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Abstract

In the present paper i represent a critical analysis of non-equilibrium fluctuation and
stability of a mutualistic system. It also include the comparative study of both
deterministic and stochastic criteria of stability of the system on the basis of the
statistical linearization of stochastic differential equation.
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1 Introduction:

Stability analysis of an ecosystem is one of the most important problems of population ecology.
There are different aspects of stability in ecology and correspondingly different theory and
criteria of stability [14]. Deterministic dynamical methods fail to provide a precise and
unambiguous definition of stability of an ecosystem under the influences of a randomly
fluctuating environment. Stochasticity plays vital role in the study of stability of the ecosystems.
A biological or ecological community is considered to be stable when the number of
components of the population does not undergo sharp population [14]. This is equivalent to the
motion of stochastic stability in the sense of second order moments [1, 2].

The object of the present paper is to make a critical analysis of local stability of a mu-
tualistic Lotka-Volterra ecosystem under random perturbation . Such a system can be
modeled by a stochastic differential equation describing a system under the influence of a
randomly fluctuating environmental . These stochastic equation are in general non-linear.
There are different techniques of statistical linearization of stochastic differential
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equation [3,5,6,8,12,13]. Baishy and Chakrabarti [7] were the first to apply the technique
of Valsakumar [6] to the problem of statistical linearization technique in the ecology. The
above technique was used extensively later [4,7,9,10,15]. The present paper is a critical
analysis of non-equilibrium fluctuation and stability of a Lotka-Volterra mutualistic system
based on the above technique.

2 Mutualistic System: Deterministic Model and Analysis:

Let us consider a mutualistic model ecosystem [16] govern by the system of
deterministic equations [16]

dN;, ny
W = k_lNl (kl - Nl + NZ) (2161)
dN. T
d—tz = k—ZZNZ(kZ — N, + bN,) (2.1b)

where k1 , k2 are the carrying capacity and r1 , r2 are the growth rate of the species

N1(t) and N2(t) respectively. b is the measure of mutualism effect of each and other. In
this model each of them benefits from the presence of other species and grows
logistically in absence of other species. Before we go to the stochastic extension and
analysis of the system, let us first go to the deterministic behavior of the system (2:1).
The stationary states of the system (2:1) are as follows:

Eo: (N7, N3) = (0,0) (2.2a)
Ey: (N{,N3) = (ky,0) (2.2b)
Ey: (Nf,N3) = (0,k3) (2.20)
ki +k, k,+ bk
E*:(N;,N}) = ((i J_r b;, (21+_ b)1> (2.2d)

The existence criterion of the steady-state E (N1 ; N2 ) population (i.e. non-
negativity)demands the parameter b lies between 0 and 1. Let us study the effect of small

perturbation of the steady-states. Let x1(t) and x2(t) be the perturbation such that

N1(t) = N1 + x1(t) (2.3a)
N2(t) = N2 + x2(t) (2.3b)
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where x1, x2 are sufficiently small quantities. Linearising the system of equations (2.1)
about the stationary states , we get,

ddi’: = a11x1 + a12x2 (2.4a)
dt 21 1 22 2 (249)
(o (am .
Where aij = AN; ( dat )](N’{,NE) =
) (2.5)

The necessary and sufficient conditions of stability of the system about the steady-
states (N1 ; N2 ) are [16]

a1 +a; <0 (2.6a)

al’ld allazz - a12a21 > 0 (2.6b)

Let us first consider the trivial steady state E;(0,0).Then although a;1a,, — a42a,; > 0 but

a1 + ay; =1y + 1, > 0sothat the steady state  E,(0,0) is unstable. For the steady -state
rr

El(kll 0), a11a22 - a12a21 = _k_(kz + bkl) < 0 SO the Steady state El(kl' 0) iS alSO
2
unstable.For the steady state E,(0,k;) , Q11032 — Q12031 = —%(kz + k;) < 0 sothe
1

steady state E,(0,k,) isalso unstable. For the steady state E* (%, k(zlJr_bbk)l), a1+ a, =

_[l‘:_lNl* +£_2N2*] < 0 and a11a22 - a12a21 - 1:1;2 (1 - b)Nl*NZ* > 0 as O < b < 1 SO the
1 2 112
steady state E* (%;:;,’?:_—:’;1) is stable.

