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Abstract 
In this note we construct some families of 

recurrence generated activation functions based on 
Cauchy activation function (CAF) and Hyperbolic–
secant activation function (HSAF). 

We prove estimates for the Hausdorff 
approximation of the Heaviside function ( )h t  by 

means of these families. Numerical examples, 
illustrating our results are given. 
Keywords: Recurrence Generated Cauchy Activation 
Functions (CAF), Recurrence Generated 
Hyperbolic–secant Activation Functions (HSAF), 
Heaviside Function, Hausdorff Distance, Upper and 
Lower Bounds. 
 
1. Introduction 

Sigmoidal functions (also known as “activation 
functions”) find multiple applications in many 
scientific fields, including biology, ecology, 
population dynamics, chemistry, demography, 
economics, geoscience, mathematical psychology, 
probability, sociology, political science, financial 
mathematics, statistics, fuzzy set theory, insurance 
mathematics, neural networks, to name a few [1]–
[19]. 

We study the distance between the Heaviside 
function and a special class of sigmoidal functions, 
so–called activation functions. 

The distance is measured in Hausdorff sense, 
which is natural in a situation when a Heaviside 
function is involved. Estimates for the Hausdorff 
distance are reported. 

Constructive approximation by superposition of 
sigmoidal functions and the relation with neural 
networks and radial basis functions approximations is 
discussed in [19]. 

Any neural net element computes a linear 
combination of its input signals, and uses a logistic 
function to produce the result; often called 
“activation” function [20]– [21]. 

 
2. Preliminaries 

Definition 1. The Cauchy activation function is 
defined for > 0b  by [22]:  
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Definition 2. The Hyperbolic–secant activation 

function is defined for > 0b  by [23]:  
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Definition 3. The Heaviside step function ( )h t  

is defined by  

 
0, if < 0,
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Definition 4. The Hausdorff distance (H–
distance) ( , )f g  between two interval functions 

,f g  on  R , is the distance between their 

completed graphs ( )F f  and ( )F g  considered as 

closed subsets of R  [24], [25]. More precisely,  
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wherein || . ||  is any norm in 2R , e. g. the maximum 

norm || ( , ) ||= max{| |,| |}t x t x ; hence the distance 

between the points = ( , )A AA t x , = ( , )B BB t x  in 
2R  is || ||= (| |,| |)A B A BA B max t t x x   . 
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3. Main Results 

In this Section we construct some families of 
recurrence generated activation functions based on 

( )f t  and ( )g t . 

We prove estimates for the Hausdorff 
approximation of the Heaviside function ( )h t  by 

means of these families. 

3.1. The Family of Recurrence Generated Cauchy 
Activation Functions (CAF) 

We consider the following family of recurrence 
generated activation functions: 
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Evidently, 1

1
(0) =

2if   for = 0,1, 2, ,i  . 

Denote the number of recurrences by p . 

Let us point out that the Hausdorff distance is a 
natural measuring criteria for the approximation of 
bounded discontinuous functions [17]. 

3.2. Approximation Issues 

We study the Hausdorff distance d  between the 
Heaviside function ( )h t  and the family of (CAF)–

functions (4)–(5). 
Special case. Let = 2p . 

The H –distance 2 2( ( ), ( ))d h t f t  between the 

function ( )h t  and the function 2 ( )f t  satisfies the 

relation:  
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The following Theorem gives upper and lower 
bounds for 2d  

  
Fig. 1. The functions 2 2( )F d  and 2 2( )G d  for 

= 0.2b . 
Theorem 3.1.  For the Hausdorff distance 2d  

between the function ( )h t  and the function 2 ( )f t  the 

following inequalities hold:  
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for 
1

<b
x

, where x  is the unique positive root of 

the polynomial equation  
5
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Proof. We define the functions  
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From Taylor expansion  
2

2 2 2 2 2( ) ( ) = ( )F d G d O d  

we see that 2 2( )G d  approximates 2 2( )F d  with 

2 0d   as 2
2( )O d  (cf. Fig. 1). 
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In addition 2 2( ) > 0G d  and for 5    

2 22 2
( ) < 0; ( ) > 0.l rG d G d  

This completes the proof of the inequalities (7). 

