
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-12, December 2017
ISSN: 2395-3470

www.ijseas.com

An Efficient Hardware Implementation of KECCAK Algorithm

Hassen Mestiri, Fatma Kahri, Belgacem Bouallegue and Mohsen Machhout
Electronics and Micro-Electronics Laboratory (E. µ. E. L)

Faculty of Sciences of Monastir, Tunisia
hassen.mestiri@yahoo.fr

Abstract
Following the attacks considerable standard SHA-2,
in this paper, a new version of hash was developed
known as the family SHA-3. We discussed the study
of the SHA-3 hash exposing the protocol chosen for
our KECCAK-256 application. The optimization of
this function and all steps taken to achieve this
implementation was done are performed the synthesis
of IP hash and optimization. The resulting hardware
requirements as well the computation time are
presented and compared with previous work. In
addition, the proposed design is implemented on the
most recent Xilinx Virtex FPGAs.
 The number of occupied slices, the maximum
working frequency (in megahertz), the throughput (in
gigabits per second), and the efficiency (in gigabits
per second/slice) have been compared. An FPGA
architectural for KECCAK-256 was developed using
VHDL, and synthesized using Virtex-6 chips. Our
KECCAK-256 show tremendous throughput increase
of 195.27% when compared with the implementation
of the original KECCAK-256.
Keywords: SHA-3, KECCAK, Implementation, FPGA
Hardware.

1. Introduction
The hash function is the one of the methods and

techniques to ensure the information integrity. Until
now, it is a goal related to protect the information.

The SHA-1 and SHA-2 are most-widely used in
previous years [1]. However, the NIST announced an
international competition in order to developing a
new hush function SHA-3. In August 2015, the
competition was finalized. The KECCAK is a final
version of the new SHA-3 [2].

The new hash function KECCAK is used in very
large application requiring high security integrity
such as internet banking, online shopping, e-mail and
other sensitive digital communications. Since then,
different hardware implementation architectures of
KECCAK hush function algorithm have been

proposed for different applications and their
performances have been evaluated by using ASIC
libraries and FPGA [3], [4], [5],[6]
The remainder of this paper is organized as follows.
Section 2 presents the specification of KECCAK
algorithm. The experimental results are explained
and discussed in section 3. Section 4 concludes this
paper.

2. KECCAK Specification

For having provable security against all attacks,
the design construction of the new hush family is
based on sponge strategy.
The sponge design perform on a state of b = r + c bits,
where r is the bitrates and c is the capacity which
determines the security level. So, In Keccak, the
function is a permutation chosen in a set of seven
Keccak-f permutations, denoted Keccak-f[b], b can
be {25, 50, 100, 200, 400, 800, 1600}, where b is the
width of the permutation. The state is organized as an

array of 5×5 lanes, each of length w ∈ {1, 2, 4, 8,

16, 32, 64} (b=25w). This state (A) is a three-
dimensional binary matrix. [7].
The sponge design consists of three phases:

 The initialization phase: In this stage, first all
the bits of the state are set to zero. Second, the
input data is padded and divided into blocks of r
bits.
 The absorbing phase: first, the input message
(r-bit) is XORed with the first r-bit of the state.
Second, the outputs results are interleaved with
the permutation function. Finally, all blocks are
processed; the sponge design alters to the third
phase.

 The squeezing phase: in this stage the output
blocks are the first r-bit of the state. Moreover, the
user can be chosen the number of output blocks.

Figure 1 shows the sponge construction:

1

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-12, December 2017
ISSN: 2395-3470

www.ijseas.com

Fig. 1 The sponge construction

Actually, the state is grouped into matrix 5X5 of 64-
bit words. The KECCA-f is composed of 24 rounds.
Each round has five steps (θ, ρ, π, χ and τ). in each
round the initial state is all zero and the data is mixed
with the current state.

R i         (1)

         
   

: ,0 ,1 ,2 ,3

,4 ; 0,4

step C x A x xor A x xor A x xor A x

xor A x x

 

 
 (2)

         : , , 1, 2,step Ax y Bx y xor not x y and Bx y    (3)

   : 0,0 0,0i step A A xor RC (4)

      & : ,2 3 , , ,steps B y x y rot A x y r x y    (5)

In this algorithm all the operations on the indices are
done modulo 5. The state named A, A[x,y] is a
particular lane. B[x,y], C[x] and D[x] are
intermediate variables. The round constant is RC[i].
The constants R[x,y] are the cyclic shift offsets and
are specified in the Table 1.