3 Statistic Model: Statistical Linearization and Moment Equations:

Let us study the effect of stochastic perturbation on the mutualistic ecosystem (2.1). For
that we extend the system of equation (2.1) to Ito type of stochastic differential
equations:

dN;, ny

_— = _Nl (kl - Nl + Nz) + ql(t) (31a)
dt  k;

dN,

-_— = _Nz(kz - N2 + le) + Ilz(t) (Slb)
dt  k,

289



International Journal of Scientific Engineering and Applied Science (I/SEAS) — Volume-3, Issue-3,March 2017
ISSN: 2395-3470
www.ijseas.com

IJSEAS

where the stochastic perturbation ", (t) and ";(t) are assumed to be Gaussian white
noises satisfying the conditions:

<) =0>, <Y (OY(E) >=2¢6;;t—-t') (L,j=12) (3.2)

where €; is the strength or intensity of the random perturbation and the bracket <>
represents the ensemble average. The system of equation (3.1) are non-linear Langevin
type and are in general very diffcult to solve. However, for the study of local stability
about the stationary states, we can linearize them without loss of information.

Let us study about the endemic steady state E*: (N],N;) = (k1+k2 M) :

(1-b)’ (1-b)

Let (x4, x,) be the deviation from the steady state E*: (N, N;) = (’gi:; %) so that

N; = N{ +x;, N, = N; + x, . In this case the system of equations (3.1) reduces to the form

e O i P o SO R PR (3.3a)
Frie » r1 s i) - ] » x1z2 + m(t 3.3a)
dzo bro N3 rolN5 ro . bro

e & i ™ 73+ T, T1%2 + () (3.3b)

where Y, and ', are described as in (3.2). Let us linearize the system of equation (3.3)
statistically. The statistical linaerization consists of replacing the system (3.3) by the system
of linear equations:

dx _
T?‘i = o121 + Brxo + 1 + ni(t) (3.4a)
dxo _

’ = aox1 + Poxa + co + na(t) (3.4b)
¢

where the errors in the linearization are

riN{ riN{ 1 o 1 i0 e
e = — Ly + Lo — —x] + —2122 — a121 — P12 — € (3.5a)
k k1 k k
broNJ rolN, ro o bro
€0 = —=x1 — —=x9 — —x5 + —x1T9 — aox1 — Poxo — Co (3.5b)
11'3 f.‘-_} k- A“_)

The unknown coefficients a4, a,, B4, B, of the equation (3.4) are determined from the mini-
mization of the averages of the squares of the errors (3.5). These coefficients are in general

functions of the parameters k1, k2, r1, r2 and also the different moments involving x1 and x2 [6].
Simple calculations leads to the system of equations of the first moments:
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A1) = I )+ B ) — Ty 4 )
Ar2) = T 1) - 2 (o) — 22 (a) 4+ 2 )
it O ) + B ) — T ad) + P adaa) + 1)
U o2 ) - 2 ) P2ty 4 T2t e
dowra) _ (O 2y ) 4 PO oty o T
R = Dherad) + (2 - P)ade)
where we have used the relations[6]:
(z1m) = €1, (ximp) =0, (xom) =0, (z2m)=e2
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(3.6a)

(3.6b)

(3.6¢)

(3.6d)

(3.6e)

(3.7)

Let us assume that the system size expansion is valid such that all correlations and

variances are of the order of (%) compared to the averages, so that [6,11]

(@122) ol SH] or o[
(@) o o 22
(@3) oc o[ 22}

(3.8a)
(3.8b)

(3.8¢)

where N is the population size of the system. We also assume that the correlation ¢;and e,
glven by (3.7) decreases with the increase of the population size and they are assumed to

e of the order of the inverse of the population size N.