Remarks. For 
5

4
2

= 1.39614
5

A e   we have 

1 0.39614A    and from Descartes’ rule of signs 
the algebraic equation (8) has unique positive root 

0.288722x  . Then < 1.10248b . 
Precise upper and lower bounds for the unique 

positive root of algebraic equation can be found in 
[26], [27]. 

  
Fig. 2. Approximation of the ( )h t  by (CAF)–

functions for = 0.2b ; The graphics of recurrence 
generated functions: 0f  (green), 1f  (red), 2f  

(dashed) and 3f  (blue); Hausdorff distance: 

0 = 0.228713d , 1 = 0.157674d , 2 = 0.1322d , 

3 = 0.123957d . 
 

  
Fig. 3. Approximation of the ( )h t  by (CAF)–

functions for = 0.1b ; The graphics of recurrence 
generated functions: 0f  (green), 1f  (red), 2f  

(dashed) and 3f  (blue); Hausdorff distance: 

0 = 0.16959d , 1 = 0.0931563d , 2 = 0.0691582d , 

3 = 0.063748d . 

The recurrence generated (CAF)–functions 

0 ( )f t , 1( )f t , 2 ( )f t  and 3( )f t  for various b  are 

visualized on Fig. 2–Fig. 3. 

3.3. The Family of Recurrence Generated 
Hyperbolic–secant Activation Functions (HSAF) 

 

  
Fig. 4. Approximation of the ( )h t  by (HSAF)–

functions for = 0.2b ; The graphics of recurrence 
generated functions: 0g  (green), 1g  (red), 2g  

(dashed) and 3g  (blue); Hausdorff distance: 

0 = 0.212162d , 1 = 0.127451d , 2 = 0.0893487d , 

3 = 0.0692835d . 

 

  
Fig. 5. Approximation of the ( )h t  by (HSAF)–

functions for = 0.1b ; The graphics of recurrence 
generated functions: 0g  (green), 1g  (red), 2g  

(dashed) and 3g  (blue); Hausdorff distance: 

0 = 0.145697d , 1 = 0.0591496d , 2 = 0.026194d , 

3 = 0.0122358d . 

 
We consider the following family of recurrence 

generated activation functions: 
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Evidently, 1

1
(0) =

2ig   for = 0,1,2, ,i  . 

The recurrence generated (HSAF)–functions 

0 ( )g t , 1( )g t , 2 ( )g t  and 3( )g t  for various b  are 

visualized on Fig. 4 – Fig. 5. 
Based on the methodology proposed in the 

present note, the reader may formulate the 
corresponding approximation problems on his/her 
own. 
 
4. Conclusion 

A family of recurrence generated parametric 
activation functions is introduced finding application 
in neural network theory and practice. 

Theoretical and numerical results on the 
approximation in Hausdorff sense of the Heaviside 
function by means of functions belonging to the 
family are reported in the paper. 

We propose a software module within the 
programming environment CAS Mathematica for the 
analysis of the considered family of recurrence 
generated (CAF) and (HSAF) functions. 
 

The module offers the following possibilities: 
– generation of the activation functions under 

user defined values of the parameter b  and number 
of recursions p ; 

– calculation of the H–distance pd , 

= 0,1,2, ,p   between the Heaviside function ( )h t  

and the activation functions 0 2 2, , , , pf f f f  and 

activation functions 0 1 2, , , , pg g g g ; 

– software tools for animation and 
visualization. 
 

  
Fig. 6. Comparison of the functions 2 ( )f t  (dashed) 

and 2 ( )g t  (thick) for = 0.15b . 

Some comparison of the functions 2 ( )f t  and 

2 ( )g t  for = 0.15b  is plotted on Fig. 6. 

From Fig. 6 we can conclude that each element 
of the sequence ig  gives a better ”saturation” 

compared with the corresponding elements of the 
sequence if . 

The Hausdorff approximation of the interval step 
function by the logistic and other sigmoidal functions 
is discussed from various approximation, 
computational and modelling aspects in [28]–[50]. 
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