

SOME RESULTS ON GENERALIZED (k,µ) SPACE-FORMS

SHIVAPRASANNA G.S

Department of Mathematics, Dr.Ambedkar institute of technology, Bengaluru-560056, India, Email: shivaprasanna28@gmail.com.

Abstract: In this paper we study η -recurrent and ϕ -recurrent generalized k,μ)- space forms. We prove that generalized (k,μ) -space-form has η -parallel Ricci tensor then it is constant. Also we study in a ϕ -recurrent generalized (k,μ) -space-form, characteristic vector field and the vector associated with 1-form are co-directional.

Keywords: generalized (k, μ) space forms, η -recurrent, η -parallel, ϕ -recurrent.

1. INTRODUCTION

A generalized Sasakian space form was defined by Carriazo et al. in [1], as an almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor R is given by

$$R = f_1 R_1 + f_2 R_2 + f_3 R_3, \tag{1.1}$$

where f_1, f_2, f_3 are some differentiable functions on M and

$$R_{1}(X,Y)Z = g(Y,Z)X - g(X,Z)Y$$

$$R_{2}(X,Y)Z = g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z$$

$$R_{3}(X,Y)Z = \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi,$$
(1.2)

for any vector fields X, Y, Z on M. In [2], the authors defined a generalized (k, μ) space form as an almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor can be written as

$$R = f_1 R_1 + f_2 R_2 + f_3 R_3 + f_4 R_4 + f_5 R_5 + f_6 R_6,$$
(1.3)

where $f_1, f_2, f_3, f_4, f_5, f_6$ are differentiable functions on M and R_1, R_2, R_3 are tensors defined above and

$$\begin{split} R_4(X,Y)Z &= g(Y,Z)hX - g(X,Z)hY + g(hY,Z)X - g(hX,Z)Y\\ R_5(X,Y)Z &= g(hY,Z)hX - g(hX,Z)hY + g(\phi hX,Z)\phi hY - g(\phi hY,Z)\phi hX\\ R_6(X,Y)Z &= \eta(X)\eta(Z)hY - \eta(Y)\eta(Z)hX + g(hX,Z)\eta(Y)\xi - g(hY,Z)\eta(X)\xi, \end{split}$$

for any vector fields X, Y, Z, where $2h = L_{\xi}\phi$ and L is the usual Lie derivative. This manifold was denoted by $M(f_1, f_2, f_3, f_4, f_5, f_6)$.

Natural examples of generalized (k, μ) space forms are (k, μ) space forms and generalized Sasakian space forms. The authors in[1] proved that contact metric generalized (k, μ) space forms are generalized (k, μ) spaces and if dimension is greater than or equal to 5, then they are (k, μ) spaces with constant ϕ – sectional

curvature $2f_6 - 1$. They gave a method of constructing examples of generalized (k, μ) space forms and proved that generalized (k, μ) space forms with trans-Sasakian structure reduces to generalized Sasakian space forms. Further in [2], it is proved that under D_a – homothetic deformation generalized (k, μ) space form structure is preserved for dimension 3, but not in general. Another interesting and important class of manifolds is a class of manifolds of constant curvature. T.Takahashi [6] introduced the notion of locally ϕ -symmetry on a Sasakian manifold. Generalizing the notion of ϕ -symmetry , De and co-authors [7] introduced the notion of ϕ recurrent Sasakian manifold. We use to study Ricci tensor of the space-form and characterize such space-forms to have η -recurrent and η -parallel Ricci tensor. Motivated by the above studies, In this paper we study η recurrent and ϕ -recurrent generalized (k, μ) - space forms. We prove that in an η -parallel Ricci tensor then it is constant. Also we study in a ϕ -recurrent generalized (k, μ) -space-form has η -parallel Ricci tensor then it is constant. Also we study in a ϕ -recurrent generalized (k, μ) -space-form, characteristic vector field and the vector associated with 1-form are co-directional.

2. PRELIMINARIES

A (2n+1)-dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold if it admits a tensor field ϕ of type (1,1), a vector field ξ , and a 1-form η satisfying

$$\phi^{2} = -I + \eta \otimes \xi, \eta(\xi) = 1, \phi \xi = 0, \eta \circ \phi = 0, \tag{2.1}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \qquad (2.2)$$

$$g(X,\phi Y) = -g(\phi X, Y), g(X,\phi X) = 0, g(X,\xi) = \eta(X).$$
(2.3)

Such a manifold is said to be a contact metric manifold if $d\eta = \Phi$,

where $\Phi(X, Y) = g(X, \phi Y)$ is the fundamental 2-form of M.

