

www.ijseas.com

Nano b -Open Sets In Nano Tri Star Topological Spaces

S.Chandrasekar¹, V.Banu priya ²,J.Sureshkumar³

¹Department of Mathematics , Arignar Anna Government Arts college,
Namakkal(DT)Tamil Nadu, India.

²Department of Mathematics, RMK College of Engineering and Technology , Puduvoyal,
Tiruvallur(DT), Tamil Nadu, India.

³Department of Mathematics , Muthayammal Engineering College,
Namakkal(DT)Tamil Nadu, India.

E-mail: chandrumat@gmail.com, spriya.maths@gmail.com, surejsk@gmail.com

Abstract

In this paper a new kind of topology is called NanoTri star topology induced by two nano bitopology and is denoted by NT*₁₂₃. NT*₁₂₃b opensets, NT*₁₂₃ gb open sets are introduced and studied separation axioms of Nano Tri star topology

Keywords: NT*₁₂₃ open sets, NT*₁₂₃ interior, NT*₁₂₃ closure, NT*₁₂₃ b opensets, NT*₁₂₃ gb open sets

1. Introduction

The concept of a bitopological space was first introduced by Kelly [4] in 1963. A nonempty set X with two topologies T_1 , T_2 is called a bitopological space, where the topology is defined as $T_1 \cup T_2$ and denoted by $T_1 T_2$. As an extension of bitopological space, tri topological space was first initiated by Kovar[2] in 2000, where a nonempty set X with three topology is called a tri topological space. [5]In 2014 Palaniammal and Somasundaram introduced a topology $T_1 \cap T_2 \cap T_3$ in the tri topological space (X, T_1 , T_2 , T_3) and studied several properties of this topology.

I.N.F. Hameed and Moh. Yahya Abid gives the definition of 123 open set in tri topological spaces .U.D. Tapi, R. Sharma and B. Deole introduce semi open set and pre open set in tri topological space. Stella Irene Mary J introduce a new topology called Tri star topology induced by two bitopology and is denoted by T*123. notion of Nano topology was introduced by Lellis Thivagar[10] which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it and also defined Nano closed sets ,Nano-interior and Nano-closure.He has also defined Nano continuous

functions, Nano open mapping, Nano closed mapping and Nano Homeomorphism. K.Buvaneshwari[11] etal S.Chandrasekar[8] et al contributed in Nanobitopological spaces

In this paper, we introduce a new topology called Nano Tri star topology induced by two nano bitopology and is denoted by NT*₁₂₃. The various concepts of Nano b open sets in NT*₁₂₃- topological space are analyzed.

2. Preliminaries

Definition 2.1: A topology on a non empty set X is a collection T of subsets of X having the following the properties:

- 1) X and Φ are in T.
- 2) The union of the elements of any sub collection of T is in T.
- 3) The intersection of the elements of any finite sub collection of T is in T.

A set X for which a topology T has been specified is

called a Topological space.

Definition 2.2.

A subset A of a topological space (X, τ) is called (i)b-open set[1] if A \Box cl (int (A)) \cup int (cl (A)).

(ii)a generalized b- closed set (briefly gb- closed) [1] if bcl (A) \square U whenever A \square U and U is open in X.

DEFINITION 2.3,[10]

Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$.

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $\mathbf{L}_{\mathbf{R}}(\mathbf{X})$. That is, $\mathbf{L}_{\mathbf{R}}(\mathbf{X}) = \mathbf{L}_{\mathbf{X}} \mathbf{E}(\mathbf{X}) = \mathbf{L}_{\mathbf{X}} \mathbf{E}(\mathbf{X}) = \mathbf{L}_{\mathbf{X}} \mathbf{E}(\mathbf{X}) \mathbf{E}(\mathbf{X}) \mathbf{E}(\mathbf{X})$ where

L_R(X) .That is, L_R(X) = $\underset{X \in U}{\cup} \{R(x) : R(x) \subseteq X\}$ where R(x) denotes the equivalence class determined by X. (ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by U_R(X). That is, U_R(X) = $\underset{X \in U}{\cup} \{R(x) : R(x) \cap X = \phi\}$ (iii) The boundary region of X with respect to R is the set of all objects, which can be neither in nor as not-X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) - L_R(X)$

DEFINITION 2.4 [10]

