
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

68

Implementation of a pipelined MIPS CPU with single cycle
S.G.Nafreen Sultana 1, K.Sudhakar2 K.PrasadBabu3 S.Ahmed Basha4
1 15G31D0610 M.Tech DSCE, Sjcet, Yerrakota, Kurnool, Andhra Pradesh India

2 HOD & Associate Professor, Dept of ECE, Sjcet, Yerrakota, Kurnool, Andhra Pradesh India
3Assistant Professor, Dept of ECE, Sjcet, Yerrakota, Kurnool, Andhra Pradesh India
4Associate Professor, Dept of ECE, Sjcet, Yerrakota, Kurnool, Andhra Pradesh India

Abstract
In this paper we are going to design the 5 stage
pipeline processor with single cycle. The design
starts with an ALU, register file and SRAM driver.
To allow for the five stages (fetch, decode, execute,
memory access, write back) several control blocks
are to be implemented to enable communication
between the ALU, register file and SRAM driver. To
ensure single cycle instructions, the controls used
only combinational logic. Each instruction needs to
be decoded according to MIPS formatting and
provide a subset of the inputs for the control blocks
which then decide the datapath. Most of the control
logic utilized XOR logic for equality, basic logical
ANDs and ORs, and several MUXs to change the
datapath depending on the instruction. For the
pipeline CPU we start with working single cycle
MIPS CPU implementation. To begin we develop the
pipelined datapath by separating the modules and
control logic into the 5 MIPS pipeline phases: fetch,
decode, execute, memory access, write back.

 Keywords: CPU, MIPS, DataPath, SRAM,
Pipelining.

1. INTRODUCTION
One of the most effective ways to speed up a
digital design is to use pipelining. The
processor can be divided into subparts, where
each part may execute in one clock cycle.
This implies that it is possible to increase the
clock frequency compared to a non-pipelined
design. It will also be easier to optimise each
stage than trying to optimise the whole design.
While the instruction throughput increases,
instruction latency is added. The processor is
implemented using Harvard Architecture
consisting of separate Instruction and Data
Memories. The main motivation behind

pipelining the processor is to increase the
throughput.
The various stages are as follows:
1. Instruction Fetch, instructions are fetched
from the instruction memory.
2. Instruction Decode, instructions are decoded
and control signals are generated.
3. Execute, arithmetic and logic instructions are
executed.
4. Memory access, memory is accessed on load
and store instructions.
5. Write back, the result is written back to the
appropriate register.
Pipeline hazards :
In some cases the next instruction cannot
execute in the following clock cycle. These
events are called hazards. In this design there are
three types of hazards.

1. Structural hazards:
Though the MIPS instruction set was designed to
be pipelined, it does not solve the structural
limitation of the design. If only one memory is
used it will be impossible to solve a store or load
instruction without stalling the pipeline. This is
because a new instruction is fetched from the
memory every clock cycle, and it is not possible
to access the memory twice during a clock cycle.

2. Control hazards:
Control hazards arise from the need to make a
decision based on the results of one instruction
while others are executing. This applies to the
branch instruction. If it is not possible to solve
the branch in the second stage, we will need to
stall the pipeline. One solution to this problem is
branch prediction, where one actually guess,
based on statistics, if a branch is to be taken or
not. In the MIPS architecture delayed decision

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

69

was used. A delayed branch always executes the
next sequential instruction following the branch
instruction. This is normally solved by the
assembler, which will rearrange the code and
insert an instruction that is not affected by the
branch. The assembler made for this project
does not support code reordering, it has to be
done manually.

3. Data Hazards:
If an instruction depends on the result of a
previous instruction still in the pipeline, we will
have a data hazard. These dependencies are too
common to expect the compilers to be able avoid
this problem. A solution is to get the result from
the pipeline before it reaches the write back
stage. This solution is called forwarding or
bypassing.
Dealing with the hazards
1. Using two memories solves the structural
hazard. One for instructions and one for data.
Normally only one memory is used in a system.
In that case separate instruction and data caches
can be used to solve the structural hazard. In this
project only one memory was available and
because no caches were implemented, the
processor is stalled for each load and store
instruction.
2. Using delayed decision solves the control
hazards.
3. Forwarding solves the data hazards. Still it
will not be possible to combine a load instruction
and an instruction that reads its result. This is
due to the pipeline design and a hazard detection
unit will stall the pipeline one cycle.

2. PROBLEM DEFINITION
The previous MIPS implementation in block
diagram is shown below figure

Figure 1 Pipelined processor

Figure 2 Five stage pipelined processor

Single-Cycle Implementation
A single cycle Implementation means that all the
operations take equal amount of time. There are
many instructions in a CPU. Each instruction
might take different amount of time. But in a
Single Cycle, all the operations take equal
amount of time which is completed in on clock
cycle. So the question arises about how the clock
cycle is determined? There might be ‘n’ number
of instructions. But the clock cycle is determined
by the time taken by the slowest instruction.
Usually the slowest instruction is load word.
Other instructions might be executed before the
clock tick. In that case the instruction will just

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

70

have to wait for the next clock, to start
executing.

