
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-6, June 2017
 ISSN: 2395-3470

www.ijseas.com

78

Real Time Big Data Analysis Using Apache Flink
1Gireesh Babu C N, 1Anu Pokhrel, 1Ashwini V, 2Thungamani M,

1Department of Information Science and Engineering, BMSIT&M, Bengaluru
2University of Horticulture Sciences, GKVK, Bengaluru

gireeshbabu@bmsit.in, anupokhrel02@gmail.com, ashwinivsonu@gmail.com, thungamani_k@rediffmail.com

Abstract
Data type and the amount in the society is growing in a
speedy fashion which is caused by emerging new services
as cloud computing, internet of things and location-based
services, the era of big data has arrived. As data has been
fundamental resource, how to manage and utilize big data
better has attracted much attention. Especially, with the
development of internet of things(IOT), the processing of
large amount of real-time data has become a great
challenge in research and applications. Recently, cloud
computing technology has attracted much attention with
high-performance, but how to use cloud computing
technology for large-scale real-time data processing has
not been studied. This paper basically studies on the
application known as SMART and all the components
used in it. Moreover, it presents an overview on Apache
Flink.
Keywords: SMART, data-processing, Apache Spark,
Apache Flink.

I. INTRODUCTION

 Big data[1] is a collection of large datasets that are so
large or complex that traditional data
processing application software is not sufficient to deal
with them. Challenges include capture, storage,
analysis, data curation,
search, sharing, transfer, visualization, querying, updating
and information privacy. There is doubt that the amount of
data now available are indeed large, but that’s not the most
relevant characteristic of this new data
ecosystem. Analysis of data sets can find new correlations
to "spot business trends, prevent diseases, combat crime
and so on. Scientists, business executives, practitioners of
medicine, advertising and governments alike regularly
have difficulties with large data-sets in areas
including Internet search, finance, urban informatics,
and business informatics. Scientists encounter various
limitations including several environmental search,
biology, and environmental research. MapReduce[2] (MR)
is a programming framework adopted by many companies
for Big Data processing, that executes “map, merge and
reduce” data transformations. It addresses applications
only based in batch model, normally in

homogeneous environments such as large clusters in data
centers.

Hadoop[4], a popular MR implementation, is considered
an industrial standard to Big Data, but it does not provide
services that can be composed and combined in multi-
cloud or hybrid infrastructures to support different types
of applications. Other transformations, such as event
driven systems are hence necessary.

This work considers a large variety of data
sources, ranging from wireless sensor nodes instrumenting
open and indoor environments to large corporate
databases, passing by social networks and broadcast
media, where there is a clear need for standardization.
Observing this large domain spectrum, this work proposes
a modular framework for Big Data analysis called Small &
Medium-sized Enterprise Data Analytic in Real Time
(SMART) that aims to simplify the deployment of Big
Data services by Small & Medium sized Enterprises
(SMEs).

Apache Flink is an open source stream
processing framework developed by the Apache Software
Foundation. The core of Apache Flink is a distributed
streaming dataflow engine written in Java and Scala. Flink
executes arbitrary dataflow programs in a data parallel and
pipelined manner. Parallel functions help creating more
time for processing. Flink's pipelined runtime system
enables the execution of bulk/batch and stream processing
programs. Furthermore, Flink's runtime supports the
execution of iterative algorithms respectively. Flink
provides a high-throughput, low-latency streaming engine

as well as support for event-time processing[7] and state
management. Flink applications are fault-tolerant in the
event of machine failure. Programs can be written
in Java, Scala, Python, and SQL and are automatically
compiled and optimized into dataflow programs that are
executed in a cluster or cloud environment[6].

II. RELATED WORK

Previous work can be divided into the following topics:
frameworks for Big Data analysis, and techniques for
managing data and application deployment in hybrid
infrastructure and across multiple clouds.

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-6, June 2017
 ISSN: 2395-3470

www.ijseas.com

79

A. Frameworks for big data analysis

MR is a programming framework that abstracts the
complexity of parallel applications by partitioning and
scattering data sets across hundreds or thousands of
machines, and by bringing computation and data closer
together. Map and Reduce phases are handled by the
programmer, whereas the Shuffle is performed while a task
is being carried out. The data is serialized and distributed
across machines that compose the Distributed File System
(DFS). The application executions are represented as a
Directed Acyclic Graph (DAG) under a batch processing
model, which can provide high-latency response when
applied to stream processing where data arrives constantly
to be processed.