If (U, R) is an approximation space and $X, Y \subseteq U$, then

- (i) $L_R(X) \subseteq X \subseteq U_R(X)$
- (ii) $L_R(\phi) = U_R(\phi) = \phi$
- $(iii) U_R(X \cup Y) = U_R(X) \cup U_R(Y)$
- (iv) $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$
- (v) $L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y)$
- (vi) $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$
- (vii) $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$ whenever $X \subseteq Y$

(viii)
$$U_R(X^c) = [L_R(X)]^c$$
 and $L_R(X^c) = [U_R(X)]^c$

- $(ix)U_R U_R(X) = L_R U_R(X) = U_R(X)$
- (x) $L_R L_R(X) = U_R L_R(X) = L_R(X)$

DEFINITION2.5[10] Let U be an universe, R be an equivalence relation on U and $v_{\mathcal{B}}(X) = \{U, \phi, L_{\mathcal{B}}(X), U_{\mathcal{B}}(X), \mathcal{B}_{\mathcal{B}}(X)\}$ where

 $X \subseteq Y$. $\tau_{\mathbb{R}}(X)$ satisfies the following axioms

- (i) U, φε τ_R(X)
- (ii) The union of the elements of any sub-collection of $\tau_{R}(X)$ is in $\tau_{R}(X)$
- (iii) The intersection of the elements of any finite sub-collection of $\tau_{\overline{a}}(X)$ is in $\tau_{\overline{a}}(X)$.

That is, $\tau_{\mathbb{A}}(X)$ forms a topology on U called the nano topology on U with respect to X. We call(U, $\tau_{\mathbb{A}}(X)$)) as the nano topological space. The elements of $\tau_{\mathbb{A}}(X)$ are called nano open sets.

DEFINITION2.6

If $(U, T_{R_{4,4,4}}(X))$ is a Nano tri topological space with respect to U where and if then

(i) The Nano (1,2)* interior of A is defined as the union of all Nano (1,2)* open subsets

of A contained in A and it is denoted by $N\tau_{1,2}int(A)$. $N\tau_{1,2}int(A)$ is the largest

www.ijseas.com

Nano (1,2)* open subset of A.

(ii) The Nano (1,2)* closure of A is defined as the intersection of all Nano (1,2)* closed

Sets containing A and it is denoted by $N\tau_{1,2}cl(A).N\tau_{1,2}cl(A)$ is the smallest Nano (1,2)*Closed set containing A.

3. NANO TRI STAR TOPOLOGICAL SPACE

In this section we introduce a new topology in (X, T_1, T_2, T_3)

3.1. NT123*-OPEN SETS

Throughout this article we consider nano bitopological spaces $(U, \tau_{B_{0,2}}(X))$ and $(U, \tau_{B_{0,2}}(X))$ for which the nano bitopology elements form a topology.

Definition 3.2:

Let

 $(U, \tau_{R_2}(X), \tau_{R_3}(X), \tau_{R_3}(X)) = (U, \tau^*_{R_2, 0.3}(X))$ be a tri topological space. We define a new topology NT123*-called NanoTri star topology induced by two nano bitopology, as follows

NT*₁₂₃ O $(X) = \begin{bmatrix} \tau_{R_1}(X) \cup \tau_{R_2}(X) \end{bmatrix} \cap \begin{bmatrix} \tau_{R_2}(X) \cup \tau_{R_2}(X) \end{bmatrix}$ where $\tau_{R_1}(X) \cup \tau_{R_2}(X)$ and $\tau_{R_2}(X) \cup \tau_{R_2}(X)$ are nano bitopology defined on the nano bitopological spaces $(U, \tau_{R_2, 2}(X))$ and $(U, \tau_{R_2, 2}(X))$ respectively.

Example 3.3.

Let $U = \{p, q, r, s, t\}$, $U/R_1 = \{\{p\}, \{q, r, s\}, \{t\}\}\}$. Let $X_1 = \{p,q\} \subseteq U$. Then $\tau_{R_1}(X) = \{U, \phi, \{p\}, \{p,q,r,s\}\}$. $\{q,r,s\}$ Let $X_2 = \{p,r\} \subseteq U$. Then $\tau_{R_2}(X) = \{U, \phi, \{p\}, \{p,q,r,s\}\}$. Let $X_3 = \{q, r\} \subseteq U$. Then $\tau_{R_2}(X) = \{U, \phi, \{q,r,s\}\}$.