h,-’xo[ ], 1.9

Let us the relation (Valsakumar et al,1983)
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(@zg) = 2(x1)[(x122) — (1) (22)] + (1) (w2) (3.10a)
(2123) = 2aa)[(w122) — (21) (@2)] + (21) (03) (3.10b)
(21) = 2(z1)(at) — 2(e1)” (3.10c)
and keeping the lowest order term, we get the following reduced equations:
ded) _ NG, o NP, 6ri oo 4m g
o) — 20 0 + 200 ) — P o) + )
4r ‘ i
+%}l(3'1)(a.‘13‘2) — 4(22)(za) + 2;—11(.1“12)(:1'2) + e (3.11a)
d{x5 2bro N3 2ra N 679 4dro
((;f2>_ ’:2 2(1‘112 Bl riz 2 Ié _%;<'r’2)<12>+ ;{:\_)(12)3
4br dbrs ,  2bra " ,
kiz(;l))(ll.l))— ki“(.ll)(.zz) Lr><.1?1}(12)"+52 (3.11b)
d(@mg)  rN; moNj, . braNj, o . mNP,
12 - (O ) ) + T2 () 4 T (0
bro . bro  ri.,
22 - 7 (o) mrmz) — (o))} + (G2 = ) () ()
2 1 2 1
42— 22 ) (mrma) — (o) 2)2) + (2 = 22) ) () (3.110)
1 2 - | )

We shall now replace the average < x; > and < x, > in equations (3.11) by their steady
equilibrium vales given by

(1) =0, (x2)=0 (3.12)
Then the equations (3.11) become

d(:r?) 21‘1 f\'ri" 2 '2'1‘1 f\'rl* ;
& - ke (z1) I (z122) (3.13a)
d(z3 2bro N 2roN5 |, - ——
<dt2> = = 2 (z129) — a 2 (x2) (3.13b)
d(.l] ;1'2) ™ JNI‘I* 2 i\‘r-z* bf"z 4']\"'5 2 A8 A‘.lt 9
—_— = T 3.13
p ( BT R )(z122) + " (z1) + s (x3) (3.13¢)

Equations (3.13)are the required moment equations which are ordinary coupled-linear
equations.

4 Non-equilibrium Fluctuation and Stability Analysis:
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To solve the system of equation (3.13) for the steady state E*: (N;,N;) = ((1_b) "

we rewrite them as

9?‘11’\1

2r Nt
D+ () = Tt (@) (4.1a)
2 N 2b N
D+ =) = = arz2) (4.1b)
T N* T N_* b N 2 hrt .
(D + l!.-.,l 4 2%2](3;11:2) LS f‘ig 2 (42) 4 r1k11 (2) (4.1¢)
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Multiplying (4.1c) by [D +22%] and [D +22%], using (4.1b) and (4.1a) we get ,
(D + ”‘[‘Tl *‘2;:2"'5 \(D + Q'ri_i\rl* )(D + 2:2\2 ))(z122)
= LN Iy 2 V) ()
(D® +3( f'lj:\l"—ik 5 1_17:‘5 \Da + 2{(" 1;;1* f.;:f 8 ¢ 2(1- b}){f}'; 132\1* N3 D
41 — bﬁfl zzf\"f‘ 51 1‘1;:’]* 5 “A":) J(ziza) =0  (4.3)
Now for simplicity of the calculation we set , u = % >0 andv= % >0 |, then

the equation (4.3) reduces to

[D? 4 3(u + v)D? + 2{(u + v)? + 2(1 — b)uv}D + 4(1 — b)uv(u + v)|(z122) =0  (4.4)
Taking < x;x, >= Ae™! as a trial solution, we get auxiliary equation as
[m? 4+ 3(u + v)m? + 2{(u + v)® + 2(1 — b)uv}m + 4(1 — b)uv(u + v)|(z129) =0  (4.5)
To find the nature of the roots we can rewrite it as
aym® + 3agm? + 3agm + a4 =0 (4.6)
Where a; =1,a, =u+v,a; = g[(u +v)2+2(1 —b)uv] and a, =41 —b)(u+
v)uv . Now eliminate the second degree term from the equation (4.6) we get

22 4+3Hz+G=0 (4.7)
where z = aym + as, H = ajag — n::: and G = ufn.I — Jajasas + 2(:5_3 ie.,
z=m+ (u+v) (4.8)
1 2
H = —wg[{ u — v)° + 4buv] (4.9)
G=2(1-b)(u+v)uv (4.10)
Then we calculate the expression G2 + 4H3 = —% {(u—v)?+ 4buv}® — 27(1 -

b)?(u + v)?u?v?], which determine the roots of the equation (4.7).