B. Hybrid infrastructure and multi-cloud

Organizations are increasingly relying on infrastructure
from multiple providers as a means to increase tolerance to
failures and avoid provider lock-in. When considering
multiple clouds (i.e. hereafter also termed as multi-cloud),
application deployment becomes complex as each
individual cloud may have specific configuration
parameters, and its resource availability and utilization can
change dynamically. There is therefore a need for
automatic configuration of complex cloud services at
different abstraction levels. Users need means for
efficiently mapping the computing requirements of their
services to available resources. The lack of knowledge
about the underlying infrastructure can lead to inefficient
allocations where either allocated resources are not fully
used or the Quality of Service (QoS) of applications is
compromised due to allocating insufficient resources. As
optimal allocation is difficult to achieve, an approximation
strategy is generally acceptable. Enterprises and
governments often organize their data across multiple
cloud sites or availability zones in order to maintain
resource proximity; create data stores with organizations
that share common goals; and keep data replicas across
regions for redundancy purposes. However, under certain
scenarios data needs to be analyzed globally. When
considering MR, one way of doing this is to aggregate
data in a single data center, and another is to execute
individual instances of MR jobs on each data set
separately and then aggregate the results.
Flink follows a technique that applies data-stream
processing as the model for batch processing, real- time
analysis and continuous streams both in the programming
model and in the execution engine. In combination with
durable message queues that allow quasi-arbitrary replay
of data streams (like Apache Kafka or Amazon Kinesis),
stream processing programs make no distinction between
processing the latest events in real-time, continuously

aggregating data periodically in large windows, or
processing terabytes of historical data. Instead, these
different types of computations simply start their
processing at different points in the durable stream, and
maintain different forms of state during the computation.
Through a flexible windowing mechanism, Flink
programs can compute both early and approximate, as well
as delayed and accurate, results in the same operation,
obviating the need to combine different systems for the
two use cases. Flink supports different notions of time
(event-time, ingestion-time, processing-time) in order to
give programmers high flexibility in defining how events
should be correlated.

III. INFRASTRUCTURE MODEL

Different cloud infrastructures have their own
configuration parameters, and the availability and
performance of offered resources can change dynamically
due to several factors, including the degree of over-
commitment that a provider employs. In this context,
solutions are needed for the automatic configuration of
complex cloud services. Cloud infrastructure comprising
heterogeneous hardware environments may need the
specification of configuration parameters at several levels
such as the operating systems, service containers and
network capabilities. As users, who need to execute
applications, may not know how to map their requirements
to available resources, this lack of knowledge about the
cloud provider infrastructure will lead either to
overestimating or underestimating required capacity; both
are equally bad as the former leads to waste of resources
whereas the second sacrifices QoS.

Hybrid infrastructure, is a collection of many
cloud providers with heterogeneous environments and
configurations, which often needs something which can
manage data inputs. The orchestrator must be
decentralized in order to improve data distribution in the
network. The infrastructure enables the use of highly
heterogeneous machines. When considering the use of a
public cloud to extend the capacity of a community cloud,
or desktop grid, several scenarios and data strategies are
possible. The extent to which a set of data-distribution
strategies is applicable to a given scenario depends on how
much bandwidth is available. If one considers MR, two
distinct DFS implementations may be required to handle
data distribution in two scenarios, namely low-bandwidth
and high-bandwidth.

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-6, June 2017
 ISSN: 2395-3470

www.ijseas.com

80

Fig 1. Smart Architecture

The work performed on MR for hybrid Fig 1 illustrates the
solution proposed here to model a hybrid system which
depicts a Global Dispatcher and Global Aggregator to be
used on the infrastructure for services that use multiple
data abstractions. The Global Dispatcher which is located
outside the cloud has all the middleware functions for
handling task assignment, and management of user-
provided data. It is a centralized data storage system that
manages policies for splitting data and distributing it in
accordance with the needs of each system.. The Global
Aggregator takes data output from both systems and
merges them in order to obtain the final data set.

 Fig 2. Apache Flink component stack

Apache Flink, which is the base infrastructure of the
SMART framework as shown in Fig 2. Its flexible
pipeline enables several map-reduce and extended
functions like Map, MapPartition, Reduce, Aggregate,
Join and Iterative. It can be used in order to allow this
cloud extension. The setting will be transparent to users
because a middleware in a top level abstracts the
complexity away from the users.The different layers of the
stack build on top of each otherand raise the abstraction
level of the program representations they accept:

• The API layer implements multiple APIs that
create operator DAGs for their programs. Each
API needs to provide utilities like serializers,
comparators which describes the interaction
between its data types and the runtime. All
programming APIs are translated to an

intermediate program representation that is
compiled and optimized via a cost-based
optimizer.
• The Flink Common API and Optimizer layer
takes programs in the form of operator DAGs.
The operators are specific (e.g., Map, Join, Filter,
Reduce, FlatMap, MapPartition, ReduceGroup,
Aggregate, Union, Cross, etc) and the data is in
non-uniform type. The concrete types and their
interaction with the runtime are specified by the
higher layers.
• The Flink Runtime layer receives a program in
the form of a JobGraph. A JobGraph is a generic
parallel data flow with arbitrary tasks that
consume and produce data streams. The runtime
is designed to perform very well both in settings
with abundant memory and where memory is
scarce.

