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Abstract 

In the Meissner effect, the electric and magnetic fields can 
be induced because the initial ground electronic state tries 
not to receive the applied external magnetic field, as much 
as possible, in order that the electronic state does not 
change from the initial ground electronic state.   This 
expulsion originates from very stable bosonic standing 
wave state (70 eV) with zero momentum formed by two 
components of the traveling waves of two fermionic 
electrons with opposite momentum and spins.   In the 
closed-shell electronic structure in superconductivity, two 
electrons occupying the same orbital have the opposite 
momentum and spins by each other, and are condensated 
into the zero-momentum state (Bose–Einstein 
condensation), and therefore, there is standing wave with 
zero momentum formed by two electrons.   Related to the 
relationships between the bosonic standing waves and 
fermionic traveling waves, we also discuss the 
relationships between the entropy and the time. 
Keywords: Meissner Effect; Bose–Einstein 
Condensation; Fermionic Traveling Waves; Bosonic 
Standing Waves.    
 
1. Introduction 

The effect of vibronic interactions and electron–
phonon interactions [1–7] in molecules and crystals is an 
important topic of discussion in modern chemistry and 
physics.   The vibronic and electron–phonon interactions 
play an essential role in various research fields such as the 
decision of molecular structures, Jahn–Teller effects, 
Peierls distortions, spectroscopy, electrical conductivity, 
and superconductivity.   We have investigated the 
electron–phonon interactions in various charged 
molecular crystals for more than 15 years [1–8].   In 
particular, in 2002, we predicted the occurrence of 
superconductivity as a consequence of vibronic 
interactions in the negatively charged picene, 
phenanthrene, and coronene [8].   Recently, it was 
reported that these trianionic molecular crystals exhibit 
superconductivity [9].    

Related to the research of superconductivity as 
described above, in the recent research [10,11], we 
explained the mechanism of the Ampère’s law 

(experimental rule discovered in 1820) and the Faraday’s 
law (experimental rule discovered in 1831) in normal 
metallic and superconducting states [12], on the basis of 
the theory suggested in our previous researches [1–7].   
Furthermore, we discussed how the left-handed helicity 
magnetic field can be induced when the negatively 
charged particles such as electrons move [13].   That is, 
we discussed the relationships between the electric and 
magnetic fields [13].   Furthermore, by comparing the 
electric charge with the spin magnetic moment and mass, 
we suggested the origin of the electric charge in a particle.   
Furthermore, in the previous research, we discussed the 
origin of the gravity, by comparing the gravity with the 
electric and magnetic forces.   Furthermore, we showed 
the reason why the gravity is much smaller than the 
electric and magnetic forces [14].   We discussed the 
origin of the strong forces, by comparing the strong force 
with the gravitational, electric, magnetic, and 
electromagnetic forces.   We also discussed the essential 
properties of the gluon and color charges, and discussed 
the reason why the quarks and gluons are confined in 
hadron [15].   Furthermore, we discussed the origin of the 
weak forces, and discussed the reason why the parity 
violation can be observed in the weak interactions [16].   
We also suggested the relationships between the Cooper 
pairs in superconductivity and the Higgs boson in the 
vacuum [16,17].   Recently, we discussed the origin of the 
spin magnetic dipole moment, massive charge, electric 
monopole charge, and color charge for the particle and 
antiparticles at the particles and antiparticle spacetime 
axes, by considering that particles (antiparticles) can be 
formed by mixture of the wavefunction of more dominant 
particle (antiparticle) component and of less dominant 
antiparticle (particle) component [18].   We suggested the 
new interpretation of the spacetime axis in the special 
relativity [19].   We also discussed the mechanism of the 
particle–antiparticle pair annihilation in view of the 
special relativity [19].   

In this research, we will suggest the relationships 
between the superconducting, normal metallic, and 
insulating states.   Related to these relationships, in 
particular, related to the relationships between the bosonic 
standing waves and the fermionic traveling waves, and 
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between the non-equilibrium states and the equilibrium 
states, we will also discuss the relationships between the 
entropy and the time.    
 
2. Relationships between the London Theory and the 
BCS Theory 

Historically, the conventional BCS theory for 
superconductivity has been established by Bardeen, 
Cooper, and Schrieffer in 1957 on the basis of the 
phenomenological London theory established by London 
brothers in 1935, as follows.   In 1935, London brothers 
explained the nondissipative diamagnetic currents in the 
closed-shell electronic structures with large energy gaps 
between the occupied and unoccupied orbitals in small 
materials such as He atoms and benzene molecules 
(Scheme 1).   They suggested that under the applied 
magnetic field, the atomic and molecular orbitals in He 
atoms and benzene molecules are very rigid, and thus if 
we assume that the canonical momentum pcanonical  value, 
which denotes the total intrinsic momentum of each 
electron continues to become zero even under the applied 
magnetic field, and the pem  mevem   value, which 

denotes the momentum as a consequence of the 
electromotive forces, increases according to the applied 
magnetic field, the nondissipative diamagnetic currents in 
small materials such as He atoms and benzene molecules 
can be explained (Scheme 1).   Furthermore, they 
suggested that superconductivity in the macroscopic sized 
solids can also be explained if we apply the London 
theory to the macroscopic sized superconductivity.   The 
problem was to elucidate the mechanism how the stable 
electronic states with pcanonical  0 can be realized.   On 
the basis of the London theory, Bardeen, Cooper, and 
Schrieffer explained the mechanism of the realization of 
the electronic structures with pcanonical  0  by 
considering that such stable electronic structures can be 
realized by electron pairing formed by two electrons with 
opposite momentum and spins as a consequence of the 
electron–phonon interactions.   That is, the conventional 
BCS theory elucidating the mechanism of the occurrence 
of the macroscopic sized superconductivity has been 
established on the basis of the phenomenological London 
theory, which tries to explain the nondissipative 
diamagnetic currents in the microscopic sizes.   On the 
other hand, the mechanism of the forming of the stable 
electronic structures with pcanonical  0  assumed in the 
phenomenological London theory in the microscopic 
sized atoms and molecules has not been elucidated 
(Scheme 1).   Even though the conventional BCS theory 
for the macroscopic sized superconducting materials has 
been established on the basis of the London theory for the 
nondissipative diamagnetic currents in the microscopic 
sized atoms and molecules, the nondissipative 

diamagnetic currents in the microscopic sized atoms and 
molecules  

–k j ,–s

 k j ,s

p canonical  0

p em mevem  0

–k j ,–s  pem

p em

p em

k j ,s  pem

electron pairing

microscopic sized one benzene molecule 
Scheme 1. Supercurrent in the microscopic sized one 
benzene molecule. 
 
have not been considered as superconductivity (Scheme 
1).   In the previous research, we suggested that the 
Cooper pairs can be formed by the large valence–
conduction band gaps ( EHOMO–LUMO,N ) as a 

consequence of the quantization of the orbitals by nature, 
and by the attractive Coulomb interactions between two 
electrons with opposite momentum and spins occupying 
the same orbitals via the positively charged nuclei [1–7].   
We try to elucidate that the nondissipative diamagnetic 
currents in the microscopic sized atoms and molecules can 
be considered as superconductivity (Scheme 1), by 
considering the reason why the Meissner effect can be 
observed in superconductivity, in more detail, in this 
article.    
 
3. Energy Level for the One and Two Electrons 
Systems 
3.1 Zero Momentum Condensated States in the One- and 
Two-Electrons Systems 

In the closed-shell electronic structure in 
superconductivity, two electrons occupying the same 
orbital j  have the opposite momentum and spins 

( k j, –k j   and k j, –k j  ) by each other, and 

are condensated into the zero-momentum state (Bose–
Einstein condensation), and therefore, there is the bosonic 

standing wave ( kground, two ) with zero momentum 

( pcanonical  0 ) formed by two components of the 
fermionic traveling waves of two electrons (Fig. 1 (a)),  
 

kground, two  c j k j, –k j   
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                     c j k j, –k j  .                            1   
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Fig. 1. Standing and traveling waves.   (a) Two electrons 
systems.   (b) One electron systems. 

Since each fermionic electron ( k j   and –k j  , and 

k j   and –k j  ) has the kinetic energy of about 35 

eV, the condensation energy for two electrons 

( kground, two ) ( pcanonical  0) is very large, and usually 

is about 70 eV.   This standing wave state ( kground, two ), 

related to the Cooper pair in superconductivity, is very 
rigid and stable because of the closed-shell electronic 

structure in the two-electrons systems ( k j, –k j   and 

k j, –k j  ) (Fig. 1 (a)).   This is closely related to the 

condensation of electrons into zero momentum state 
( pcanonical  0 ) in one-electron system in the London 
theory in superconductivity, even though London could 
not elucidate how each electron can be condensated into 
the zero momentum state ( pcanonical  0).    

Let us next consider how each electron can be 
condensated into the zero momentum state 
( pcanonical  0 ) in one-electron systems.   We can 
consider that this theory is applicable even for the one-
electron system in the normal metals since there is no 
spontaneous electrical current and the magnetic moment 
in any direction without any applied electric and magnetic 
fields even in the normal metals.   It should be noted that 
an electron is wave as well as particle.   Therefore, in a 
similar way, even one electron partially occupying the 
same orbital j  is formed by two components of the 
fermionic traveling waves with opposite momentum and 

spins ( k j   and –k j  , k j   and –k j  ) by 

each other, and is condensated into the bosonic zero-
momentum state, and therefore, there is standing wave 

ground state ( kground,one ) with zero momentum 

( pcanonical  0 ) and zero average kinetic energy under 
each applied external magnetic field (Fig. 1 (b)),  
 

kground,one  cj k j   –k j   
                     c j k j   –k j  .                   2   

 
Such condensation energy from the kinetic energy (Vkin ) 
to the potential energy ( Vpotential ) is very large, and 

usually is about 35 eV.   Such condensation originates 
from the fact that two fermionic traveling waves with 
opposite direction, the kinetic energy of which is about 35 
eV, form the bosonic standing wave, the kinetic energy of 
which is 0 eV.   On the other hand, this standing wave 

ground state ( kground,one ) formed by only one electron 

( k j   –k j   and k j   –k j  ) is very fragile 
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and unstable even under the applied very small extra 
external magnetic field because of the opened-shell 
electronic structure in the one-electron system (Fig. 1 (b)).    
 