Case-l: If {(u—v)?+4buv}® > 27(1 — b)?(u + v)?u?v? then all the roots are
real. Then from the equation (4.6) we set

P(m) = aym?® + 3asm? + 3agm + a4 (4.11)
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where a; > 0,:=1,2,3,4.
P(—m) = —aym® + 3asm? — 3asm + ay (4.12)

Then by the Descartes’ rule of sign the number of change of sign in P(m) is zero. So there
is no positive real solution. But the number of change of sign in P(—m) is three. So the

equation P(m) = 0 has exactly three negative real solutions. In this case the required
solution is of the form

(x179) = L1e™"* + Loe®* + L3e®s* (4.13)
(15) = Me®'" + Moe®?t + M3e®t + ¢4 (4.14)
(1?%) = N;e®t 4+ Npe®t 4 Nae®t 4 ¢y (4.15)

where L;’s ,M;’s and N;’s are constants (i=1,2,3). ¢; and ¢3 are integrating constants. When
t —s oo then (z123), (x3), (x7) tend to finite numbers i.e., the moment remains finite after
a large time. So the system is stable.

Case-ll: If {(u—v)?+ 4buv}® > 27(1 — b)?(u + v)?u?v? then one root is real and

other two roots are imaginary, both of them are conjugate as the coefficients are real.
From the equation (4.7) we get

*+3Hz24+G=0 (4.16)
To find the solution of (4.16) we get
z=p+q (4.17)
or, 2% = p3 - q3 + 3pqz
or, z° — 3pqz — (;}3 + q3) =0

(4.18)
Comparing (4.16) with (4.18) we get pg = —H and p3 + q3 = —G . After simple

calculation we get
1 .
P = F1=CG+ VG2 + 4H3}) (4.19)
and

¢ = %{-G — VG2 + 4H3} (4.20)

Let 3 be any value of [{—G + VG2 + 4H3 }]3, which is real and negative. Then other two
values of p are wf ,w?28.

Now it is clear that Re(wf) > 0, Re(w?8) > 0
where w is a complex cube root of unity.

Similarly, Let 4 be any value of [%{—G — VG2 + '—lH?’}]%, which is real and negative. Then

other two values of ¢ are wy ,w?7.
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Now it is clear that
Re(wy) >0, Re(w?y) >0

where w is a complex cube root of unity.

As pq > 0 and p*+¢*® < 0 then we said that {(B,7), (wB,w), (w28, .4;2‘;)} or {(B,7). (w8, w2y), (w8, wy)}
are two set of solution of z of the form (p,q).

So one real root is negative and the real part of two complex roots are positive. In this case
the required solution is of the form

(r122) = ArelPHt 4 f')\"’[‘-l-‘gt't'ns(u'lf} + Az sin(wit)] (4.21)
(1_';) - B|('{";+""if + ("\'I[B-_g cos(wit) + Basin(wit)] + C (4.22)
(:f) — ('1('{";—'—\'“ + ’\lr[(_'g cos(wyt) + C";;Hin(u'ﬂ}] +D (4.23)
or of the form
(z120) = ‘,1”-‘-‘{_7’“ + ;-‘\'-'I[_-l-_)('us{u';gf] + As Hitl(tf'g.")] (4.24)
(1:;) = By eBH7E 4 eAat [B3 cos(wat) + By sin(wat)] + C' (4.25)
(:f} = C}e B+t 4 ¢ ’\-"'[('3 cos(wot) + Cy sin(wot }] +D (4.26)

where 4;’s , B;'s and C;'s are constants (i=1,2,3). C and D are integrating constants.
A; £ w; are the complex roots where .14; > 0 . In this case < x;x, >.< x? > and <
xZ > diverges with increasing time. Consequently the system is stochastically
unstable in the sense of second order moments.

5 Conclusion

In the present paper i have made comparative study of stability of ecological system
under both deterministic and stochastic perturbation. The system under consideration is
a mutualistic Lotka-Volterra system. The interior equilibrium point E*: (N;,N;) =

(’;if:i,k(zltbblgl) of the system is stable deterministically when0 < b < 1 which result from

the existence condition of the equilibrium. But when the system is perturbed ,then under
certain condition described in case-l the system is stochastically stable and in the

reverse condition described in case-ll the system is unstable. In a particular case if r1 =

k1 =r2 = k2 =1 then for 0 < b < 0:58 the system is unstable and for 0:58 < b < 1 the
system is stochastically stable. The parameter b is thus a bifurcation parameter. Thus
the system behavior changes when b crossing the bifurcation point b = 0:58.
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