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Abstract 
In this project we are going to implement the elliptic 
curve cryptography (ECC) processor. The most 
popular public-key cryptography systems nowadays 
are RSA and Elliptic Curve Cryptography (ECC). 
ECC is considered much more suitable than other 
public-key algorithms. It uses lower power 
consumption, has higher performance and can be 
implemented on small areas that can be achieved by 
using ECC. There is no sub exponential-time 
algorithm in solving the Elliptic curve discrete 
logarithm problem. Therefore, it offers smaller key 
size with equivalent security level compared with the 
other public key cryptosystems. Finite fields (or 
Galois fields) is considered as an important 
mathematical theory. Thus, it plays an important role 
in cryptography. As a result of their carry free 
arithmetic property, they are suitable to be used in 
hardware implementation in ECC. According to the 
hierarchy of Elliptic Curve, scalar multiplication 
consists of point addition and point doubling which 
work over the Galois Field operations. On the other 
hand GF operations consist of three operations 
(addition, Multiplication and Inversion).The 
processor uses a hybrid Karatsuba algorithm for field 
multiplication and a quad Itoh Tsujii algorithm for 
field inversion. The scalar multiplier is implemented 
using a simple double and add algorithm. We aim at 
demonstrating that efficient arithmetic operations are 
vital to obtain an efficient elliptic curve processor 
over Galois fields of order 233.  
 Keywords: Cryptography, ECC, Galois field, 
Encryption, Decryption, Karatsuba algorithm. 
 
1. INTRODUCTION 
Cryptography is the science of information 
security. Cryptography includes techniques such 
as microdots, merging words with images and 
other ways to hide information in storage or 
transit. Cryptography is most often 

associated with scrambling plaintext (ordinary 
text, sometimes referred to as clear text) into 
ciphertext (a process called encryption), then 
back again (known as decryption). A 
Cryptographic system that uses two keys – a 
public key known to everyone and a private or 
secret key known only to the recipient of the 
message. Individuals who practice this field are 
known as cryptographers. 
 
Software architectures have the great advantage that 
they are portable to multiple hardware platforms. 
Their main disadvantage are their lower performance 
when compared to specialized hardware architectures 
and their inability to protect private keys from 
disclosure with the same degree of security that is 
achievable in hardware. These disadvantages are 
some of the reasons motivating the study of efficient 
hardware architectures. The program for 
implementing ECC in hardware using FPGA is 
written in Verilog Hardware Description language. 
FPGA’s are reconfigurable hardware devices 
whose functionality is programmable. The 
configuration of an FPGA device can be changed 
over time thus allowing the same FPGA to 
implement different functions. 
2. PROBLEM DEFINITION 
The security of the ECC is based on the apparent 
intractability of the following elliptic curve 
discrete logarithm problem (ECDLP): Consider 
the equation, Q = kP, where Q, P are points in 
the elliptic curve E(a,b) and k< P. 
It is relatively easy to calculate Q given k and P , 
but it is relatively hard to determine k given Q 
and P. This is called discrete logarithmic 
problem for elliptic curves.  
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The elliptic curve consists of all real numbers for 
the points x,y,a and b in the (x,y) coordinate 
plane. The E(a,b) curve plane satisfies the 
following equation:y2 = x3+ ax + b(mod p). The 
prime number p sets the upper limits of the 
equation and is used for modulus arithmetic. P 
and Q are the points on the elliptic curve. When 
using ECC, there are two types of arithmetic, the 
cartesian coordinates for resolving the elliptic 
curve and modular arithmetic used for resolving 
the the points along the coordinate system k is a 
very large integer generated at random which is 
multiplied with the point. 
This system enhances the security of data 
transfer as well as reduces the size of the cipher 
text thereby eliminating the drawbacks of Diffie 
Heilman and ElGamal algorithms. 
3. IMPLEMENTATION 
 

 
 
Figure 1 Basic cryptographic system 
 
In figure 1 a message, M has to be transmitted 
from A to B. This message has to be encrypted 
before transmission and the receiver must be 
able to obtain the original message after 
decryption. P is a public key used for encryption. 
x is a private key known only to module 
A. Module A calculates xP and makes it public. 
The values of x and P are chosen such that even 
with the knowledge of P, it would be nearly 
impossible to calculate x. Similarly, y is a 
private key of module B. Module B 
calculates yP and makes it public. 

The encryption and decryption steps involved in 
transmission and reception of a message using 
ECC is described below. 
Encryption: 

a. Let x, y be the private keys used by the 
transmitter and receiver respectively. The 
transmitter secret key x is multiplied with 
the public value of the receiver yP i.e., 
xyP. 

b.  The message is encrypted using the 
formula M + xyp, where M is the plain 
text. 

Decryption: 
a. The receiver’s secret key y is multiplied 

with the public value of the transmitter 
xP i.e., yxP. 

b. The message is decrypted by subtracting 
the value yxP from the received message 
i.e., M + xyP – xyP = M. 

The flow chart representation is as shown below. 