3.2 Energy for the One Electron Systems 

Without any applied magnetic or electric field (ground 
state), the energy ( EFermi, kHOCO 0  ) for the fermionic 

states ( Fermi ,k HOCO 0  ) of an electron with spin   

occupying the highest occupied crystal orbital (HOCO) at 
0 K can be expressed as follows (Fig. 1 (b)), according to 
the conventional solid state physics,  
 
EFermi, kHOCO 0   VCoulomb ,Fermi,kHOCO 0  
                            Vkin, Fermi,kHOCO 0 ,                 3 

 
 
where the VCoulomb,Fermi,kHOCO 0   value denotes the 

Coulomb energy between a fermionic electron with spin 
  occupying the HOCO and all another nuclei and 
electrons, and the Vkin, Fermi,kHOCO 0  value denotes the 

kinetic energy for a fermionic electron with spin   
occupying the HOCO.    

A boson has zero total momentum ( pcanonical 0   0 ) 
and kinetic energies ( Vkin, Bose, kHOCO 0   0 ).   

Therefore, without any applied magnetic field (ground 
states; pcanonical 0   0 ), the energy ( EBose,k HOCO 0  ) 

for the bosonic electronic states (Bose ,kHOCO 0 ) of an 

electron with spin   occupying the HOCO can be 
expressed as (Fig. 1 (b)),  
 
EBose,k HOCO 0   VCoulomb, Bose, kHOCO  

                            VCoulomb, Fermi,kHOCO ,             4   

 
where the VCoulomb,Bose,kHOCO 0   value denotes the 

Coulomb energy between a bosonic electron with spin   
occupying the HOCO and all another nuclei and 
electrons, and the Vkin, Bose, kHOCO 0   0   value denotes 

the kinetic energy for a bosonic electron with spin   
occupying the HOCO.   As a consequence of the Bose–
Einstein condensation, the kinetic energy 
( Vkin, Fermi,kHOCO 0  ) for a fermionic particle with 

pcanonical 0   0  has been converted to the potential 
energy ( Vpotential,Bose ,k HOCO 0  ) for a bosonic particle 

with pcanonical 0   0  (Fig. 1 (b)).    
According to Refs. [1–7], we can consider that an 

electron formed by the two electronic states with opposite 
momentum and spins can be considered to have bosonic 
properties at the ground state, and the Bose–Einstein 
condensation energy (EBE,kHOCO 0 ) from a fermionic 

electron ( Fermi ,k HOCO 0  ) to a bosonic electron 

( Bose ,kHOCO 0  ) with spin   occupying the HOCO 

can be expressed as (Fig. 1 (b)),  
 
EBE,kHOCO 0   

                        EFermi,k HOCO 0  – EBose ,kHOCO 0   

                        Vkin,Fermi,kHOCO 0 .                    5   

 
The Vkin,Fermi,kHOCO 0   values are usually very large 

( 35 eV).   That is, we have considered that an electron 
occupying an orbital in the ground state without any 
external fields, can become bosonic state 

( kground,HOCO,one ) with zero total momentum 

( pcanonical 0   0 ) and kinetic energies 
(Vkin,Bose,kHOCO 0   0 ) formed by two components of 

the fermionic traveling waves 

( kHOCO   –kHOCO   and 

kHOCO   –kHOCO  ) with opposite momentum 

and spins [1–7].   Such stabilization energy of the bosonic 
standing wave states with respect to the two fermionic 
traveling wave states (i.e., Bose–Einstein condensation 
energy) originates from the disappearance of the kinetic 
energy ( pcanonical 0   0  and Vkin,Bose,kHOCO 0   0 ), 

and can be estimated to be Vkin,Fermi,kHOCO 0  
( 35 eV) (Fig. 1 (b)) [1–7].    
 
3.3 Energy for the Two Electrons Systems 

Without any applied magnetic field or electric field 
(ground state; pcanonical 0   0 ), the energy 
( EFermi,kHOCOkHOCO   0  ) for the fermionic states 

( Vkin,Fermi,kHOCOk HOCO   0   0 ) of two electrons 

occupying the HOCO (Fermi ,k HOCOk HOCO  0 ) can be 

expressed as follows (Fig. 1 (a)), according to the 
conventional solid state physics,  
 
EFermi,kHOCOkHOCO   0   

 2VCoulomb,Fermi,kHOCO 0   2Vkin,Fermi ,k HOCO 0 .  

                                                                                6   
 

Furthermore, without any applied magnetic or electric 
field (ground states; pcanonical 0   0 ), the energy 
(

EBose, kHOCOkHOCO  0  ) for the bosonic electronic 

states (

Vkin,Bose,kHOCOkHOCO  0   0 ) of two 

electrons (

Bose ,k HOCO kHOCO  0  ) can be expressed 

as (Fig. 1 (a)),  
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
EBose, kHOCOkHOCO  0   

                               2VCoulomb,Fermi,kHOCO 0 . 7   

 
Therefore, we can consider that a Cooper pair formed 

by two electrons with opposite momentum and spins can 
be considered to have bosonic properties at the ground 
state ( pcanonical 0   0 ), and the Bose–Einstein 
condensation ( 2EBE 0  ) for two electrons from 
fermionic electrons ( Fermi ,k HOCOk HOCO  0  ) to a 

bosonic electron pair (

Bose ,k HOCO kHOCO  0 ) can be 

expressed as (Fig. 1 (a)),  
 
2EBE 0   EFermi ,kHOCOk HOCO  0  


                 – EBose ,k HOCO kHOCO  0   

                 2Vkin,Fermi,kHOCO 0   70 eV.          8   

 
That is, we can consider that two electrons occupying an 
orbital in the ground state without any external fields, can 

become bosonic state ( kground,HOCO, two ) with zero total 

momentum ( pcanonical 0   0 ) and kinetic energies 
( Vkin,Bose,kHOCO 0   0 ) as a consequence of electron 

pairing between two fermionic electrons 

( kHOCO, –kHOCO   and kHOCO, –kHOCO  ) 

with opposite momentum and spins [1–7].   Such 
stabilization energy of the bosonic standing wave in two 
electrons with respect to the two fermionic traveling 
waves in two electrons (i.e., Bose–Einstein condensation 
energy) originates from the disappearance of the kinetic 
energy ( pcanonical 0   0  and Vkin,Bose,kHOCO 0   0 ), 

and can be estimated to be 
2Vkin,Fermi ,k HOCO 0   70 eV  (Fig. 1 (a)) [1–7].    

 
4. Energy Gap Forming in the Superconductivity 

Let us next look into the energy gap formed by 
electron–phonon interactions in superconductivity.    
 
4.1 One New Theory 

The energy for the two fermionic electrons 
( Fermi ,k HOCOk HOCO  ,before 0  ) before electron–

phonon interactions can be expressed as (Fig. 2),  
 
EFermi,kHOCOkHOCO  , before 0  
 2VCoulomb,Fermi,kHOCO 0  2Vkin,Fermi ,k HOCO 0 ,  

                                                                                 9  
 
and that for bosonic state ( Bose ,kHOCO ,before 0   and 

Bose ,k HOCO  ,before 0 ) formed by the two bosonic  

Egap,NM–SC,BCSint.
0 

Fermi,k HOCOk HOCO,before 0 
Fermi,k HOCOk HOCO,after 0 


Bose,k HOCO k HOCO ,after 0 

EBE,kHOCOk HOCO  0 
 70 eV

EBE,kHOCOk HOCO  0 
 70 eV

Bose,k HOCOk HOCO ,before 0 

Egap,e–ph 0 

 10–2 ~ 10–3  eV

Egap,e–ph 0 

 10–2 ~ 10–3  eV

bosonic
bosonic

fermionic
fermionic

electron–phonon interactions

BCS theory

electron–phonon interactions

our new  theory

observable observable

not usually observable observable or 
not usually observable

 
Fig. 2. The energy levels for the fermionic and bosonic 
electrons in the BCS theory and our theory. 
 
electrons before electron–phonon interactions can be 
expressed as (Fig. 2),  
 
2EBose,kHOCO, before 0   2VCoulomb,Fermi 0 .       10   

 
On the other hand, the energy for the two fermionic 
electrons (Fermi ,k HOCOk HOCO  ,after 0 ) after electron–

phonon interactions can be expressed as (Fig. 2),  
 
EFermi,kHOCOkHOCO  ,after 0  
 2VCoulomb,Fermi,kHOCO 0   2Vkin,Fermi ,k HOCO 0   

–Egap, e–ph 0 ,                                                     11   

 
and that for bosonic state 
(

Bose ,k HOCO kHOCO  ,after 0  ) formed by the two 

fermionic electrons after electron–phonon interactions can 
be expressed as (Fig. 2),  
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
EBose, kHOCOkHOCO ,after 0  
 2VCoulomb,Fermi,kHOCO 0  – Egap, e–ph 0 .      12   

 
4.2 Problems in the Conventional BCS Theory 

According to the conventional BCS theory, we 
consider that two fermionic electrons 
( Fermi ,k HOCOk HOCO  ,before 0  ) are condensated into 

one bosonic Cooper pair 
(

Bose ,k HOCO kHOCO  ,after 0  ) as a consequence of 

electron–phonon interactions, and at the same time, the 
Bose–Einstein condensation occurs.   Obeying this 
interpretation, the energy difference 
(Egap,NM –SC,BCSint .

0  ) between them can be expressed 

as (Fig. 2),  
 
Egap,NM –SC,BCSint .

0   

 EFermi,kHOCOk HOCO  , before 0  


–EBose,kHOCOkHOCO ,after 0   

 Egap,e–ph 0  2Vkin,Fermi,kHOCO 0  
 Egap,e–ph 0  EBE,k HOCOk HOCO  0 .        13  
 
On the other hand, this interpretation contradicts the 
equation of the BCS theory itself.   The usual 
Egap,NM –SC,BCScalc.

0  values estimated on the basis of 

the conventional BCS theory can be expressed as (Fig. 2),  
 
Egap,NM –SC,BCScalc.

0  
 EFermi,kHOCOk HOCO  , before 0  
–EFermi,kHOCOk HOCO  ,after 0   

 Egap,e– ph 0 .                                                   14   

 
In such a case, the Egap,NM –SC,BCSint .

0   values are 

very large, and are not estimated to be the same with the 
Egap,NM –SC,BCScalc.

0  values estimated on the basis of 

the conventional BCS theory.   In the BCS theory, 
unstable two electrons before the electron–phonon 
interactions in the normal metallic states are considered to 
be fermionic while the stable two electrons after electron–
phonon interactions are considered to be bosonic (Fig. 2).   
That is, estimation ( Egap,NM –SC,BCScalc.

0  ) and 

interpretation ( Egap,NM –SC,BCSint .
0  ) of the physical 

parameters for Egap,NM –SC 0   are somewhat 

ambiguous in the conventional BCS theory.   
Furthermore, the Egap,NM –SC,BCScalc.