NT*₁₂₃ O(X)= $(\tau_{R_{\bullet}}(X) \cup \tau_{R_{\bullet}}(X)) \cap \tau_{R_{\bullet}}(X) \cup \tau_{R_{\bullet}}(X)$ Then NT*₁₂₃ O(X)= $\{U, \phi, \{p\}, \{p,q,r,s\}, \{q,r,s\}\}$ NT*₁₂₃ C(X)= $\{U, \phi, \{t\}, \{p,t\}, \{q,r,s,t\}\}$

Definition 3.4:

 $A \Box (U_1 T^*_{R_{1,2,3}}(X))$ is called T^*_{123} -open in U, if $A \subseteq [T_{R_1}(X) \cup T_{R_2}(X)] \cap [T_{R_2}(X) \cup T_{R_3}(X)]$. The union of all NT*₁₂₃-open sets contained in A is called the NT*₁₂₃-interior of A and denoted by NT*₁₂₃-intA. We say A is NT*₁₂₃-closed in U if A^C is NT*₁₂₃-open, and the intersection of NT*₁₂₃-closed sets

containing A is called NT*₁₂₃-closure of A and it is denoted by NT^*_{123} -cl(A).

Definition 3.5

A subset A of a nano Nano tri star topological space $(U_1 T^*_{R_{123}}(X))$ is called NT*₁₂₃ neighborhood of a point x∈U if and only if there exists an T*₁₂₃ open set U such that $x \in U \subset A$.

Remark 3.6

We will denoted to the NT^*_{123} interior (resp. NT*₁₂₃ closure) of any subset, say A of U by NT*₁₂₃intA (resp.NT*₁₂₃clA), where NT*₁₂₃intA is the union of all NT*₁₂₃ open sets contained in A, and NT*₁₂₃ is the intersection of all NT*₁₂₃closed sets containing A.

Definition 3.7

A subset A of a space U is said to be NT*₁₂₃ b open

if $A \square NT^*_{123}cl(NT^*_{123}int A) \cup NT^*_{123}$ $int(NT*_{123}clA)$.

Remarks 3.8

(i) The complement of NT*₁₂₃b open set is called $NT^*_{123}b$ closed set. Thus $A \subset U$ is $NT^*_{123}b$ closed

and only if $NT^*_{123}cl(NT^*_{123}intA)$ $NT*_{123}int(NT*_{123}clA) \subseteq A$.

(ii)The intersection of all NT*₁₂₃b closed sets of U containing a subset A of U is called NT*₁₂₃b closure of A and is denoted by $NT*_{123}clb(A)$. Analogously the NT*₁₂₃b interior of A is the union of all NT*₁₂₃b open sets contained in A denoted by NT*₁₂₃intb(A).

Definition 3.9

A subset A of a Nano tri star topological space $(U, T^*_{R_{0,2,2}}(X))$ is called to be NT*₁₂₃gb-closed if $NT^*_{123}bcl(A) \subset U$ whenever $A \subset U$ and U is NT*₁₂₃open.

Remark 3.10

- (i) The complement of NT*₁₂₃gb -closed is NT*₁₂₃gb-
- (ii)The intersection of all NT*₁₂₃ -closed sets of U containing a subset A of U is called NT*₁₂₃ gb-closure of A and is denoted by NT*₁₂₃clgb(A) Analogously the NT*₁₂₃gb -interior of A is the union of all 123gb-open sets contained in A denoted by NT*₁₂₃ intgb(A)

Example 3.11.

The relationships between the concepts NT*₁₂₃ closed set, NT*₁₂₃b closed set and NT*₁₂₃gbclosed summarized in the following diagram:

NT*₁₂₃closedset → NT*₁₂₃bclosedset → NT*₁₂₃gbclosed

```
Let U = \{a, b, c, d, e\}, U/R_1 = \{\{a\}, \{b, c, d\}, \{e\}\}\}.
Let X_1 = \{a, b\} \subseteq U. Then
\tau_{R_1}(X) = \{U, \phi, \{a\}, \{a,b,c,d\}, \{b,c,d\}\}
Let X_2 = \{a, c\} \subseteq U. Then
\tau_{R_{\bullet}}(X) = \{U, \phi, \{a\}, \{a,b,c,d\}, \{b,c,d\}\}.
Let X_3 = \{b, c\} \subseteq U. Then T_{R_4}(X) = \{U, \phi, \{b, c, d\}\}.
NT*_{123}(X) = (\tau_{R_1}(X) \cup \tau_{R_2}(X)) \cap (\tau_{R_2}(X) \cup \tau_{R_2}(X))
Then NT*<sub>123</sub> O(X)= {U, \phi, {a}, {a,b,c,d}, {b,c,d}}
         NT*_{123} C(X) = \{U, \phi, \{e\}, \{a,e\}, \{b,c,d,e\}\}\}
```

