicable to a great number of 
companies and organizations running business in very 
different domains. 

Preliminary results show good scalability of the 
SMART proposal, and the profile execution does not 
change with workload or host number. In streaming 
systems, the performance is workload sensitive which 
indicates a need for more detailed evaluation. The 
SMART implementation achieves better performance than 
Spark for CPU-intensive  applications, and a workload 
increase does not have important impacts on the system 
performance. In large scale, the SMART simulation has a 
similar performance for large workloads in data-intensive 
applications. 
 

V  CONCLUSION 
 
Focusing on applications for small and medium-sized 
organizations, the framework offers a flexible and 
lightweight approach  that allows these organizations to 
take advantage of Big Data analysis in the cloud without 
incurring in the maintenance of heavy cloud 
infrastructures. Another important aspect to be highlighted 
is that of handling heterogeneous data sources, which 
makes the proposal applicable to a great number of 
companies and organizations running business in very 
different domains. Preliminary results show good 
scalability of the SMART proposal, and the profile 
execution does not change with workload or host number. 
In streaming systems, the performance is workload 
sensitive which indicates a need for more detailed 
evaluation. The SMART implementation achieves better 
performance than Spark for CPU-intensive applications, 
and a workload increase does not have important impacts 
on the system performance. In large scale, the SMART 
simulation has a similar performance for large workloads 
in data-intensive applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also, we can totally say that Apache Flink works quite 
better than Apache spark in terms of their execution time 
an also the rate of performance. Below shows a small 
figure depicting the graph between the two. 
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