0   and 

Egap, e–ph 0   values have been called the “Bose–

Einstein condensation energy (EBE,kHOCOkHOCO   0 )” 

in the conventional BCS theory.   It is also ambiguous 
definition because the Egap,NM –SC,BCScalc.

0   and 

Egap, e– ph 0   values are not related to the conversion 

from the fermionic states to the bosonic states 
(EBE,kHOCOkHOCO   0 ), but are related to the energy 

difference (Egap, e– ph 0 ) between the stable fermionic 

two electrons after electron–phonon interactions 
( Fermi ,k HOCOk HOCO  ,after 0  ) and the unstable 

fermionic two electrons before electron–phonon 
interactions (Fermi ,k HOCOk HOCO  ,before 0 ), which are 

actually observed (Fig. 2).   The EBE,kHOCOkHOCO   0   

values are usually very large (  70 eV ), on the other 
hand, the Egap,NM –SC,obs. 0   and Egap, e–ph 0   

values are usually observed to be very small 
(  10–2 ~ 10–3 eV ).   Therefore, we should reconsider 
the interpretation of the BCS theory, as shown below.    
 
4.3 New Interpretation of the Bose–Einstein 
Condensation in Superconductivity 

In the BCS theory, unstable two electrons before the 
electron–phonon interactions in the normal metallic states 
are considered to be fermionic while the stable two 
electrons after electron–phonon interactions are 
considered to be bosonic (Fig. 2).   If we consider that the 
stable two electrons after electron–phonon interactions as 
well as the unstable two electrons before the electron–
phonon interactions are fermionic, the 
Egap,NM –SC,BCScalc.

0   values are estimated to be the 

same with the Egap, e–ph 0   values, as in Eq. (14) (Fig. 

2).   This is the equation (Eq. (14)) appearing in the 
conventional BCS theory and actually observed physical 
parameters,  
 
Egap,NM –SC,obs. 0   Egap,NM –SC,BCScalc.

0   

                                 Egap,e–ph 0 .                  15   

 
That is, we should consider that the Bose–Einstein 
condensation occurs after electron–phonon interactions 
( Egap, e– ph 0  ) are completed, and the Bose–Einstein 

condensation energy, can be expressed as 

EBE,kHOCOkHOCO   0   2Vkin,Fermi,kHOCO 0   70 eV 
 (Fig. 2),  
 
EBE,kHOCOkHOCO   0   

 EFermi,kHOCOk HOCO  , before 0  
–2EBose,k HOCO ,before 0   

 2Vkin,Fermi,kHOCO 0   70 eV.                        16   

 



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-4, April 2017 
                              ISSN: 2395-3470 

www.ijseas.com 
 

16 
 

The Egap,NM –SC 0   and Egap, e– ph 0   values 

appearing in the BCS theory do not denote the Bose–
Einstein condensation energy but denote the stabilization 
energy of the two fermionic electrons in the closed-shell 
electronic structure after electron–phonon interactions 
( EFermi,kHOCOkHOCO  ,after 0 ) with respect to the two 

fermionic electrons in the opened-shell electronic 
structure ( EFermi,kHOCOkHOCO  , before 0 ) (Fig. 2).   We 

should consider that after electron–phonon interactions 
are completed ( EFermi,kHOCOkHOCO  ,after 0 ), the Bose–

Einstein condensation can occur 
(

EBose, kHOCOkHOCO ,after 0 ), in the BCS theory.   In 

such a case, the Bose–Einstein condensation energy 
( EBE,kHOCOkHOCO   0  ) denotes the stabilization 

energy of a bosonic Cooper pair in the closed-shell 
electronic structure after electron–phonon interactions 
(

EBose, kHOCOkHOCO ,after 0 ) with respect to the two 

fermionic electrons in the closed-shell electronic structure 
after electron–phonon interactions 
( EFermi,kHOCOkHOCO  ,after 0 ) (Fig. 2).    

On the other hand, according to our theory, the already 
condensated two bosonic electrons 
( 2EBose,kHOCO, before 0  ) are converted to the already 

condensated one bosonic Cooper pair 
(

EBose, kHOCOkHOCO ,after 0 ) as a consequence of the 

electron–phonon interactions (Egap, e–ph 0 ) (Fig. 2),  

 
Egap,NM –SC,our theory 0   

 2EBose ,kHOCO ,before 0   


–EBose,kHOCOkHOCO ,after 0   

 Egap,e– ph 0 .                                                  17   

 
EBE,kHOCOkHOCO   0   

 EFermi,kHOCOk HOCO  , after 0   


–EBose,kHOCOkHOCO ,after 0   

 EFermi,kHOCOk HOCO  , before 0  
–2EBose,k HOCO ,before 0   

 2Vkin,Fermi,kHOCO 0   70 eV.                         18   

 
Our theory (Egap,NM –SC,our theory 0 ) can well explain 

the equation ( Egap,NM –SC,BCScalc.
0  ) in the BCS 

theory.   According to our theory, two electrons before 
electron–phonon interactions in the normal metallic states 
( 2EBose,kHOCO, before 0  ) are also bosonic, and we can 

estimate the Egap,NM –SC 0   values as follows.   We 

consider that the already condensated two bosonic 

electrons ( 2EBose,kHOCO, before 0  ) are converted to the 

already condensated one bosonic Cooper pair 
(

EBose, kHOCOkHOCO ,after 0 ) as a consequence of the 

electron–phonon interactions ( Egap, e– ph 0  ) (Fig. 2).   

In this case, the Egap,NM –SC 0   value becomes the 

same with the Egap, e–ph 0   value.   This is because two 

electrons in the normal metallic states as well as the 
superconducting states are considered to be bosonic, and 
the EBE,kHOCOkHOCO   0   values for the unstable two 

bosonic electrons before electron–phonon interactions 
(2EBose,kHOCO, before 0 ) are the same with that for the 

stable bosonic Cooper pair after electron–phonon 
interactions (


EBose, kHOCOkHOCO ,after 0  ) (Fig. 2).   

However, as we described above, we cannot usually 
observe bosonic electron (Eq. (10)) but can usually 
observe fermionic electron (Eq. (9)), in particular, when 
the orbitals occupied by electrons are changed.   
Therefore, we usually observe the physical parameters 
estimated on the basis of the Fermi particles (Eq. (9)) in 
the conventional solid state physics (Fig. 2).    

Let us next look into the observation of the electron–
phonon interaction processes.   The process from the 
destruction of the already condensated two bosonic 
electrons (2EBose,kHOCO, before 0 ) (formation of the two 

fermionic electrons ( EFermi,kHOCOkHOCO  , before 0 )) in 

the opened-shell electronic structure to the formation of 
the two fermionic electrons 
( EFermi,kHOCOkHOCO  ,after 0  ) in the closed-shell 

electronic structure as a consequence of the electron–
phonon interactions is considered in the BCS theory, and 
is usually observed (Fig. 2).   When we try to observe the 
electron–phonon processes, we cannot usually observe the 
bosonic metallic states before electron–phonon 
interactions ( 2EBose,kHOCO, before 0  ) and the bosonic 

superconducting states after electron-phonon interactions 
(

EBose, kHOCOkHOCO ,after 0 ) (Fig. 2).    

 
5. Relationships between the Fermionic and Bosonic 
Properties in Two Electrons Systems 

Let us look into the two electrons with opposite 
momentum and spins occupying the same orbitals in the 
closed-shell electronic structures with large energy gaps 
between the occupied and unoccupied orbitals in various 
small sized materials such as the neutral He atom and 
benzene.   There are two possible electronic properties, 
i.e., (i) two fermionic intrinsic insulating particles states 
(the most probable from the point of view of the 
conventional solid state physics) (Fig. 3 (a)), and (ii) one 
bosonic superconducting particle states (Cooper pair) 
(predicted from our theory) (Fig. 3 (b)).   According to the  
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vem  E unit

Binduced Bunit

vem  E unit

Bout  Bunit

Bout  Bunit

Bout  Bunit

Bout  Bunit

vem  0

vem  0

EFermi,IN,k HOCOk HOCO   Happlied 
 2VCoulomb,Fermi,k HOCO Happlied 
2V kin,Fermi,kHOCO Happlied 



EBose,SC,kHOCO k HOCO Happlied 
 2VCoulomb,Fermi,kHOCO 0 

V emf,Bose,kHOCO kHOCO  Happlied 


 0Happlied

2 vSC

2

Bout  Bunit

vem  0vem  0

vem  E unit

Binduced  Bunit

vem  E unit

Bout  Bunit


EBose,SC,kHOCO k HOCO Happlied 

EFermi,IN,k HOCO k HOCO  Happlied 



ESC–IN Happlied 
 EBose,SC,k HOCO k HOCO  Happlied 
–EFermi,IN,kHOCOk HOCO  Happlied 


0Happlied

2 vSC

2
– 2Vkin,Fermi,kHOCO Happlied  0

(a) two fermionic intrinsic insulating states

(b) one bosonic superconducting states

the most probable from the point of view 
of the conventional solid state physics

predicted from our theory usually observable

(c) Energy difference between the two fermionic insulating states
 and the one bosonic superconducting states

less stable

more stable

 
Fig. 3. Two electronic structures.   (a) Two fermionic 
intrinsic insulating states.   (b) One bosonic 
superconducting states.   (c) Energy difference between 
the two fermionic insulating states and the one bosonic 
superconducting states.   
 
conventional solid state physics, the two fermionic 
intrinsic insulating particles are predicted (Fig. 3 (a)), on 
the other hand, we usually observe the nondissipative 

diamagnetic current states (one bosonic superconducting 
particle states) (Fig. 3 (b)).   This is the problem we must 
solve in this article.    
 
5.1 Two Fermionic Intrinsic Insulating Particles States 

Let us first look into the two fermionic intrinsic 
insulating particles states ( two ,Fermi ,IN ), which obey the 

Pauli exclusion principle (Figs. 1 (a) and 3 (a)),  
 

kIN,two  cHOCO kHOCO   –kHOCO   
            cHOCO kHOCO   –kHOCO  .  19   

 
In the electronic states, there are independent two 
fermionic electrons with opposite momentum and spins 
occupying the same orbitals in the closed-shell electronic 
structures with large energy gaps between the occupied 
and unoccupied orbitals.   Furthermore, these electronic 
states are not changed even under the applied magnetic 
field Happlied , and the magnetic fields are not expelled by 

these two electrons (Fig. 3 (a)).   This electronic state can 
be predicted from the point of view of the conventional 
solid state physics since it is reasonable to consider that 
the total momentum of two fermionic electrons in the 
closed-shell electronic structure with large energy gaps 
between the occupied and unoccupied orbitals cannot be 
easily changed by the applied magnetic field Happlied  

(Fig. 3 (a)).   However, we usually observe the 
nondissipative diamagnetic current states (not intrinsic 
insulating states) (Fig. 3 (b)).   The magnetic field as well 
as the electric field (or electromotive force) cannot be 
expelled from the insulating specimen.    
 