NT*₁₂₃ bC(
$$\mbox{$\it X$}\mbox{}=\{U, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{d,e\}, \{c,e\}, \{a,b,e\}, \{a,c,e\}, \{a,d,e\}, \{b,c,e\}, \{b,c,d\}, \{b,d,e\}, \{c,d,e\}\}$$

 NT^*_{123} gbC (x)= {U, ϕ {a}, {b}, {c}, {d}, {e}, {a,e}, $\{a,c\},\{b,c\},\{b,d\},\{b,e\},\{c,d\},\{d,e\},\{c,e\},\{a,b,e\},$ ${a,c,e},{a,d,e},{b,c,e},{b,c,d},{b,d,e},{c,d,e},$ $\{a,b,d,e\},\{a,b,c,e\},\{a,c,d,e\},\{b,c,d,e\}\}$ Now, we will prove every pointed in the above diagram in the following propositions:

Proposition 3.12.

Every NT*₁₂₃ closed subset of a Nano tri star topological space U is NT*₁₂₃b closed.

Proof:

Let A⊏U be NT*₁₂₃ closed set, since $A^{\circ} \subset NT^*_{123}clA^{\circ}$, hence $T^*_{123}intA^{\circ} \subset NT^*_{123}int(NT^*_{123}clA^{\circ})$, but NT*₁₂₃int A⊏A for any subset A, hence $A^{\circ} \subset NT^*_{123}$ int $(NT^*_{123}clA^{\circ})$, and $A^{\circ} \subset NT^*_{123}int (NT^*_{123}clA^{\circ}) \cup NT^*_{123}cl(NT^*_{123}int$ A°) hence A° is NT*₁₂₃b open set, hence A is NT*₁₂₃b open set.

Proposition 3.14

Every NT*₁₂₃b closed subset of a Nano tritopological space U is NT*₁₂₃ gb-closed.

Proof:

Let A be a $NT*_{123}b$ -closed subset of U, and let $A \subseteq G$, where G is $NT^*_{123}b$ -open, since A is $NT^*_{123}b$ -closed set, hence $NT^*_{123}int(NT^*_{123}cl(A))$ $NT*_{123}cl(NT*_{123}int(A)) \subset A$, NT*₁₂₃int($NT*_{123}cl(A)$ n NT*₁₂₃cl($NT*_{123}int(A)) \square G$

since $NT^*_{123}clb(A)$ is the smallest $NT^*_{123}b$ -closed set containing A,

i.e. A is $NT^*_{123}cl(A) = A \cup NT^*_{123}int(NT^*_{123}cl(A)) \cap NT^*_{123}cl(NT^*_{123}int(A)) \subset A$,

⊂AU#

⊂U

i.e. A is NT*₁₂₃gb-closed.

Now, we will give some examples to show that the inverse pointed in the diagram (2.1) is not True

Example 3.15

 NT^*_{123} -bclosed set NT^*_{123} -closed set.

Let $U = \{1, 2, 3, 4, 5\}, U/R_1 = \{\{1\}, \{2, 3, 4\}, \{5\}\}.$ $Let X_1 = \{1,2\} \subseteq U.Then$ $\mathbf{T}_{\mathbb{R}_1}(\mathbf{X}) = \{\mathbf{U}, \phi, \{1\}, \{1,2,3,4\}, \{2,3,4\}\}$ Let $X_2 = \{1, 3\} \subseteq U$. Then $\mathbf{v}_{\mathbf{R}_{\mathbf{a}}}(\mathbf{X}) = \{\mathbf{U}, \phi, \{1\}, \{1,2,3,4\}, \{2,3,4\}\}.$ Let $X_3 = \{2, 3\} \subseteq U$. Then $\tau_{\mathbb{R}_5}(X) = \{U, \phi, \{2,3,4\}\}$. $NT*_{123}(X) = (\tau_{K_2}(X) \cup \tau_{K_3}(X)) \cap (\tau_{K_3}(X) \cup \tau_{K_3}(X))$ Then NT*₁₂₃ O(X)= {U, ϕ , {1}, {1,2,3,4}, {2,3,4}} $NT*_{123} C(X) = \{U, \phi, \{5\}, \{1,5\}, \{2,3,4,5\}\}$ $NT*_{123}bC(X) = \{U, \phi, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,5\},$ {2,3},{2,4},{2,5},{3,4},{4,5},{3,5},{1,2,5}, $\{1,3,5\},\{1,4,5\},\{2,3,5\},\{2,3,4\},\{2,4,5\},$ {3,4,5},{2,3,4,5}} {{1},{2},{3},{4},{2,3},{2,4},{2,5},{3,4},{4,5},{3,5} },{1,2,5},{1,3,5},{1,4,5},{2,3,5},{2,3,4},{2,4,5}, $\{3,4,5\}\}$ are NT*₁₂₃ b -closed sets but not NT*₁₂₃ closed sets.