SMART approach take advantage of cloud,

multi-cloud and hybrid infrastructures to provide support
for SME service operation.The heterogeneous resources,
in this scale, impose challenges to the data management
and synchronizations, task distributions, result
aggregations and failure tolerance mechanisms. The
strategy to avoid the input data aggregation in a single data
center for Big Data analysis promotes less data movement
and reduces bandwidth needs. The new architecture
improves SME competitiveness, because it allows them to
choose the best resources with lowest prices. Many of the
Flink features listed below–state management, handling of
out-of-order data, flexible[3] windowing–are essential for
computing accurate results on unbounded datasets and are
enabled by Flink’s streaming execution model.

Apache Flink follows a technique that embraces
data-streaming and batch streaming as shown in Fig 3, as
the unifying model for real-time analysis, continuous
streams, and batch processing both in the programming
model and in the execution engine. In combination with
durable message queues that allow quasi-arbitrary replay
of data streams (like Apache Kafka or Amazon Kinesis),
stream processing programs make no distinction between
processing the latest events in real-time, continuously
aggregating data periodically in large windows, or
processing terabytes of historical data. Instead, these
different types of computations simply start their
processing at different points in the durable stream, and
maintain different forms of state during the computation.
Flink programs can compute both early and approximate
through a highly flexible windowing mechanism, as well
as delayed and accurate, results in the same operation,
ignoring the need to combine different systems for the two
use cases. Flink supports different notions of time (event-
time, ingestion-time, processing-time) in order to give

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-6, June 2017
 ISSN: 2395-3470

www.ijseas.com

81

programmers high flexibility in defining how events
should be correlated.

Fig 3. Batch vs Stream Program

 Flink has idea that there is a need for dedicated

batch processing (dealing with static data sets). Complex
queries over static data are still a good match for a batch
processing abstraction. Moreover, batch processing is still
needed for legacy implementations of streaming use cases,
and for analysis applications where no efficient algorithms
are yet known that perform this kind of processing on
streaming data. Batch programs are special cases of
streaming programs, where the stream is finite, and the
order and time of records does not matter (all records
implicitly belong to one all-encompassing window).
However, to support batch use cases with competitive ease
and performance, Flink has a specialized API for
processing static data sets, uses specialized data structures
and algorithms for the batch versions of operators like join
or grouping, and uses dedicated scheduling strategies. The
result is that Flink presents itself as a full-fledged and
efficient batch processor on top of a streaming runtime,
including libraries for graph analysis and machine
learning. Flink is a top-level project of the Apache
Software Foundation that is developed and supported by a
large and lively community, and is used in production in
several companies.

The core of Flink is the distributed dataflow
engine, which executes dataflow programs.There are two
core APIs in Flink: the DataSet API for processing finite
data sets (often referred to as batch processing), and the
DataStream API for processing potentially unbounded
data streams (often referred to as stream processing).
Flink’s core runtime engine can be seen as a streaming
dataflow engine, and both the DataSet and DataStream
APIs create runtime programs executable by the engine.
On top of the core APIs, Flink bundles domain-specific
libraries and APIs that generate DataSet and DataStream
API programs, currently, FlinkML for machine learning,

Gelly for graph processing and Table for SQL-like
operations.

IV RESULTS AND DISCUSSIONS

A. Batch Processing:
For batch processing we used Terasort benchmark which
was initially developed as a benchmark for evaluating
Apache Hadoop Map reduce jobs. This benchmark has
been used by many performance validations and
competitions, hence considered as one of the most popular
applications to benchmark batch processing applications.
It was enhanced further to benchmark Apache Flink and
Apache Spark by modifying the Map Reduce
functionality. His experimental analysis provided a great
foundation to start our analysis. We could reuse his
experimental code developed for Terasort as it was already
analyzed and accepted as a fair analysis to compare the
performance by the open source communities.

B. Stream Processing[5]:
For stream processing we researched two main stream
processing benchmarks. They were Intel HiBench
Streaming benchmark and Yahoo Stream benchmark,
which were recently developed to cater the requirement of
comparing stream data processing. We evaluated Yahoo
Stream benchmark as it includes a more realistic demo of a
sample application which simulates an advertising
campaign. But We Karamalized HiBench to make it
reproducible via Karamel.