5.2 One Bosonic Superconducting Particle States 

Let us next look into the one bosonic superconducting 
particles states (Cooper pairs) ( two ,Bose, SC ) (Fig. 3 (b)).   

In the electronic states, there is a bound particle formed 
by two electrons with opposite momentum and spins 
occupying the same orbitals in the closed-shell electronic 
structures with finite energy gaps between the occupied 
and unoccupied orbitals (Fig. 3 (b)),  
 

kSC,two  cHOCO kHOCO, –kHOCO   

                cHOCO kHOCO, –kHOCO  .      20   

 
These electronic states are changed under the applied 
magnetic field Happlied , and the magnetic field are 

expelled by these two electrons (Fig. 3 (b)).   On the other 
hand, this electronic state cannot be predicted from the 
point of view of the conventional solid state physics since 
it is reasonable to consider that the total momentum states 
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of two electrons in the closed-shell electronic structure 
with large energy gaps between the occupied and 
unoccupied orbitals cannot be easily changed by the 
applied magnetic field Happlied  (Fig. 3 (a)).   However, 

we usually observe the nondissipative diamagnetic current 
states (not intrinsic insulating states) (Fig. 3 (b)).   The 
magnetic field as well as the electric field (or 
electromotive force) can be expelled from the 
superconducting specimen.    
 
6. The Mechanism of the Bose–Einstein Condensation 
in Two Electrons Systems 
6.1 Two Fermionic Intrinsic Insulating Particles States 

Let us next discuss why two electrons with opposite 
momentum and spins occupying the same orbital in the 
closed-shell electronic structures with large energy gaps 
between the occupied and unoccupied orbitals can be in 
the Bose–Einstein condensation (Figs. 1 (a) and 3 (b)).   
We first consider that two electrons with opposite 
momentum and spins occupying the same orbital in the 
closed-shell electronic structures with large energy gap 
between the occupied and unoccupied orbitals move 
independently as two Fermi particles (  two ,Fermi ,IN ) 

(Figs. 1 (a) and 3 (a)).    
When very small magnetic field ( Happlied ) is applied, 

the energy ( EFermi, IN,kHOCOk HOCO   Happlied ) for the 

two fermionic electron systems can be expressed as  
 

EFermi, IN,kHOCOk HOCO   Happlied  
 2VCoulomb, Fermi,kHOCO Happlied  
2Vkin,Fermi,kHOCO Happlied ,                              21  
 

where the EFermi, IN,kHOCOk HOCO   Happlied   value 

denotes the energy level for two electrons, and the 

VCoulomb,Fermi,kHOCO Happlied   and 

Vkin, Fermi,kHOCO Happlied  values denote the Coulomb 

energy and the kinetic energy for an electron occupying 
the HOCO, respectively.   In the two fermionic systems, 
two electrons are not equivalent, and these two electrons 
independently behave as two Fermi particles, and thus we 

must consider the Vkin, Fermi,kHOCO Happlied  0  values 

as well as the VCoulomb,Fermi,kHOCO Happlied   values 

(Fig. 1 (a)).    
 
6.2 Superconducting States as a Consequence of the 
Bose–Einstein Condensation 

In a similar way, the energy 

(

EBose,SC,kHOCOkHOCO  Happlied  ) for the one 

bosonic electron systems under the applied magnetic field 
Happlied  can be expressed as (Fig. 3 (b)),  

 


EBose,SC,kHOCOkHOCO  Happlied  

 VCoulomb,Bose,k HOCOk HOCO  Happlied  
VHinduced

Happlied  
 2VCoulomb, Fermi,kHOCO 0   


Vemf, Bose, kHOCO kHOCO  Happlied  
VHinduced

Happlied ,                                              22  
 

VHinduced
Happlied  0Happlied

2 vSC

2
,                    23   

 

where the 

VCoulomb,Bose,kHOCOkHOCO  Happlied  and 


Vkin,Bose,kHOCOkHOCO  Happlied   values denote the 

Coulomb and kinetic energies for two electrons 
occupying the HOCO, respectively, the vSC  denotes 
volume of the superconductor, and the 0  denotes the 
magnetic permeability in vacuum.   Furthermore, the 


Vemf,Bose ,k HOCO kHOCO  Happlied   value denotes the 

kinetic energy of an electron pair as a consequence of the 
electromotive forces.    
 
6.3 Energy Difference between the Two Fermionic 
Insulating States and the One Bosonic Superconducting 
States 

Let us next compare the 

EFermi, IN,kHOCOk HOCO   Happlied   values with the 


EBose,SC,kHOCOkHOCO  Happlied   values (Fig. 3).   

The energy difference (ESC –IN Happlied ) between the 

two fermionic insulating particle states 

( EFermi, IN,kHOCOk HOCO   Happlied ) and the one bosonic 

superconducting states 

(

EBose,SC,kHOCOkHOCO  Happlied ) under the applied 

magnetic field Happlied  can be expressed as  

 

ESC –IN Happlied  

 EBose,SC ,k HOCOk HOCO  Happlied  
–EFermi, IN,kHOCOk HOCO  Happlied  
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 VHinduced
Happlied  

–2Vkin,Fermi,kHOCO Happlied  0.                     24   

 

The 2Vkin,Fermi ,k HOCO Happlied  values are usually very 

large (  70 eV ), and thus are much larger than the 

VHinduced
Happlied   values (usually in the order of 

10–2 ~ 10–3 eV ).   Therefore, it is clear from the 
calculated results that the 


EBose,SC,kHOCOkHOCO  Happlied   values are much 

smaller than the EFermi, IN,kHOCOk HOCO   Happlied  
values, and thus the one bosonic superconducting particle 
states ( two ,Bose,SC ) are much more stable than the two 

fermionic insulating states ( two ,Fermi ,IN ) (Fig. 3 (c)).   It 

can be also understood from the fact that the 
superconducting states ( two ,Bose,SC ) are stable and thus 

the stable one bosonic superconducting state 
( two ,Bose,SC ) are not converted into the unstable two 

fermionic intrinsic insulating states ( two ,Fermi ,IN ) via 

photon emission (Joule’s heats) even under the constant 
applied magnetic field Happlied .   Therefore, the 

nondissipative diamagnetic currents in the microscopic 
sized molecules as well as the macroscopic sized 
superconductivity can be explained by one bosonic 
superconducting states (  two ,Bose,SC ) (Cooper pairs) 

(Fig. 3 (b)).    
It should be noted that since there are equivalent two 

electrons with opposite momentum and spins, the total 
momentum of a Cooper pair can be also zero 

( pcanonical,HOCO  kHOCO   –kHOCO   0 ), and 

thus the Vkin,Cooper pair,N kHOMO, –kHOMO   value 

can be zero (Fig. 1).   That is, the kinetic energy, which 
generally reduces the destruction energy of the bosonic 
Cooper pairs, and is compensated by the Coulomb energy 
(VCoulomb,N kHOMO , kHOMO   ), does not play a role 

in the decision of the destruction energy of the bosonic 
Cooper pairs.   This is because the kinetic energy for 
fermionic state is converted to the potential energy for 
bosonic state (Fig. 1 (a)).   The Cooper pair can be formed 
by the Coulomb interactions between two electrons with 
opposite momentum and spins occupying the same 
orbitals via the positive charges of the nuclei.   This is the 

reason why the 

EBose,SC,kHOCOkHOCO  Happlied  

values are much smaller than the 

EFermi, IN,kHOCOk HOCO   Happlied   values, and the 

reason why the bosonic particle 

(

Bose ,SC, kHOCOkHOCO  Happlied  ) is much more 

stable than two fermionic particles 

( Fermi ,IN, kHOCOkHOCO   Happlied  ) 

(ESC –IN Happlied  0 ) (Fig. 3 (c)).   Furthermore, this 

is the reason why the Bose–Einstein condensation occurs 
in the closed-shell electronic structures with finite energy 
gaps between the occupied and unoccupied orbitals, and 
thus the reason why we usually observe the nondissipative 
diamagnetic currents in the microscopic sized atoms and 
molecules as well as in the macroscopic sized 
superconductivity (Fig. 3 (b)).    

These calculated results can be also understood from 
the fact that we usually observe the supercurrent states 

(

Bose ,SC, kHOCOkHOCO  Happlied ) (Fig. 3 (b)), rather 

than the intrinsic insulating states 

( Fermi ,IN,kHOCOkHOCO   Happlied  ) (Fig. 3 (a)).   

Furthermore, we can also say that the intrinsic insulators 

( Fermi ,IN, kHOCOkHOCO   Happlied  ) formed by two 

fermionic particle states in the closed-shell electronic 
structures with finite energy gaps between the occupied 
and unoccupied orbitals, which has been believed to exist 
from the point of view of solid state physics (Fig. 3 (a)), 
do not usually exist.   

We can conclude that the kinetic energy 
2Vkin,Fermi ,k HOCO 0   for the 

Fermi ,IN, kHOCOkHOCO   Happlied  state is converted to 

the internal potential energy for the 


Bose ,SC, kHOCOkHOCO  Happlied   state, as a 

consequence of the Bose–Einstein condensation (Fig. 1 
(a)), by which the bosonic states 

(

Bose ,SC, kHOCOkHOCO  Happlied ) with zero kinetic 

energy (Fig. 3 (b)) become much more stable than the 

fermionic states ( Fermi ,IN, kHOCOkHOCO   Happlied  ) 

with large kinetic energy (Fig. 3 (a)).   The bosonic states 

(

Bose ,SC, kHOCOkHOCO  Happlied ) are the resonance 

standing wave states (wave characteristics) composed 
from the various fermionic traveling wave states 

( Bose ,NM, kHOCO Happlied  ) (observed as particle 

characteristics).   Bosonic and fermionic states are related 
to the standing wave and traveling waves, respectively.    
 