Example 3.16

NT*₁₂₃gb closed set

 $NT*_{123}b$ -closed set.

In example (3.11), the sets $\{a,c\},\{a,b,c,e\},\{a,c,d,e\},\{b,c,d,e\}$ are NT*₁₂₃gb -closed but it is not NT*₁₂₃b NT*₁₂₃gb T_kSpaces, k = 0,1,2 In this section we will introduce r

In this section we will introduce new types of separation axioms which we called NT* $_{123}$ gb T_k spaces for k=0,1,2, for the sake of convenience, we begin with definition the concepts

 $NT^*_{123} T_k$ spaces for k = 0,1,2

Definition 3.17

A Nano Nano tri star topological space $(U, T^*_{R_{i+1}}(X))$ is called:

(i) $NT^*_{123} - T_0$ if and only if to each pair of distinct points x , y in U , there exists an NT^*_{123} –

open set containing one of the points but not the other.

www.ijseas.com

(ii)NT $*_{123}$ -T₀ if and only if to each pair of

distinct points x , y of U , there exist a pair of 123 - open sets one containing x but not y and the

other containing y but not x.

(iii) $NT^*_{123} - T_1$ if and only if to each pair of distinct points x , y of U , there exist a pair of

disjoint NT*₁₂₃-open sets one containing x and the other containing y.

(iv)NT*₁₂₃ -regular if and only if to each NT*₁₂₃ closed set F and each point $x \notin F$, there exist

disjoint NT*₁₂₃-open sets G and H such that $x \in G$ and $F \subset H$.

Definition 3.17.

A Nano tri star topological spaces $(U, T^*_{123}gb)$ is said to be $NT^*_{123}gb - T_0$ space if and only if to each pair of distinct points x, y in U, there exists a $NT^*_{123}gb$ -open set containing one of the points but not the other. Now we proceed to prove that every tri- topological space is $NT^*_{123}gb - T_0$ space.

Proposition 3.18.

If $\{x\}$ is NT*₁₂₃gb -open for some $x \in U$, then x $\notin cl(\{y\})$ NT*₁₂₃clgb, for all $y \neq x$.

Proof:

Let $\{x\}$ be NT*₁₂₃gb -open for some $x \in U$, then $U - \{x\}$ is NT*₁₂₃gb -closed, and $x \in U - \{x\}$. If $x \notin NT*_{123}$ clgb($\{y\}$) for some $y \neq x$, then y, x both are in all the NT*₁₂₃gb - closed sets containing y, so $x \in U - \{x\}$ which is contraction, hence $x \notin NT*_{123}$ clgb($\{y\}$)

Proposition 3.19.

In any Nano tri star topological space $(U, T^*R_{C,1}(X))$, any distinct points have distinct $NT^*_{123}gb$ -closures.

Proof:

Let $x, y \in U$ with $x \neq y$, and let $A = \{x\}^c$, hence $NT^*_{123}cl(A) = A$ or U. Now, if $NT^*_{123}cl(A) = A$, then A is NT^*_{123} -closed, hence it is $NT^*_{123}bt$ -closed, so $U - A = \{x\}$ is $NT^*_{123}gb$ -open and not containing y. So by proposition (3.3), $x \notin NT^*_{123} \text{ clgb}(\{y\})$ and $y \in NT^*_{123} \text{ clgb}(\{y\})$, which implies that $NT^*_{123} \text{ clgb}(\{y\})$ and $NT^*_{123} \text{ clgb}(\{x\})$ are distinct. If $NT^*_{123}cl(A) = U$, then A is $NT^*_{123}gb$ -open, hence $\{x\}$ is $NT^*_{123}gb$ - closed, which mean that