C. Word-count in java:
Flink program programs look like regular programs that
transform collections of data. Each program consists of the
same basic parts:

 Obtain an execution environment,
 Load/create the initial data,
 Specify transformations on this data,
 Specify where to put the results of your

computations,
 Trigger the program execution

Depending on the type of data sources, i.e. bounded or
unbounded sources, you would either write a batch
program or a streaming program where the DataSet API is
used for batch and the DataStream API is used for
streaming. This guide will introduce the basic concepts
that are common to both APIs but please see
our Streaming Guide and Batch Guide for concrete
information about writing programs with each API.

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-6, June 2017
 ISSN: 2395-3470

www.ijseas.com

82

Program:-

Fig 6. Apache Flink Web Dashboard

Apache Flink Dashboard basically depicts the overview of
the running programs in the system in Fig 6. As shown in
figure, we can see the no of running, finished and
cancelled jobs in the system. We get an overview of the
cluster resources and running jobs. Likewise we can also
see the task slots, task managers and available task slots.

In order to face the emerging challenges in cloud-

based Big Data processing, this work presented a
framework consisting of composable data-analysis
services that can be combined to address needs of specific
applications. Focusing on applications for small and
medium-sized organizations, the framework offers a
flexible and lightweight approach that allows these
organizations to take advantage of Big Data analysis in the
cloud without incurring in the maintenance of heavy cloud
infrastructures. Another important aspect to be highlighted
is that of handling heterogeneous data sources, which

makes the proposal applicable to a great number of
companies and organizations running business in very
different domains.

Preliminary results show good scalability of the
SMART proposal, and the profile execution does not
change with workload or host number. In streaming
systems, the performance is workload sensitive which
indicates a need for more detailed evaluation. The
SMART implementation achieves better performance than
Spark for CPU-intensive applications, and a workload
increase does not have important impacts on the system
performance. In large scale, the SMART simulation has a
similar performance for large workloads in data-intensive
applications.

V CONCLUSION

Focusing on applications for small and medium-sized
organizations, the framework offers a flexible and
lightweight approach that allows these organizations to
take advantage of Big Data analysis in the cloud without
incurring in the maintenance of heavy cloud
infrastructures. Another important aspect to be highlighted
is that of handling heterogeneous data sources, which
makes the proposal applicable to a great number of
companies and organizations running business in very
different domains. Preliminary results show good
scalability of the SMART proposal, and the profile
execution does not change with workload or host number.
In streaming systems, the performance is workload
sensitive which indicates a need for more detailed
evaluation. The SMART implementation achieves better
performance than Spark for CPU-intensive applications,
and a workload increase does not have important impacts
on the system performance. In large scale, the SMART
simulation has a similar performance for large workloads
in data-intensive applications.

Also, we can totally say that Apache Flink works quite
better than Apache spark in terms of their execution time
an also the rate of performance. Below shows a small
figure depicting the graph between the two.

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-6, June 2017
 ISSN: 2395-3470

www.ijseas.com

83

REFERENCES
 [1] M. Stonebraker et al., “Intel "Big Data" Science and
Technology Center Vision and Execution Plan,” SIGMOD
Rec., vol. 4data2, no. 1, pp. 44–49, May 2013. [Online].
Available: http://doi.acm.org/10.1145/2481528.2481537
[2] J. C. S. Anjos et al., “BIGhybrid – A Toolkit for
Simulating MapReduce in Hybrid Infrastructures,” in
Computer Architecture and High Performance Computing
Workshop (SBACPADW), 2014 International Symposium
on, Oct 2014, pp.132–137.
[3] J. Dean and S. Ghemawat, “MapReduce - A Flexible
Data Processing Tool,” Communications of the ACM, vol.
53, no. 1, pp. 72–77, 2010.
[4] T. White, Hadoop - The Definitive Guide, 3rd ed.
O’Reilly Media, Inc., 2012, vol. 1.
[5] M. Rychly et al., “Scheduling Decisions in Stream
Processing on Heterogeneous Clusters,” in Complex,
Intelligent and Software Intensive Systems (CISIS), 2014
Eighth International Conference on, July 2014, pp. 614–
619.
 [6] D.-H. Le et al., “SALSA: A Framework for Dynamic
Configuration of Cloud Services,” in Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th
International Conference on, Dec 2014, pp. 146–153.
[7] Pooja K.S et al.,” Complex Event Processing In Smart
Homes” in International Journal of Scientific Engineering
and Applied Science (IJSEAS) - Volume-1, Issue-3, June
2015 ISSN: 2395-3470.