7. Relationships between the Applied Magnetic Field 
and Electronic States 
7.1 Comparison of the One Bosonic Superconducting 
Particle States with the Two Fermionic Intrinsic 
Insulating Particles States 
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Let us next look into the relationships between the 
Happlied  values and the electronic properties in order to 

investigate the possibility that we can observe two 
fermionic intrinsic insulating particles states 
( two,Fermi,IN ) (Fig. 3 (a)).   When the Happlied  value 

increases, and at Happlied  Hc,BE , the one bosonic 

superconducting particle states ( two ,Bose,SC ) (Fig. 3 (b)) 

would be converted to the two fermionic intrinsic 
insulating particles states (  two ,Fermi ,IN ) (Fig. 3 (a)), 

theoretically, as follows,  
 
ESC –IN Hc, BE  
 VHinduced

Happlied – 2Vkin,Fermi,kHOCO Hc,BE  


0Hc,BE

2 vSC

2
– 2Vkin,Fermi,k HOCO Hc,BE  

 0.                                                                       25   
 
Therefore, the Hc,BE  value can be estimated as  

 

Hc,BE  2
Vkin,Fermi ,kHOCO Hc, BE 

0vSC
.               26  

 
The Hc,BE  values are very large because of the large 

2Vkin,Fermi ,k HOCO Hc, BE   values of approximately 70 

eV, and thus the conversion from the one bosonic 
superconducting particle states ( two ,Bose, SC ) (Fig. 3 (b)) 

to the two fermionic intrinsic insulating particles states 
( two ,Fermi ,IN ) (Fig. 3 (a)) would not be usually realistic.    

 
7.2 Destruction of the One-Bosonic Superconducting 
Particle States 

When the Happlied  value increases, the one-bosonic 

superconducting particle states ( two ,Bose,SC ) would be 

destroyed by the critical field min Hc,singlet, Hc,BE  as 

follows (Fig. 4).   Usually, the 

Egap, e– ph Happlied  (  10–2 ~ 10–3  eV ) and 

Egap, HOMO–LUMO Happlied   values (  70 eV ), and 

thus the transition from the one-bosonic superconducting 
particles ( two ,Bose, SC ) to the two one-bosonic normal 

metallic particles states (one, Bose,NM ) occurs before that 

from the one-bosonic superconducting particle states 
( two ,Bose, SC ) to the two-fermionic insulating particles 

states ( two ,Fermi ,IN ) occurs (Fig. 4 (a)).   That is, the 

Hc,singlet  value is much smaller than the Hc,BE  value.   

Therefore, the transition from the superconducting states  

pcanonical  Eunit

p canonical  Eunit

Bout  B unit

vem  0
vem  0

Binduced  Bunit

Bout  Bunit

Bout  Bunit

vem  Eunit

vem  Eunit
Binduced  Bunit

Bout  Bunit


EBose,SC,kHOCOkHOCO Happlied 

EBose,NM,kHOCOk HOCO   Hc,singlet 

EFermi,IN,kHOCOk HOCO Hc,BE 

Bout  Bunit

v em  0 v em  0

v em  E unit
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
EBose,SC,kHOCOkHOCO Happlied 

EFermi,IN,kHOCO k HOCO  Hc,BE 

p canonical  Eunit
p canonical  0Binduced  Bunit

Bout  Bunit

Bout  Bunit

EBose,NM,kHOCOk HOCO   Hc,singlet 

Hc,singlet Hc,BE

Hc,BE  Hc,singlet

Hc,BE

Hc,singlet

Hc,BE

Hc,singlet

Happlied

Hc,singlet 

Happlied

Hc,BE 

pcanonical  0


EBose,NM,k HOCOk HOCO

Hc,singlet 

p canonical

 Eunit

(a)

(b)

 
Fig. 4. Destruction of the one-bosonic superconducting 
particle states.   (a) From superconducting state to the 
normal metallic state.   (b) From superconducting state to 
the insulating state. 
 
(  two ,Bose, SC ) to the normal metallic states 

(one, Bose,NM ) can be usually observed at the critical 

magnetic field Hc,singlet  (Fig. 4 (a)).   This is the reason 
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why we usually observe the transition from the 
superconducting states (  two ,Bose, SC ) to the normal 

metallic state ( one, Bose,NM ) and not to the intrinsic 

insulating states ( two ,Fermi ,IN ) (Fig. 4 (a)).   On the 

other hand, if the Egap, HOMO–LUMO Happlied  values 

are larger than the 2Vkin,Fermi ,k HOCO Happlied  values, 

we can observe the transition from one-bosonic 
superconducting particle states ( two ,Bose, SC ) to the two-

fermionic intrinsic insulating particles states 
(  two ,Fermi ,IN ) at the critical magnetic field Hc,BE , 

theoretically (Fig. 4 (b)).   However, even in the neutral 

He atoms, the Egap, HOMO–LUMO Happlied   value of 

48.2 eV is much smaller than the 

2Vkin,Fermi ,k HOCO Happlied   value of 77.7 eV.   

Therefore, it would be very difficult to observe the two-
fermionic intrinsic insulating particles states 
(  two,Fermi,IN ) predicted from the band theory in the 

textbooks in the conventional solid state physics.    
 
8. New Interpretation of the Spacetime Axis in the 
Special Relativity 

In the previous sections, we suggested the relationships 
between the superconducting, normal metallic, and 
insulating states.   Related to these relationships, in 
particular, related to the relationships between the bosonic 
standing waves and the fermionic traveling waves, and 
between the non-equilibrium states and the equilibrium 
states, we will also discuss the relationships between the 
entropy and the time, in view of the special relativity.    

In this article, we define the spacetime components of 
the particles and antiparticles as follows (Figs. 5 and 6) 
[19].    

The r rp
 and rra

 terms denote the real space 

components at the real 3-dimensional real space axis for 
particles and antiparticles, respectively.   The r tp  and r ta  

terms denote the real space components at the real 3-
dimensional time axis for particles and antiparticles, 
respectively.    

The t tp  and t ta  terms denote the real time components 

at the real 1-dimensional time axis for particles and 
antiparticles, respectively.   The t rp

 and t ra
 terms denote 

the real time components at the real 1-dimensional space 
axis for particles and antiparticles, respectively.    

The pr p
 and pr a

 terms denote the real momentum 

components at the real 3-dimensional space axis for 
particles and antiparticles, respectively.   The ptp

 and pta
 

terms denote the real momentum components at the real 
3- 

tt p

r r p
,ttp  Re,Re 

itrp

r rp

tr p

r rp

r rp

r r p
,ttp  Re,Re 

r r p
,ttp  Re,Im 

(a) (b)

(c)

1D 1D

1D

3D 3D

3D

 
Fig. 5. Relationships between the space and time axes.   
(a) The 3-dimensional real space axis and the 1-
dimensional real time axis.   (b) The 3-dimensional real 
space axis and the 1-dimensional imaginary space axis.   
(c) The 3-dimensional real space axis and the 1-
dimensional real space axis.    

pr p

Et p

pr p

pr p

Erp

prp
,Et p  Re,Re  prp

,Et p  Re,Re 

prp
,Et p  Re,Im 

iErp(a) (b)

(c)

1D 1D

1D

3D 3D

3D

 
Fig. 6. Relationships between the momentum and energy 
axes.   (a) The 3-dimensional real momentum axis and the 
1-dimensional real energy axis.   (b) The 3-dimensional 
real momentum axis and the 1-dimensional imaginary 
momentum axis.   (c) The 3-dimensional real momentum 
axis and the 1-dimensional real momentum axis.   
 
dimensional time axis for particles and antiparticles, 
respectively.  
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The Etp
 and Eta  terms denote the real energy 

components at the real 1-dimensional time axis for 
particles and antiparticles, respectively.   The Erp

 and 

Era
 terms denote the real energy components at the real 

1-dimensional space axis for particles and antiparticles, 
respectively.    

According to the special relativity and Minkowski’s 
research, the relationships between the space ( x , y , z ) 
and time axes ( t ) can be expressed as  
 

x2  y2  z2  ict 2  const.                              27   
 
where the c  is the speed of the light.    
 
In other words,  
 

r rp

2  cttp 2  const.                                            28   

 

r ra

2  ctta 2  const.                                            29   

 
On the other hand, the 1-dimensional t tp  and t ta  time 

vectors, which are real components at the real time axis, 
are the imaginary components at the real 1-dimensional 
space axis, as expressed as (Fig. 5 (c)),    
 
t tp  itrp

,                                                               30  
 
t ta  it ra

.                                                               31  
 
Therefore,  
 

r rp

2  cttp 2  rrp

2  ict rp 2  const.                  32  
 

r ra

2  ctta 2  rra

2  ictra 2  const.                  33   

 
If we consider that we live in the real visible space axis, 
real time axis ( t tp  and t ta ) can be considered to be 

imaginary invisible space axis ( itrp
 and itra

) (Fig. 5 (b)).   

That is, we can consider that the ct  term is related to the 
real time component (imaginary space component) (Fig. 5 
(a)), on the other hand, the ict  term is related to the real 
space component (imaginary time component) (Fig. 5 
(b)).    

Therefore, we can consider that the real world we live 
in is the complex 4-dimensional spacetime world which is 
formed by the real visible 3-dimensional space 
components (so-called, space axis) and by the imaginary 

invisible 1-dimensional space component (so-called, time 
axis), at the real 4-dimensional space axis (Fig. 5 (c)).    

The 4-dimensional spacetime axis can be interpreted by 
various definitions as follows.   The components of the 4-
dimensional spacetime axis are composed of the 3-
dimensional real space vectors at the 3-dimensional real 
space axis and of the 1-dimensional real time vectors at 
the 1-dimensional real time axis (Fig. 5 (a)).   The 
components of the 4-dimensional spacetime axis are 
composed of the 3-dimensional real space vectors at the 
3-dimensional real space axis and the 1-dimensional real 
time vectors at the 1-dimensional imaginary space axis 
(Fig. 5 (b)).   The components of the 4-dimensional 
spacetime axis are composed of the 3-dimensional real 
space vectors at the 3-dimensional real space axis and of 
the 1-dimensional imaginary time vectors at the 1-
dimensional real space axis (Fig. 5 (c)).   In the discussion 
in this article, we will use the definition that the 
components of the 4-dimensional spacetime axis are 
composed of the 3-dimensional real space vectors at the 
3-dimensional real space axis and of the 1-dimensional 
imaginary time vectors at the 1-dimensional real space 
axis (Fig. 5 (c)).    