NT*₁₂₃ clgb($\{x\}$) = $\{x\}$ which is not equal to NT*₁₂₃ clgb($\{y\}$)

Proposition 3.20

In any Nano tri star topological space $(U, T^*_{R_{4,2,2}}(X))$, if distinct points have distinct $NT^*_{123}gb$ -closures then U is $NT^*_{123}gb - T_0$ space

Proof:

Let $x, y \in U$ with $x \neq y$, with $NT^*_{123} \operatorname{clgb}(\{y\})$ is not equal to $NT^*_{123}\operatorname{clgb}(\{x\})$, hence there exists $z \in U$ such that $z \in NT^*_{123}\operatorname{clgb}(\{x\})$, but $z \notin NT^*_{123}\operatorname{clgb}(\{y\})$ or $z \in NT^*_{123}\operatorname{clgb}(\{y\})$,

 $z \in NT^*_{123} \operatorname{clgb}(\{x\})$, but $z \notin NT^*_{123} \operatorname{clgb}(\{x\})$. Now without loss of generality,

let $z \in NT^*_{123} \operatorname{clgb}(\{x\})$ but $z \in NT^*_{123} \operatorname{clgb}(\{y\})$. If $z \in NT^*_{123} \operatorname{clgb}(\{x\})$, then $NT^*_{123} \operatorname{clgb}(\{x\})$ is contained in $NT^*_{123} \operatorname{clgb}(\{y\})$, hence $z \in NT^*_{123} \operatorname{clgb}(\{y\})$, which is a contradiction, this mean that $x \in NT^*_{123} \operatorname{clgb}(\{y\})$ hence $x \in NT^*_{123} \operatorname{clgb}(\{y\})$, hence $y \in NT^*_{123} \operatorname{clgb}(\{y\})$

 $NT*_{123}gb - T_0$ space.

Proposition 3.21

Every Nano tri star topological space is $NT^*_{123}gb - T_0space$.

Proof:

Follows from propositions (3.19) and (3.20).

Definition 3.22

A Nano tri star topological space $(U, T^*_{R_{4|1}}(X))$ is said to be $NT^*_{123}gb - T$ space if and only if to each pair of distinct points x, y in X with $x \neq y$, there exist two $NT^*_{123}gb$ -open sets G, H such that $x \subset G$, $y \in G$ and $y \in H$, $x \in H$.

Proposition 3.23

Every $NT^*_{123}gb$ - T_1 space is $NT^*_{123}gb$ - T_0 space.

Proof:

Follows from the definition of $NT*_{123}gb - T_1space$.

Proposition 3.24

In a Nano tri star topological space $(U, T^*_{R_{4,0,1}}(X))$, the following statements are equivalent:

- (i)U is $NT*_{123}gb T_1space$.
- (ii) For each $x \in U$, $\{x\}$ is $NT*_{123}gb$ -closed in U.
- (iii)Each subset of U is the intersection of all

 $NT*_{123}gb$ -open sets containing it.

(iv) The intersection of all NT*₁₂₃gb -open sets containing the point $x \in U$ is $\{x\}$.

Proof:

(1) \longrightarrow (11)U is NT*₁₂₃gb-T₁ space and let x, y \in U and x \neq y, then there exists an

NT*₁₂₃gb-open set, say G_y such that $y \in G_y$. Hence $y \in G_y \subset \{x\}^c$ so $y \in G_y \subset \{x\}^c = U \{ G_y : y \in \{x\}^c \}$ which is NT*₁₂₃gb -open, so $\{x\}$ is NT*₁₂₃gb -closed in U .

www.ijseas.com

(ii) \Longrightarrow (iii) Let $A \subset U$ and $y \notin A$. Hence $A \subset \{y\}^c$ and

 $\{y\}^c$ is $NT^*_{123}gb$ -open in U and $A = \bigcap \{\{y\}^c : y \in A^c\}$ which is the intersection of all $NT^*_{123}gb$ -open sets containing A.

(11) \Rightarrow (1 \mathbf{v})Obvious.

(III) Let x, y∈U and x ≠ y . By assumption, there exist at least an NT*₁₂₃gb -open set containing x but not y also an NT*₁₂₃gb -open set containing y but not x .

i.e. U is NT*₁₂₃gb - T₁ space.