Table 1: Constants R[x,y] KECCAK algorithm

x=3 x=4 x=0 x=1 x=2

y=2 25 39 3 10 43

y=1 55 20 36 44 6

y=0 28 27 0 1 62

y=4 56 14 18 2 61

y=3 21 8 41 45 15

Table 2 shows the round constants RC[i]

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B

RC[1] 0x0000000000008082 RC[13] 0x800000000000008B

RC[2] 0x800000000000808A RC[14] 0x8000000000008089

RC[3] 0x8000000080008000 RC[15] 0x8000000000008002

RC[4] 0x000000000000808B RC[16] 0x800000000000808B

RC[5] 0x0000000080000001 RC[17] 0x8000000000000080

RC[6] 0x8000000080008081 RC[18] 0x000000000000800A

RC[7] 0x8000000000008081 RC[19] x800000008000000A

RC[8] 0x000000000000008A RC[20] 0x8000000080008081

RC[9] 0x0000000000000088 RC[21] 0x8000000000008080

RC[10] 0x0000000000008082 RC[22] 0x0000000080000001

RC[11] 0x000000080000000A RC[23] 0x8000000800008008

3. Proposed KECCAK

3.1 Proposed design

Figure 2 shows the block diagram of our KECCAK
architecture. This architecture takes 1600-bit for the
inputs data. Then it performs the padding operation
and the hash process. The output data is 512-bit.
Figure 2 show the block diagram of KECCAK
architecture.
The architecture of KECCAK consists of four
modules: the Input/output interface, the Control Unit,
the Padder Unit and the KECCAK Round.
• Input/output interface is the input blocks. The input
data is 1600-bit length while the output is 512-bit
wide. So the Input/output interface has to buffer the
information data.
• Controller is used to ensuring the synchronization
between all modules.
• Padder Unit implements the padding operation and
the inversions per byte procedure and has an output

2

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-12, December 2017
ISSN: 2395-3470

www.ijseas.com

of 1600-bit which is the sponge function of
KECCAK. Then a 2-to-1 multiplexer drives the
output data from padder to the primary KECCAK
components.
• KECCAK Round is the main component of
proposed design. It requires 25 clock cycles to
produce the 512-bit message digests where each
clock cycle requires the previous round, as well as
the constant value RC at the start of the each round.

3.2 Implementation: Results

Our Round function is composed of three main
components: the round function, the state register and
the input/output buffer. The proposed KECCAK
architecture has been described using VHDL,
simulated by ModelSim 6.6 and synthesized with
Xilinx ISE 14.1. The FPGA target is XC6VLX75T-
3ff784, from Xilinx Virtex family. As seen in Table
3, the number of occupied slices, the frequency (in
Megahertz), the throughput (in Gigabits per second)
and efficiency (in Megabits per second).

The throughput is obtained by using the following
equation:

#

#

bit frequency

clock cycles


(6)

The architecture is simulated to verify the
functionality, with use of the test vectors provided by
the KECCAK standard [8]. In order to have a fair and
detailed evaluation. We implemented KECCAK.
Performance metrics such as area, frequency,
throughput, and efficiency are derived. As seen in
Table 3 the proposed KECCAK implementation
takes 1167 slices for 333.361MHz frequency in
virtex6.

Table.1. KECCAK FPGA implementation: Results

Performances Metrics

V
IR

T
E

X
-6

 Area
(Slices)

Clock
Cycle

Freq.
(MHz)

Throu.
(Gbps)

Eff.
(Mbps/Slice)

1167 25 333.361 13.654 11.7

Fig. 2 Block diagram KECCAK

3

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-12, December 2017
ISSN: 2395-3470

www.ijseas.com

3.2 Implementation: Comparison

In table 4 compares our implementations with recent
works reported in literature in terms of Area,
frequency, Throughput, Efficiency.

Ref.
Area

(Slices)
Freq.

(MHz)
Throu.
(Gbps)

Eff.
(Mbps/Slice)

V
ir

te
x-

6

[9] 188 285 0.08 --

[7] 1015 291.21 6.99 6.89

Our 1167 333.36 13.65 11.7

In Virtex6 in [9] use a block size of 1088-bit for the
internal data rate computation. So this
implementation achieves an input throughput at
0.08Gbps in 1896 clock cycles with 285 MHz
operating frequency. With the same block size, the
implementation [7] has an input throughput of 6.99
Gbps with 291.21MHz operating frequency. So the
proposed design increases the maximum frequency
by 35.30 %. Also, this design has hardware
requirements of 1015 slices.

4. Conclusion

In this work we have presented efficient hardware
implementations of KECCAK. We reported the
implementation results of 512-bit variants on most
up-to-date Xilinx FPGAs i.e Virtex6. We reported
the performance figures of our implementations in
terms of Area, Frequency, Throughput and
Efficiency and compared it with available results.
The results of the proposed architecture are found in
Section 4. It is important in term frequency,
throughput, highlight that the cost of Slices
consumed by Throughput. We compared and
contrasted the performance figures of others works
on Virtex6. This work serves as performance
investigation of KECCAK on most up-to-date
FPGAs.