From Eqs. (32) and (33), denoting the relationships 
between the space and time axes, we can derive the 
equation, denoting the relationships between the 
momentum ( px , py , pz , pt , pt ,0 ) and energy ( Ex , Ey , 

Ez , Et , Et, 0 ) by using the mass qg  and the rest mass 

qg ,0 , as follows (Fig. 6),  

 

qgvx 2  qgvy 2  qgvz 2  iqgc 2  

                                     iqg,0c 2  const. < 0,  34   

 
px

2  py
2  pz

2  pt
2  pt ,0

2  const. < 0,                35  
 

px
2  py

2  pz
2 

Et
c



 




2


Et ,0

c









2

 const. < 0,   36   

 
where  
 
px  qgvx ,                                                             37   

 
py  qgvy ,                                                             38   

 
pz  qgvz ,                                                             39   

 
pt  iqgc,                                                               40   

 
pt ,0  iqg,0c,                                                          41   
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Et  cpt ,                                                                 42  
 
Et, 0  cpt, 0 .                                                            43  
 
In other words (Fig. 6 (a)),  
 

prp

2  ptp

2  prp

2 
Etp

c











2


Etp ,0

c











2

 const.     44   

 

pr a

2  pta
2  pra

2 
Eta
c











2


Eta ,0

c











2

 const.      45   

 
where  
 
Etp

 cptp
,                                                              46  

 
Eta  cpta .                                                             47   

 
On the other hand, the 1-dimensional ptp

 and pta
 ( Etp

 

and Eta ) momentum (energy) vectors, which are real 

components at the time axis, are the imaginary 
components at the real 1-dimensional space axis, as 
expressed as (Fig. 6 (b), (c)),    
 
Etp

 iErp
,                                                              48   

 
Eta  iEra

.                                                              49   

 
Therefore, the Er p

 and Er a
 can be interpreted as the 

energy momentum vector for the particles and 
antiparticles, respectively (Fig. 6 (c)).   Eq. (36) can be 
expressed by using vectors as (Fig. 6 (c)) 
 

prp

2  ptp

2  prp

2 
Etp

c











2

 

              prp

2 
iErp

c











2


iEr p ,0

c











2

= const.     50   

 

pr a

2  pta
2  pra

2 
Eta
c











2

 

              pra

2 
iEra

c











2


iEra, 0

c











2

 const.     51   

 
The momentum px , py , and pz  values are related to 

the real components at the real space axis, x , y , and z , 

respectively.   The energy Et  is related to the real 
(imaginary) component at the real time (real space) axis 
(Fig. 6 (a)).   The pt  and pt ,0  ( Et / c  and Et, 0 / c ) terms 

are usually considered to be related to the energy, that is, 
related to the real components at the time axis (Fig. 6 (a)).   
On the other hand, if we consider that we live in the real 
visible momentum axis, which is related to the real space 
axis, the energy can be considered to be the imaginary 
invisible momentum component at the real space axis 
(Fig. 6 (b), (c)).   Therefore, we can consider that the pt  
and Et  terms, and the pt ,0  and Et, 0  terms, are related to 

the real time component (imaginary space component), on 
the other hand, the ipt  and iEt  terms, and the ipt, 0  and 

iEt ,0  terms, are related to the real space component 

(imaginary time component).    
Let us next express the energy components from Eqs. 

(40) and (41),  
 
Ex

2  Ey
2  Ez

2  Et
2  Et ,0

2  const. < 0,                52   

 

– Ex
2  Ey

2  Ez
2  Et

2  –Et ,0
2 ,                      53   

 
where  
 
Ex  cpx ,                                                              54   
 
Ey  cpy ,                                                              55  
 
Ez  cpz ,                                                              56   
 

– cprp 2  iErp 2






 – iErp ,0 2 ,              57   

 

– cpra 2  iEra 2
 – iEra ,0 2 ,               58  

 

cpr p 2  iErp 2  iErp , 0 2 ,                             59   

 

cpra 2  iEra 2  iEra ,0 2 .                            60   

 
We can see from Eqs. (59) and (60) that the original point 
( px  py  pz  pt  0 ) at the spacetime axis in energy is 

saddle point (massless transition state (TS)) [20] of the 
converting reaction between massive particle and 
antiparticle states in momentum-energy curves (Fig. 7).    
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rrprra

tr p
tr a

ct rp 2

r rp
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2 ct ra 2 , ctrp 2
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2
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2 ,Et p
2(c) (d)

(a) (b)

 
Fig. 7. (a) Scale of the space.   The opened and shaded 
circles indicate the scales of the space and the total 
spacetime, respectively.   (b) Scale of the time denoted by  
the opened circles.   (c) Energy for the space axis denoted 
by the opened circles.   (d) Energy for the time axis.   The 
opened and shaded circles indicate the energies of the time 
and the total spacetime axes, respectively.    
 
The original point ( px  py  pz  pt  0 ) is the 

minimum point in energy at the px , py , and pz  axes 

( px  py  pz  0 ) (Fig. 7 (a), (c)), on the other hand, 

that is the maximum point in energy at the real space axis 
at the pt  axis ( pt  0 ) (Fig. 7 (d)).   Therefore, the space 
can be considered to be real components (reversible) of 
the space axis at the spacetime axis (Fig. 7 (c)).   On the 
other hand, the time can be considered to be the imaginary 
components (irreversible) of the space axis at the 
spacetime axis (Fig. 7 (d)).   That is, the 3-dimensional 
space components are real components in the real 3-
dimensional space axis, and the 1-dimensional time 
components are the imaginary components in the 1-
dimensional real space axis (Fig. 5 (c)).    

The original point of the space axis at the spacetime 
axis is the bottom point, and the most stable in energy 
(Fig. 7 (c)).   Therefore, only small energy is needed for 
space to reverse at the real space axis.   Therefore, the 
reversible process from the  rr p

 to the –rrp
 (from the  

 rra
 to the –rra

) can be possible (Fig. 7 (a), (c)), and we 

can observe the real space axis, visibly.   This is the 
reason why momentum vectors pr p

 and pr a
, and related 

space axis r rp
 and r ra

, are the 3-dimensional real vectors 

at the real space axis (Figs. 5 (a) and 6 (a)).    
The time can be considered to be the imaginary 

components (irreversible) of the space axis at the 
spacetime axis (Fig. 5 (c)).   The original point of the time 
at the real space axis is the top point, and the most 
unstable in energy (Fig. 7 (b), (d)).   Therefore, very large 
energy is needed for the time to reverse at the real space 
axis.   Therefore, the reversible process from the future 
 ttp  (itr p

) to the past –t tp  ( –itr p
) (from the future  tta  

( itr a
) to the past –t ta  ( –itra

)) cannot be possible, 

furthermore, we cannot observe the real time (imaginary 
components) at the real space axis, visibly (Fig. 7 (b)).   
This is the reason why the energy Etp

(  iErp
) and 

Eta (  iEra
), and related time axis t tp (  itr p

) and 

t ta (  itra
), are considered to be not vector but scalar.   

On the other hand, we can interpret that the energy 
vectors Etp

(  iErp
) and Eta (  iEra

), and related time 

axis t tp (  itr p
) and t ta (  itra

), are the 1-dimensional 

imaginary vectors at the real space axis (Figs. 5 (c) and 6 
(c)).    

Particles and antiparticles have intrinsic r rp
- itrp

 and 

r ra
- itra

 spacetime axes, respectively.   Particles and 

antiparticles cannot be usually distinguished by each other 
by reversible space axis (r rp

 and pr p
, and r ra

 and pr a
) 

(Fig. 7 (a), (c)).   On the other hand, particles and 
antiparticles can be usually distinguished by each other by 
irreversible time axis ( itrp

 and iEr p
, and itra

 and iEr a
) 

(Fig. 7 (b), (d)).   The dominance of particles rather than 
antiparticles is the reason why we live only from the past 
( –t tp  ( –itr p

)) to the future (  ttp  ( itr p
)) in the real 

particle spacetime axis (Fig. 7 (b)).    
In summary, the space axis is the real 3-dimensional 

space vector in the spacetime axis (Fig. 5 (c)).   
Momentum is the real 3-dimensional momentum vector at 
the real space axis in the spacetime axis (Fig. 6 (c)).   The 
time is the imaginary 1-dimensional space vector at the 
real space axis in the spacetime axis (Fig. 5 (c)).   The 
energy is the imaginary 1-dimensional momentum vector 
at real space axis in the spacetime axis (Fig. 6 (c)).    
 
9. Relationships between the Entropy and Arrow of 
Time 

In the second law of the thermodynamics, it has been 
described that the direction of the arrow of time should be 
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defined by the direction of the increase of entropy in the 
isolated systems.   That is, the reason why the direction of 
the arrow of time should be defined by the direction of the 
increase of entropy in the isolated systems has not fully 
been elucidated.   Therefore, we will suggest the 
relationships between the entropy and the time in this 
section.    
 
9.1 Relationships between the Rest Mass and Stability of 
the Spacetime in the Microscopic One Particle Systems  

Let us next look into the relationships between the rest 
mass and the stability of the spacetime.   As an example, 
we consider a particle.   The relationship between the rest 
mass energy ( Et, 0

2 ) and the energy for spacetime 

( Ex
2  Ey

2  Ez
2  Et

2) can be expressed as  

 
Ex

2  Ey
2  Ez

2  Et
2  Et ,0

2  0,                             61   

 
or  
 
Er p

2  Etp
2  Etp ,0

2  0,                                           62   

 
where  
 
Er p

2  0,                                                               63   

 
Etp

2  0,                                                                64   

 
Etp, 0

2  0.                                                             65   

 
The Etp

 and Etp , 0  values are related to the ptp
 and 

ptp ,0  values, respectively.    