Definition 3.25

A Nano gb — tri star topological space $(U, T^*R_{1,13}(X))$ is said to be $NT^*_{123}gb-T_2$ if and only if for $x, y \in U$, $x \neq y$, there exist two disjoint $NT^*_{123}gb$ -open sets G, H in U such that $x \in G$ and $y \in H$

Proposition 3.26

Every $NT^*_{123}gb$ $-T_2$ space is $NT^*_{123}gb$ $-T_1$ space.

Proof:

Let U is a NT*₁₂₃ space and let x,y in G with $x \neq y$, so by hypothesis there exist two disjoint NT*₁₂₃gb – T_2 space, say G , H such that $x \in G$ and $y \in H$, but G $T_1 = \Phi$, hence $x \notin H$ and $y \notin G$, i.e. U is $T_1 = T_2 = G$.

Definition 3.27

A subset A of a Nano tri star topological space $(U, T^*_{R_{1,1}}(X))$ called NT*₁₂₃gb -neighborhood of a point $x \subset X$ if and only if there exists an NT*₁₂₃gb - open set G such that $x \in G \subset A$.

Proposition 3.28

In a Nano tri star topological space $(U, T^*_{R_{4,0,0}}(X))$, the following statements are equivalent:

- (i) X is $NT*_{123}gb T_2$ space.
- (ii) If $x \in X$, then for each $y \neq x$, there is an $NT*_{123}gb$ -neighborhood M(x) of x such that $y \notin NT*_{123}gb$ (M(x))
- (iii) For each $x \in \{NT^*_{123}gb(M)\}=\{x\}$, where M is an

 $NT*_{123}gb$ -neighborhood of x.

Proof:

(1) \Longrightarrow (11) Let $x \in U$, if $y \in V$ with $x \neq y$, then there

exist disjoint $NT^*_{123}gb$ -open sets G ,H in U such that $x \in U$ and $y \in V$.

Then $x \in G \subset U-H$, hence U-H is an $NT^*_{123}gb$ - neighborhood of x, but U-H is an $NT^*_{123}gb$ -closed and $y \notin U-H$. Now let M(x) = U-H, i.e. $y \notin NT^*_{123}gb$ (M(x)).

(11) => (111) Obvious.

(iii) \implies (1) Let x, y \in U and x \neq y . By assumption, there exist at least an NT*₁₂₃gb – neighborhood M of x such that y \in NT*₁₂₃gb(M), so x \in U-NT*₁₂₃gb (M) is T*₁₂₃gb -open, but M NT*₁₂₃gb -neighborhood of x , hence there exists an NT*₁₂₃gb -open set U such that x \in G \subseteq M and G \cap U NT*₁₂₃gb (M). i.e. U is NT*₁₂₃gb – T₂ space.

Definition 3.29

A Nano tri-topological spaces $(U, T^*_{R_4, \oplus 4}(X))$ is said to be $NT^*_{123}gb$ -regular space if and only if for each $NT^*_{123}gb$ -closed set F and each point $x \notin F$, there exist disjoint $NT^*_{123}gb$ -open sets G and H such that $x \in G$ and $F \in H$.

Proposition 3.30

A $NT^*_{123}gb-T_0$ space is $NT^*_{123}gb-T_1$ space if it is $NT^*_{123}gb$ -regular space.

Proof:

Let U be $NT^*_{123}gb - T_0$ space and $NT^*_{123}gb$ -regular space. And let $x, y \in U$ and $x \neq y$, hence there exists an $NT^*_{123}gb$ -open, say G such that G contains one of x and y, say x but not y, so U-G is an $NT^*_{123}gb$ -closed and $x \in U - G$, but U is $NT^*_{123}gb$ -regular space, hence there exist disjoint $NT^*_{123}gb$ -open sets H_1 and H_2 such that $X \in H_1$ and $U - G \subset H_2$, hence $x \in H_1$ and $y \in H_2$, i.e.U is $NT^*_{123}gb - T_2$.

Definition3.31

A map $f:(U, T^*_{R_{6,0,1}}(X)) \rightarrow (V, \sigma^*_{R_{6,0,1}}(X))$ is called NT*₁₂₃gb -irresolute if the inverse image of every NT*₁₂₃gb -open set in V is NT*₁₂₃gb -open in U.