Figure 3 Single-Cycle CPU
The above figure depicts the data path for single-
cycle implementation of CPU. It uses I-Type
branch instruction. The read address for the
Instruction Memory is generated from program
counter. The output of Instruction Memory is
divided and a part of it is sent to registers
module, to determine the data which needed to
be accessed and the other part is sent to sign
extend which extends the 16-bit data to 32-bit
data. The output of the registers module, which
is the data selected based on output from
Instruction Memory, is sent to ALU, where all
the arithmetic operations are performed based on
the op-code. The result from the ALU is sent to
Data Memory, which writes the result to the
memory.
Coming to PC, it depends on the comparison of
the operands. If operands are eq, then PC is
incremented by 4 and also the value of offset*4
is added to it. Otherwise just the PC is
incremented by 4 and the offset is not taken

Figure 4 Multi-Cycle CPU

The above figure depicts the multi cycle data
path. After looking at the datapath of multi-cycle
CPU, we can notice few differences with the
single-cycle, the most prominent one is the
addition of extra registers A, B etc. There is only
one ALU, which is also used for incrementing
PC by 4 followed by ALUout register, as
compared to single, which has an adder as well.
PC+4 is executed in the first clock cycle. Then
the ALU is used again for another operation. But
we may need PC+4 at a later stage, hence to
keep ALU from loosing the information, we
make use of these registers. The various stages
followed here are:
 Instruction Fetch: PC is incremented by 4 and
loaded to PC. And Instruction Register is loaded
with instruction at PC.
Instruction Decode: The values from register
module are loaded into A and B and also
ALUout is loaded with the target address.
 Execute: ALU operation takes place and it is
loaded into ALUout. Again there are 2 types of
instructions in this. The regular ALU operations
and Branch equal to (Beq) operations. During
arithmetic operations, the operation is done and
the result is loaded to ALUout. In case of Beq,
the data at A and B are subtracted. If the result is
0, the the value which is at ALUout is loaded
into PC. In this case, process is done and we
return again to Instruction Fetch.
 Memory: Here again there can be 3 steps load,
store and arithmetic. If load is going on, the data
at the address of ALUout, is loaded into Memory
Data Register. If store operation is going on, the
dta at register B is loaded into memory at
ALUout address. If arithmetic operation is going
on, the value in ALUout is written into register
module.In the store and arithmetic cases, we return
ti 1st step Instruction Fetch.

 WriteBack: Here load instruction takes place. The
value in memory data register is written into
register. The process is completed here and we
return to 1st step Instruction Fetch again

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

71

4.1 RESULTS
Below figures represents the individual RTL
view of each module and the simulation of
module.

Figure 5 RTL view of MIPS

Figure 6 Simulation wave form of MIPS.

Figure 7 RTL view of ALU

Figure 8 RTL view of ALUControl

 Figure 9 RTL view of Registers

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

72

Figure 10 RTL view of Memory Write Back

Figure 11 RTL view of Datamemory

Figure 12 RTL view of Instruct memory

Figure 13 RTL view of Control

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

73

Figure 14 RTL view of IFID

Figure 15 RTL view of HazardUnit

Figure 16 RTL view of Instruction Decode &
Execute unit

Figure 17 RTL view of Forward Unit

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

74

Figure 18 RTL view of Exmem

Figure 19 RTL view of Multiplexer

Figure 20 RTL view of CPU

5. CONCLUSIONS

In this paper, the pipelines MIPS are implemented.
The future enhancements of this work are
detection of various hazards like data hazards,
control hazards etc. Along with forwarding unit
and hazard detection unit, detection of data
hazard can be added. CACHE memory can be
implemented in place of memory.

Acknowledgments

I would like to thank my Guide, HOD sir K.Sudhakar,
Project Co-ordinator T.Chakrapani, & other Staff
members of ECE department SJCET for helping me
directly or indirectly in completion of this project. A
special note thanks to K. Prasadbabu and S Ahmed
Basha Sir’s, who involved in project completion.

References

1. Five staged pipelined processor with self
clocking mechanism by Anish Gupta∗,
Vinayak Kini 978-1-4673-7910-6/15/$31.00
c2015 IEEE

2. David A. Patterson, John L. Hennessy:
Computer Organization and Design – The

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-5, May 2017
 ISSN: 2395-3470

www.ijseas.com

75

Hardware/Software Interface. Fourth Edition
(2006). Morgan Kaufmann Publisher, Inc.

3. http://nptel.iitm.ac.in/video.php?subjectId=1
06102062 Computer Architecture Principals
video tutorials, Retrieved: August, 2013

4. http://www.iitg.ernet.in/asahu/cs222/
Lectures on Computer Organization and
Architecture, Retrieved: August, 2013

5. Prof.Grishman,http://cs.nyu.edu/courses/fall0
8/V22.0436-001/lecture18.html retrieved:
September, 2013

6. MIPSarchitecture,http://pages.cs.wisc.edu/~s
moler/x86text/lect.notes/MIPS.html
retrieved: September, 2013.

7. Multicycle processor ppt of EE422 class of
CSUN sent to me by Dr. Roosta . L.
Crist´ofoli, A. Henglez, J. Benfica, L.
Bolzani, F. Vargas, A. Atienza, and F. Silva,
“On the comparison of synchronous versus
asynchronous circuits under the scope of
conducted power-supply noise,” in
Electromagnetic Compatibility (APEMC),
2010 Asia-Pacific Symposium on. IEEE,
2010, pp. 1047–1050.