The Etp
 value, related to the time flowing velocity 

ttp , becomes equal to the rest mass energy (qg ,0c2 ) 

value when the px , py , and pz  values, related to the 

space axis, are 0, as follows (Fig. 8 (a)),  
 

lim
px., py,pz0

pt
2  pt ,0

2  iqg, 0c 2 .                           66   

 
Therefore, the time flowing velocity ttp  is related to 

the rest mass qg ,0  value.   Furthermore, the time flowing 

velocity ttp  is related to the electric charge as well as 

the rest mass qg ,0 , which are generated as a consequence 

of the Higgs mechanism.    

qg,0c 2 2

cprp

2

qg,0c 2 2

cprp

2

Erp
2

Erp
2

Et p
2

Et p
2

prp–prp
ptp

–pt p

prp–prp

ptp
–pt p

(b)

(a)

 

cprp

2

cprp

2

qg,0c 2 2

qg,0c 2 2

Erp
2 Et p

2

prp–prp

ptp–pt p

prp
,pt p

–prp
, –ptp

Et p,0
2

(c)

(d)

 
Fig. 8. Energies as a function of the space and time.   (a)–
(c) Energies for the space and time axes.   (d) Total 
energies for the spacetime axis.   In (a)–(d), the opened 
circles denote the energies for the space and time axes.   
The shaded circles indicate the total energy for the 
spacetime axis.    
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We can see from Eq. (50) that the ptp
 value increases 

with an increase in the pr p
 value.   That is, the 

stabilization energy Etp
 value increases with an increase 

in the destabilization energy Er p
 value so that the total 

stabilization energy Etp ,0  value in the spacetime world 

becomes constant (Fig. 8 (a)–(d)).   That is, the total 

spacetime energy ( Etp ,0 ) originating from the space axis 

( Er p
) and the time axis ( Etp ) try to become always 

constant by distortion of the spacetime (Fig. 8 (d)).   At 
the same time, the scale of the space rrp

 and the time 

flowing velocity  ttp  decrease with an increase in the pr p
 

value.   Spacetime becomes very unstable in energy if the 
ptp

 value becomes 0 [19].   That is, the time flowing 

velocity  ttp  and imaginary momentum vector ptp
 at the 

real space axis (momentum at the time axis), related to the 
rest mass qg ,0 , play an essential role in the forming of the 

stable real spacetime world we live in (Fig. 8).   Similar 
discussion can be made in the case of the antiparticles.   

Furthermore, the time flowing velocity can be decided 
by the rest mass qg ,0  of particle or antiparticle at 

px  py  pz  0 .   The rest mass qg ,0  of particle and 

antiparticle plays an essential role in the forming of the 
stable spacetime world for particles and antiparticles, 
respectively (Fig. 8 (d)).   The stabilization energy for the 
spacetime increases with an increase in the rest mass qg ,0  

(Fig. 8).    
Let us next consider the second law of the 

thermodynamics.   The free energy such as Gibbs free 
energy G  can be expressed as  
 
G  H – TS,                                                           67   
 
G  H – TS,                                                    68  
 
where the H , T , and S  values denote the enthalpy, 
temperature, and entropy, respectively.    

Let us consider the relationships between the second 
law of the thermodynamics (Eqs. (67) and (68)) and the 
special relativity (Eq. (59)).   Eq. (59) can be re-expressed 
as  
 

cpr p 2  Er p

2 – Erp ,0
2 .                                           69  

 

 cpr p 2  Er p

2 – Erp , 0
2 .                                   70  

 
In view of Eqs. (67), and (69), we can consider that the 

momentum energy cpr p 2 , the time momentum energy 

Er p

2 , and the rest mass energy Er p , 0
2  in the special 

relativity, can be related to the (Gibbs) free energy G , the 
enthalpy H , and the entropy S  in the second law of the 
thermodynamics, respectively,  
 
cpr p

 G ,                                                              71   

 
Er p

 H ,                                                               72   

 
Er p , 0  TS.                                                           73   

 
Let us consider a particle in the isolated systems even 
though Eqs. (67) and (68) can be usually used statistically 
in the macroscopic many particles systems (Fig. 9 (a)).   
In such a case, one particle moves in whole space in the 
isolated systems at the constant speed in various direction, 

and thus we can consider that the  cpr p 2  and Er p

2  

values in the special relativity, and the G  and H  
values in the second law of the thermodynamics, are 0, as 
shown in Fig. 9 (a).    
 

 cpr p 2  0,                                                         74   

 
G  0,                                                                  75  
 
Er p

2  0,                                                               76  
 
H  0.                                                                  77   
 
Therefore, we can consider the change of entropy (S) as 
follows,  
 
Er p , 0

2  0,                                                            78  
 

S 
H – G

T
 0.                                               79   

 
Therefore, we can consider that the entropy S  does not 
change with an increase in time (ttp

) (S  0 ) even 

when one particle moves around within an isolated 
system.   At the same time, the rest mass qg ,0  and Er p , 0

2  

values do not change with an increase in time, as 
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expected, according to the special relativity, as described 
above.   That is, we can conclude that the time flowing 
velocity ttp

 does not change when the entropy S  does 

not change.   Furthermore, we should also notice that the 
scale of the space rr p

 also does not change with an 

increase in time ttp
 under the constant velocity 

moving.   The zero value of the change of the entropy 
( S  0 ) and the Gibbs free energy ( G  0 ) in the 
second law of the thermodynamics, and the zero value of 

the change of the cpr p 2  (  cpr p 2  0 ) and Er p , 0
2  

(Erp , 0
2  0) values in the special relativity, are the main 

reason why one particle moving can be considered to be 
reversible even at the isolated systems, and furthermore, 
is the reason why the reversible process can be generally 
applied in the classical dynamics in which each material 
can be treated.   On the other hand, it should be noted that 
the average momentum pr p

 for even one particle should 

be 0 if we observe one particle for a long time.    
 
9.2 Relationships between the Rest Mass and Stability of 
the Spacetime in the Macroscopic Many Particles Systems  

Let us consider many particles such as molecules, 
atoms, quarks, leptons, photons, and phonons (heats), and 
so on, in the macroscopic isolated systems by considering 
Eqs. (67)–(70).   We consider that all particles locate at 
the only left side of the isolated systems at the beginning 
(Fig. 9 (b)).   By considering Eq. (70), we define the 

change of the momentum energy  cpr p ,macro 2 , the time 

momentum energy Er p , macro
2 , and the rest mass energy 

Er p , 0,macro
2  in the macroscopic isolated systems in the 

special relativity, as follows,  
 

 cpr p ,macro 2  Erp ,macro
2 – Erp ,0 ,macro

2 .         80   

 
The Erp, 0, macro  value can be expressed by using the 

effective total mass qg ,0, macro  of all particles in the 

macroscopic isolated systems as  
 
Er p, 0, macro  qg ,0, macroc2 .                                       81   

 
As an example, we schematically show the pr p

 value 

around the center of the macroscopic isolated many 
particles systems (Fig. 9 (b)).   Similar discussions can be 
made in the another all regions in the macroscopic 
isolated many particles system under consideration.   In 

order to consider the total prp ,macro  value in the whole 

isolated  

tt p

SG

 cprp ,macro  0 cprp  0

Erp ,macro  0Erp
 0

qg,0,macro  0qg,0  0

G  0;H  0;S  0 G  0;H  0;S  0

pr p,macro

(a) one particle (b) many particles
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non-equilibrium

non-equilibrium

non-equilibrium

equilibrium
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unstable

stable
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+2

+4

+6

 
Fig. 9. Relationships between the entropy change and time 
flowing velocity.   (a) One particle system.   (b) Many 
particles system.    
 
macroscopic many particles systems, we should consider 
the total effects originating from the every partial region 
in the whole of the isolated many particles system.   When 
the wall located at the center of the isolated systems is 
removed, many particles can start to move in whole space 
in the macroscopic isolated systems at various speeds 
towards various directions (Fig. 9 (b)).   In the isolated 
systems, we can consider that the Erp , macro

2  values in the 

special relativity and the H  values in the second law of 
the thermodynamics, are constant, 0, with an increase in 
the reaction time (ttp

) (Fig. 9 (b)).   The total velocity 

originating from all particles in the macroscopic isolated 
systems decrease with an increase in the reaction time 
(ttp

) from the non-equilibrium state to the equilibrium 

state.   Therefore, the cpr p, macro 2  values in the special 

relativity and the G  values in the second law of the 
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thermodynamics decrease with an increase in the reaction 
time ( ttp

) from the non-equilibrium state to the 

equilibrium state, as shown in Fig. 9 (b).    
 

 cpr p ,macro 2  0,                                               82   

 
G  0,                                                                  83   
 
Er p , macro

2  0,                                                     84   

 
H  0.                                                                  85  
 
Therefore, we can consider the change of entropy (S) as 
follows,  
 
Er p , 0,macro

2  0,                                                   86   

 

S 
H – G

T
 0.                                               87   

 
Therefore, we can consider that the entropy S  increases 
with an increase in the reaction time (ttp

) (S  0 ) 

when many particles move towards various directions 
within an isolated system.   At the same time, the effective 
total mass qg ,0, macro  of all particles in the macroscopic 

isolated systems and Er p , 0,macro
2  values increase with an 

increase in the reaction time ( ttp
), as expected, 

according to the special relativity, as described above.   
That is, we can conclude that the time flowing velocity 
ttp

 increases with an increase in the entropy S .   

Furthermore, we should also notice that the scale of the 
space rr p

 also becomes larger with an increase in the 

entropy S  and the reaction time ( ttp
).   Spacetime 

becomes stabilized by the increasing nonzero value of the 
entropy (S  0 ) and the decreasing nonzero value of the 
Gibbs free energy ( G  0 ) in the second law of the 
thermodynamics, and by the increase nonzero value of the 
isolated macroscopic rest mass energy (Erp , 0,macro

2  0 ) 

and the decreasing nonzero value of the total momentum 
of the isolated macroscopic many particles system 

( cprp 2  0 ) in the special relativity.   Therefore, the 

increasing nonzero value of the entropy (S  0 ) and the 
decreasing nonzero value of the Gibbs free energy 
(G  0 ) in the second law of the thermodynamics, and 
the increase nonzero value of the isolated macroscopic 
rest mass energy (Erp , 0,macro

2  0 ) and the decreasing 

nonzero value of the total momentum of the isolated 

macroscopic many particles system ( cpr p 2  0 ) in the 

special relativity, are the main reason why many particles 
moving can be considered to be statistically irreversible in 
the macroscopic isolated systems, even though each one 
particle moving can be considered to be reversible in the 
isolated systems, and the reversible process can be applied 
in the classical dynamics in which each material can be 
treated.    

It should be noted that the entropy S  for each one 
particle does not change with an increase in the reaction 
time ( ttp

) (S  0 ) even when one particle moves 

around within the isolated many particles system.   At the 
same time, the rest mass qg ,0  and Er p , 0

2  values for each 

one particle do not change with an increase in the reaction 
time, as expected, according to the special relativity.   On 

the other hand, the cpr p, macro 2  and G  values decrease, 

and the Erp, 0, macro (  qg,0 ,macroc2 ) and S  values 

increase, with an increase in the reaction time (ttp
) in 

the macroscopic isolated many particles system as a 

whole.   That is, the total cprp, macro 2  and G  values in 

the whole space of the isolated many particles systems, 

which are summation of the cpr p 2  and G  values for 

every space, decrease with an increase in the reaction time 
(ttp

) (Fig. 9 (b)).   Therefore, there is a possibility that 

the stabilization of the spacetime in the isolated many 
particles systems as a whole originating from the decrease 

of the cpr p, macro 2  and G  values, and originating from 

the increase of the Erp , 0,macro
2  and S  values, according 

to the special relativity, are related to the seeds of the 
irreversible process, and related to the driving force of the 
behavior of many particles as a whole statistically obeying 
the molecular chaos hypothesis in the Boltzmann’s 
statistical theory.   We can consider that the second law of 
the thermodynamics (increase of the entropy) means that 
the time flowing velocity ttp

 tries to become as large 

as possible in the spacetime world we live, according to 
the macroscopic rest mass qg ,0, macro  value, and that the 

spacetime we live in becomes as stable as possible, 
according to the macroscopic rest mass qg ,0, macro  value.   