Proposition 3.32

If $(f : (U, T^*_{R_{4,3,3}}(X)) \rightarrow (V, \sigma^*_{R_{4,3,3}}(X))$ is an injective and $NT^*_{123}gb$ -irresolute map and V is $NT^*_{123}gb$ T_2 space then U is $NT^*_{123}gb$ T_2 space. **Proof:**

Let x, $y \in U$ and $x \neq y$, since f is injective, then $f(x) \neq f(y)$, and since V is $NT*_{123}gb - T_2$, then there exist disjoint $NT^*_{123}gb$ -open sets U and V such that $f(x) \in U$ and $f(y) \in V$. Now let $P=f^{-1}(G)$ and $Q=f^{-1}(H)$ hence $x \in P$, $y \in Q$ and P, Q are $NT^*_{123}gb$ -open sets, with $P \cap Q = f^1(P) \cap f^1(Q) = f^1(P \cap Q) = \phi i.e.$ U is $NT^*_{123}gb - T_2$ space.

www.ijseas.com

5. Conclusions

In this paper we introduced new type topology is called Nano Tri star topology. and also we introduce the concepts of NT*₁₂₃ open, NT*₁₂₃closed, NT*₁₂₃bclosed set andNT*₁₂₃gbclosed set and some of their properties are disscussed detaild. Finally, we hope that this paper is just a beginning of new classes of functions, it will be necessary to carry out more theoretical research to investigate the relations between

Acknowledgments

I wish to acknowledge friends of our institution and others those who extended their help to make this paper as successful one. I acknowledge the Editor in chief and other friends of this publication for providing the timing help to publish this paper.

References

- [1]. Maximilian Ganster, Markus Steiner, 2007, "On $b\tau$ closed sets", Applied Gene. Topo., Vol. 8, No. 2, 243–247.
- [2]. Martin M. Kovar, **2000**, "On 3 -Topological Version Of q -Regularity", *Internat. J. Math. & Math. Sci.*, Vol. 23, No. 6, 393–398.
- [3]. D. Andrijevic, **1996**, "On *b* -open sets", *Mat. Vesnik*, Vol. 48, 59-64.
- [4]. Kelly J. C., Bitopological Spaces, Proc. London Math. Soc., 3 (1963), 17-89.
- [5]. Palaniammal S., Somasundaram S., A Study of Tri Topological Spaces, Shodhganga, a reservoir of Indian thesis., (2014).
- [6]. N. Levine, **1963**, "Semi-open sets andsemi-continuity in topological spaces", *Amer. Math. Mothly*, Vol. 70, 36-41.
- [7]. J.Stella irene mary j.,M. Hemalatha On tri star topological spaces induced by bitopological spaces",Internat. J.Math.Archive Vol.7(9),2016,p 147-153
- [8]. S.Chandrasekar, T.Rajesh kannan , M.Suresh Nano(1, 2)*Locally Closed Sets in Nano Bitopological spaces communicated

ISSN: 2395-3470 www.ijseas.com

- [9]. S.Chandrasekar, T.Rajesh kannanM.Suresh Contra- Nanosg-Continuity in Nano Topological Spaces accepted IJRIEST
- [10]. M.Lellis Thivagar, and Carmel Richard, On Nano Forms of Weakly Open sets, International Journal Mathematics and Statistics Invention, (2013), 31-37
- [11]. K. Bhuvaneswari1, H. Rasya Banu.On Nano (1,2)* Generalized Closed Sets in Nano Bitopological Space Int.J. Science and Research Volume 5, Apr 2016,P 1292-1295
- [12] S.Chandrasekar, J.Suresh kumar, V.Banu priya Accepted A Reiviw On Nano Quad Topological Spaces International Journal of Computer Science and Network

1. Dr.S.Chandrasekar, Assitant proessor, Department of Mathematics, Arignar Anna Government Arts College, Namakkal(DT),Tamil Nadu,India E-mail: chandrumat@gmail.com,

2.V.Banu priya
Assitant proessor,
Department of Mathematics,
RMK College of Engineering and Technology,
Puduvoyal, Tiruvallur(DT), Tamil Nadu, India

E-mail: spriya.maths@gmail.com

3.J.Suresh kumar,
Assitant proessor,
Department of Mathematics,
Muthayammal Engineering College,
Namakkal(DT),Tamil Nadu,India
E-mail: surejsk@gmail.com