References

[1] NIST-FIPS 180-3, ‘Secure Hash Standard
(SHS)’, USA, 2008
[2] F. Kahri, H. Mestiri, B. Bouallegue, M. Machhout
" Fault Attacks Resistant Architecture for KECCAK
Hash Function" , International Journal of Advanced

Computer Science and Applications, Vol. 8, No. 5,
2017, pp 237-243
[3] K. Latif, M. Muzaffar Rao, A. Aziz and A.
Mahboob, Efficient hardware implementations and
hardware performance evaluation of SHA-3 finalists,
NIST Third SHA-3 Candidate Conf., Washington,
DC, 22–23 March, 2012.
[4] E. Homsirikamol, M. Rogawski and K. Gaj,
Comparing hardware performance of fourteen round
two SHA-3 candidates using FPGAs, Cryptology
ePrint Archive Report 2010, George Mason
University.
[5] F. Kahri, H. Mestiri, B. Bouallegue, M. Machhout
" High Speed FPGA Implementation of
Cryptographic KECCAK Hash Function Crypto-
Processor" Journal of Circuits, Systems, and
Computers Vol. 25, No. 4 (2016), 1650026 (15
pages)
[6] S. Bayat-sarmadi, M. Mozaffari-Kermani, and A.
Reyhani-Masoleh, "Effcient and concurrent reliable
realization of the secure cryptographic SHA-3
algorithm", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 33(7),
July 2014.
[7] G. Bertoni, J. Daemen, M. Peeters and G. Van
Assche, The KECCAK SHA-3 submission (2011),
Submission to NIST (Round 3),
http://keccak.noekeon.org/Keccak-submission- 3.pdf
[Also see NIST, Keccak hash function (2014),
http://csrc.nist.gov/groups/ST/ hash/sha-3.
[8] S.Kerckhof, Fr.Durvaux, N.Veyrat-Charvillon,
F.Regazzoni, G. M. de Dormale, F.-X.Standaert,
“Compact FPGA implementations of the five SHA-3
finalists”, 10th IFIP Smart Card Research and
Advanced Applications 2011 (CARDIS 2011),
Leuven, Belgium, pp. 217-233, September 14-16,
2011.
[9] A. Gholipour, S. Mirzakuchaki“High-Speed
Implementation of the KECCAK Hash Function on
FPGA” International Journal of Advanced Computer
Science, Vol. 2, No. 8, Pp. 303-307, Aug., 2012.

First Author

4

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-3, Issue-12, December 2017
ISSN: 2395-3470

www.ijseas.com

Hassen Mestiri received his M.S. and Ph.D degrees
in Microelectronic Systems from the Faculty of
Sciences of Monastir, Tunisia, in 2011 and 2016
respectively. Dr MESTIRI is currently Assistant
Professor at University of Gabes, Tunisia. His
research interests include implementation of standard
cryptography algorithm, security of embedded
system and Hardware/Software Codesign.

Fatma Kahri received here M.S. degree in
Microelectronic Systems from the Faculty of
Sciences of Monastir, Tunisia, in 2012. She is a PhD
student. Her research interests include
implementation of standard hash algorithm and
security of embedded system on FPGA.

Belgacem Bouallegue received his MSc in Physic
Microelectronic, his DEA in Electronic Materials and
Dispositifs and Ph.D. degrees in Electronics from
University of Monastir, Tunisia, in 1998, 2000 and
2005, respectively. His research interests include
High Speed Networks, Multimedia Application,
Network on Chip: NoC, flow and congestion control,
interoperability, Security Networks implementation
of standard cryptography algorithm, key stream
generator and electronic signature on FPGA and
performance evaluation. He is working in
collaboration with Lab-STICC à Lorient Laboratory,
Lorient Cedex France and LIP6, Laboratoire
d’Informatique de Paris 6, Université Pierre et Marie
Curie, UPMC - CNRS UA 7606, Département SoC,
Systèmes Embarqués sur Puce, 4, place Jussieu;
75252 PARIS Cedex 05, France.

Mohsen Machhout was born in Jerba-Tunisia, on
January 31 1966. He received MS and Ph.D. degrees
in electrical engineering from University of Tunis II,
Tunisia, in 1994 and 2000 respectively. Dr Machhout
is currently Associate Professor at University of
Monastir, Tunisia. His research interests include
implementation of standard cryptography algorithm,
key stream generator and electronic signature on
FPGA and ASIC, security of smart card and
embedded system with resource constraints.

5