The possible maximum time flowing velocity ttp , max  

value can be decided by the distortion of the spacetime 
axis and the rest mass qg ,0, macro .   The time flowing 

velocity ttp  value tries to become larger with an 
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increase in the entropy S , and finally become the 
ttp , max  value, according to the qg ,0, macro  value in the 

special relativity and the maximum entropy Smax  value in 
the second law of the thermodynamics.   Furthermore, we 
can consider that the spacetime world we live in becomes 
stabilized with an increase in the entropy because the 
Gibbs free energy ( G ) is converted to the potential 
macroscopic rest mass energy (qg ,0, macroc2 ) in the whole 

of the isolated many particles system.   In other words, 
there is a possibility that the spacetime world we live in 
becomes more stable with an increase in the above 
conversion and the entropy, and this is the reason why we 
observe the second law of the thermodynamics.    
 
9.3 The New Interpretation of the Relationships between 
the Entropy and the Arrow of the Time 

Let us next discuss the new interpretation of the 
relationships between the entropy and the arrow of the 
time.   In the second law of thermodynamics, it has been 
considered that the direction of the arrow of time should 
be defined by the direction of the increase of entropy in 
the isolated systems.   On the other hand, according to our 
research results, on the basis of the special relativity, it 
should be considered that the time irreversibly flows only 
from the past to the future at the particle time axis because 
the particles with the time momentum vectors flowing 
from the past to the future at the particle time axis are 
more dominant than antiparticles with the time 
momentum vector flowing from the past to the future at 
the antiparticle time axis (from the future to the past at the 
particle time axis) in the real spacetime world we live.   
That is, the time flows always from the past to the future 
even when the reaction can artificially occur so that the 
entropy decreases with an increase in the reaction time 
[19].   The time flowing velocity ttp

 decreases with a 

decrease in the entropy S .   Therefore, the second law of 
the thermodynamics is not directly related to the direction 
of the arrow of the time itself.    

In summary, regardless of the second law of the 
thermodynamics, we can conclude without any 
assumption that the time always irreversibly flows only 
from the past to the future at the particle time axis because 
the particles with the time momentum vectors flowing 
from the past to the future at the particle time axis are 
more dominant than antiparticles with the time 
momentum vector flowing from the past to the future at 
the antiparticle time axis (from the future to the past at the 
particle time axis) in the real spacetime world we live 
[19].    

Let us next look into the relationships between the 
entropy and the time flowing velocity.   We can consider 
that the entropy increases with an increase in the reaction 

time when many particles such as quarks, leptons, 
photons, and phonons (heats) move towards various 
directions within an isolated system.   At the same time, 
the effective total mass qg ,0, macro  of all particles in the 

macroscopic isolated systems increases with an increase 
in the reaction time, according to the special relativity.   
We can conclude that the time flowing velocity increases 
with an increase in the entropy.   Furthermore, we should 
also notice that the scale of the space also becomes larger 
with an increase in the entropy and time.   The increasing 
nonzero value of the entropy (S  0 ) and the decreasing 
nonzero value of the Gibbs free energy (G  0 ) in the 
second law of the thermodynamics, and the increase 
nonzero value of the isolated macroscopic rest mass 
energy ( Erp , 0,macro

2  0 ) and the decreasing nonzero 

value of the total momentum of the isolated macroscopic 

many particles system ( cpr p ,macro 2  0 ) in the special 

relativity, are the main reason why many particles moving 
can be considered to be statistically irreversible in the 
macroscopic isolated systems, even though each one 
particle moving can be considered to be reversible in the 
isolated systems, and the reversible process can be applied 
in the classical dynamics in which each material can be 
treated.   

Let us reconsider the meaning of the second law of the 
thermodynamics, that is, of the increasing of entropy in 
the isolated systems.   In the isolated systems, the 
Er p , macro

2  values in the special relativity and the H  

values in the second law of the thermodynamics are 0.   

On the other hand, the cpr p 2  values in the special 

relativity and the G  values in the second law of the 
thermodynamics decrease with an increase in the reaction 
time from the non-equilibrium state to the equilibrium 
state.   At the same time, the entropy S  in the second law 
of the thermodynamics and the 

Er p, 0, macro
2  qg, 0,macroc2 2  values in the special 

relativity increase with an increase in the reaction time 
when many particles move towards various directions 
within an isolated system.   The entropy S  and the 
isolated macroscopic rest mass energy 

Er p, 0, macro
2  qg, 0,macroc2 2  increase with a decrease in 

the free energy such as the Gibbs free energy G  and the 

isolated macroscopic total momentum cpr p, macro 2 , and 

thus the spacetime world becomes stabilized.   That is, we 
can consider that the entropy S  and the isolated 
macroscopic rest mass energy 

Er p, 0, macro
2  qg, 0,macroc2 2  increases with an increase in 
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the reaction time so that the spacetime world in the 
isolated system can be more stable by decreasing the free 
energy such as the Gibbs free energy G  and the isolated 

macroscopic total momentum cprp, macro 2 .   At the same 

time, the scale of the space and the time flowing velocity 
increase with an increase in entropy S  and the isolated 
macroscopic rest mass energy 

Er p, 0, macro
2  qg, 0,macroc2 2 .   On the other hand, the 

scale of the space and the time flowing velocity decrease 
with a decrease in the entropy S  and the isolated 
macroscopic rest mass energy 

Er p, 0, macro
2  qg, 0,macroc2 2 .    

In summary, the change of the entropy is closely 
related to the time flowing velocity but not directly related 
to the direction of the arrow of the time itself.   The 
increase of the entropy in the isolated systems play an 
essential role in the stabilization of the spacetime world 
by decreasing the free energy such as the Gibbs free 
energy G  and the isolated macroscopic total momentum 

cpr p, macro 2 , in the enlargement of the scale of the space 

world, in the increase of the time flowing velocity, and in 
the enlargement of the macroscopic isolated total rest 
mass qg ,0, macro  in many particles system.    

The entropy for the fermionic traveling electronic 
wave, related to the non-equilibrium state, is smaller than 
that for the bosonic standing electronic wave, related to 
the equilibrium state.   This is the reason why the 
fermionic traveling electronic wave, related to the non-
equilibrium state, is less stable than the bosonic standing 
electronic wave, related to the equilibrium state.   
 
10. Concluding remarks 

In this research, we show the reason why the Meissner 
effect can be observed in superconductivity.   The 
electronic structures in superconductivity are very similar 
to those in the insulating states in that they have large 
EHOMO–LUMO,N  value (more than a few eV), and their 

valence bands are completely occupied by electrons.   On 
the basis of these results, we suggest that the 
nondissipative currents observed at room temperatures in 
the microscopic sized materials as well as the 
superconducting currents in the macroscopic sized 
superconductivity can be formed by Cooper pairs.   That 
is, we show that the nondissipative currents observed at 
room temperatures in the microscopic sized materials can 
be considered as superconductivity.    

We reconsidered the interpretation of the BCS theory.   
According to the BCS theory, we consider that two 
fermionic electrons are condensated into one bosonic 

Cooper pair as a consequence of electron–phonon 
interactions, and at the same time, the Bose–Einstein 
condensation occurs.   On the other hand, according to 
our research, the Egap, NM –SC 0   and Egap, e–ph 0   

values appearing in the BCS theory do not denote the 
Bose–Einstein condensation energy but denote the 
stabilization energy of the two fermionic electrons in the 
closed-shell electronic structure after electron–phonon 
interactions ( EFermi,kHOCOkHOCO  ,after 0 ) with respect 

to the two fermionic electrons in the opened-shell 
electronic structure before electron–phonon interactions 
( EFermi,kHOCOkHOCO  , before 0 ).   We should consider 

that after electron–phonon interactions are completed 
( EFermi,kHOCOkHOCO  ,after 0  ), the Bose–Einstein 

condensation can occur (

EBose, kHOCOkHOCO ,after 0 ), 

in the BCS theory.   In such a case, the Bose–Einstein 
condensation energy (EBE, kHOCOkHOCO   0  ) denotes 

the stabilization energy of a bosonic Cooper pair in the 
closed-shell electronic structure after the electron–phonon 
interactions (


EBose, kHOCOkHOCO ,after 0 ) with respect 

to the two fermionic electrons in the closed-shell 
electronic structure after the electron–phonon interactions 
( EFermi,kHOCOkHOCO  ,after 0 ).   In the Meissner effect, 

the electric and magnetic fields can be induced because 
the initial ground electronic state tries not to receive the 
applied external magnetic field, as much as possible, in 
order that the electronic state does not change from the 
initial ground electronic state.   This expulsion originates 
from very stable bosonic standing wave state (70 eV) with 
zero momentum formed by two components of the 
fermionic traveling waves of two electrons with opposite 
momentum and spins.   

In the closed-shell electronic structure in 
superconductivity, two electrons occupying the same 
orbital j have the opposite momentum and spins 

( k j, –k j   and k j, –k j  ) by each other, and 

are condensated into the zero-momentum state (Bose–
Einstein condensation), and therefore, there is the bosonic 

standing wave ( kground, two ) with zero momentum 

( pcanonical  0 ) formed by two fermionic electrons.   

Since each fermionic electron ( k j   and –k j  , and 

k j   and –k j  ) has the kinetic energy of about 35 

eV, the condensation energy for two electrons 

( kground, two ) ( pcanonical  0) is very large, and usually 

is about 70 eV.   This bosonic standing wave state 

( kground, two ), related to the Cooper pair in 

superconductivity, is very rigid and stable because of the 
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closed-shell electronic structure in the two-electrons 

systems ( k j, –k j   and k j, –k j  ).   This is 

closely related to the condensation of electrons into the 
zero momentum state ( pcanonical  0) in the one-electron 
system in the London theory in superconductivity.    

Related to these relationships, in particular, related to 
the relationships between the bosonic standing waves and 
the fermionic traveling waves, and between the non-
equilibrium states and the equilibrium states, we also 
discussed the relationships between the entropy and the 
time.    
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