 
Figure 2 Flowchart for Encryption 
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Figure 3 Flowchart for Decryption 
 
The Field GF (28) 
The elements of a finite field can be represented 
in several different ways. For any prime power 
there is a single finite field, hence all 
representations of Galois Field, GF (28) are 
isomorphic. Despite this equivalence, the 
representation has an impact on the 
implementation complexity. Joan Daemen and 
Vincent Rijmen have chosen for the classical 
polynomial representation. 
A byte b, consisting of bits b7 b6 b5 b4 b3 b2 b1 
b0, is considered as a polynomial with 
coefficient in {0,1}: 

 

The addition of two finite field elements is 
achieved by adding the coefficients for 
corresponding powers of their polynomial 
representations, this addition being performed in 
GF (28), that is, modulo 2, so that 1 + 1 = 0. 
Consequently, addition and subtraction are both 
equivalent to an exclusive-or (XOR) operation 
on the bytes that represent field elements. 
Addition operations for finite field elements will 
be denoted by the symbol . 

Finite field multiplication is more difficult than 
addition and is achieved by multiplying the 
polynomials for the two elements concerned and 
collecting like powers of x in the result. Since 
each polynomial can have powers of x up to 7, 
the result can have powers of x up to 14 and will 
no longer fit within a single byte. 
 
4 Modules Implementation 

Implementation consists of three main modules  
design as stated below. 

i) Main Controller 

ii) Multiplier and 

iii) Adder 

The main controller controls the functioning of 
the adder and multiplier components. The 
multiplier block is selected when the Enable line 
is ‘00’. 
The multiplier performs multiplication of an 
integer with a point on the elliptic curve. The 
multiplication is done by successive addition. 
The adder block is selected when the Enable line 
is ‘01’. The adder performs addition of two 
points on an elliptic curve. Addition is based on 
the rules of Elliptic Curve Arithmetic known as 
point addition. 
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Figure 4 Main Modules in Elliptical Curve 
Cryptography 
The main controller controls the functioning of 
the adder and multiplier components. It has 
several internal signals, the functions of which 
are mentioned below. 
Clock : The internal clock 
Reset : The reset signal is used to bring back all 
the components to their initial conditions , when 
set to ‘1’. 
Mx : X -coordinate of the message to be 
transmitted 
My : Y - coordinate of the message to be 
transmitted 
aPx : X - coordinate of the quantity “xP”, 
(required in the encrypter part) 
aPy : Y - coordinate of the quantity “yP”, 
(required in the encrypter part) 
Enc_Dec : Selects encryption/decryption 
‘0’ – Encryption 
‘1’ – Decryption 
k_l : A very large integer (Private key) generated 
at random 
En : Enables Multiplier/point Adder 
‘00’ – Multiplier 
‘01’ – Point Adder 
To Multipler 
k : A very large integer generated at random 
which is multiplied with the point 
oPx : X - coordinate of the point which is to be 
multiplied with the integer 
oPy : Y - coordinate of the point which is to be 
multiplied with the integer. 
To Point Adder 
oPx : X - coordinate of the addend 
oPy : Y - coordinate of the addend 
oQx : X - coordinate of the augend 
oQy : Y - coordinate of the augend 
From Multipler 
iPx : X - coordinate of the result 
iPy : Y - coordinate of the result 
From Point Adder 
add_iPx : X - coordinate of the result 
add_iPy : Y - coordinate of the result 
Final Outputs 

kPx : X - coordinate of the product “xP” 
(Encryption) 
kPy : Y - coordinate of the product “yP” 
(Encryption) 
outx : X - coordinate of the expression “xyP+M” 
outy : Y - coordinate of the expression “xyP+M” 
 
4.1 RESULTS 
Below figures represents the individual RTL 
view of each module and the simulation of three 
main modules. 

 

Figure 5 RTL view of EC ALU. 

 

Figure 6 RTL view of ALU. 
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Figure 7 RTL view of ALUcontrol 

 Figure 8 RTL view of REGISTER FILE. 

 

Figure 9 RTL view of DATA MEMORY  

 Figure 10 RTL view of clock divider circuit 

 

Figure 11 Multiplication Operations used in 
Encryption 

 

Figure 12 Multiplication Operations used in 
Decryption 
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Figure 13 Addition Operations used in 
Encryption 
 
 

 
Figure 14 Addition Operations used in 
Decryption 
 

 
Figure 15 Main Controller outputs in  
Encryption 
 
 

 
 
Figure 16 Main Controller outputs in  
Decryption 

5. CONCLUSIONS 

Elliptic Curve Cryptosystems offer security 
comparable to that of traditional asymmetric 
crypto systems, such as those based on the RSA 
algorithm and Digital signature algorithm with 
smaller keys and computationally more efficient 
algorithms. The ability to use smaller keys and 
computationally more efficient algorithms than 
traditional asymmetric cryptographic algorithms 
are two main reasons for using Elliptic Curve 
Cryptography.  The most straight forward 
algorithm for polynomial multiplications in ECC 
is the shift and add method, similar to the 
method for normal binary multiplications. This 
method is suited for hardware implementations 
where the shift operation can be performed in 
one clock cycle. However it is less desirable for 
software implementations because shifting a 
polynomial stored in multiple words is a slow 
operation that incurs many memory access, 
especially on low end processors that are used in 
small computing devices such as sensor nodes. 
To overcome this difficulty in this paper the 
Elliptic Curve Cryptography system is proposed. 
The basic modules necessary to implement 
Elliptic Curve Cryptographic system are main 
controller, multiplier and point adder, for 
security in data transfer 
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