It is well known that on a contact metric manifold (M,ϕ,ξ,η,g) , the tensor h is defined by $2h = L_{\xi}\phi$ which is symmetric and satisfies the following relations.

$$h\xi = 0, \, h\phi = -\phi h, \, trh = 0, \, \eta \circ h = 0, \tag{2.4}$$

$$\nabla_X \xi = -\phi X - \phi h X, (\nabla_X \eta) Y = g(X + h X, \phi Y).$$
(2.5)

In a (2n+1)-dimensional (k, μ) -contact metric manifold, we have [5]

$$h^2 = (k-1)\phi^2, k \le 1, \tag{2.6}$$

$$(\nabla_X \phi)(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX), \qquad (2.7)$$

$$(\nabla_X h)(Y) = [(1-k)g(X,\phi Y) + g(X,h\phi Y)]\xi + \eta(Y)h(\phi X + \phi hX) - \mu\eta(X)\phi hY.$$
(2.8)

Definition 2.1: A contact metric manifold M is said to be

(i) Einstein if $S(X,Y) = \lambda g(X,Y)$, where λ is a constant and S is the Ricci tensor,

(ii)
$$\eta$$
-Einstein if $S(X,Y) = \alpha g(X,Y) + \beta \eta(X) \eta(Y)$, where α and β are smooth functions on M .

In a (2n+1)-dimensional generalized (k, μ) space-form, the following relations hold.

$$R(X,Y)\xi = (f_1 - f_3)[\eta(Y)X - \eta(X)Y] + (f_4 - f_6)[\eta(Y)hX - \eta(X)hY],$$
(2.9)

$$QX = [2nf_1 + 3f_2 - f_3]X + [(2n-1)f_4 - f_6]hX - [3f_2 + (2n-1)f_3]\eta(X)\xi,$$
(2.10)

$$S(X,Y) = [2nf_1 + 3f_2 - f_3]g(X,Y) + [(2n-1)f_4 - f_6]g(hX,Y) - [3f_2 + (2n-1)f_3]\eta(X)\eta(Y),$$
(2.11)

$$S(X,\xi) = 2n(f_1 - f_3)\eta(X), \tag{2.12}$$

$$r = 2n[(2n+1)f_1 + 3f_2 - 2f_3],$$
(2.13)

$$\eta (R(X,Y)Z) = (f_1 - f_3) [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] + (f_4 - f_6) [g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)]$$
(2.14)

for any vector fields
$$X, Y, Z$$
 where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of $M(f_1, ..., f_6)$.

The relation between the associated functions f_i , i = 1,...,6 of $M(f_1,...,f_6)$ was recently discussed by Carriazo et al. [5].

3. η -RECURRENT GENERALIZED (k,μ)-SPACE-FORM

Definition 3.1: A (2n+1)-dimensional generalized (k,μ) -space form is said to have

 η -recurrent Ricci tensor if there exists a non-zero 1-form A(X) such that

$$\left(\nabla_{X}S\right)\left(\phi Y,\phi Z\right) = A(X)S(Y,Z) \tag{3.1}$$

If the 1-form vanishes on M then the space-form is said to have η -parallel Ricci tensor. The notion of η -parallel Ricci tensor was introduced by Kon in the context of Sasakian geometry [4].

From (2.11) we have

$$(\nabla_{W}S)(\phi X, \phi Y) = d(2nf_{1} + 3f_{2} - f_{3})(W)[g(X,Y) - \eta(X)\eta(Y)]$$

$$- (2nf_{1} + 3f_{2} - f_{3})[(\nabla_{W}\eta)(X)\eta(Y) + \eta(X)(\nabla_{W}\eta)(Y)]$$

$$- d[(2n-1)f_{4} - f_{6}](W)g(hX,Y).$$
(3.2)

Suppose that the space-form has η - recurrent Ricci tensor. Then in view of (3.1) and (3.2) it follows that

$$d(2nf_{1} + 3f_{2} - f_{3})(W)[g(X,Y) - \eta(X)\eta(Y)] - (2nf_{1} + 3f_{2} - f_{3})[(\nabla_{W}\eta)(X)\eta(Y) + \eta(X)(\nabla_{W}\eta)(Y)] - d[(2n-1)f_{4} - f_{6}](W)g(hX,Y) = A(W) \Biggl[(2nf_{1} + 3f_{2} - f_{3})g(X,Y) + ((2n-1)f_{4} - f_{6})g(hX,Y) - (3f_{2} + (2n-1)f_{3})\eta(X)\eta(Y) \Biggr].$$
(3.3)

Replace X by ϕ X and Y by ϕ Y in (3.3), we have

$$d(2nf_1 + 3f_2 - f_3)(W)[g(X,Y) - \eta(X)\eta(Y)] + d((2n-1)f_4 - f_6)(W)g(hX,Y)$$

= $A(W)[(2nf_1 + 3f_2 - f_3)(g(X,Y) - \eta(X)\eta(Y)) - ((2n-1)f_4 - f_6)g(hX,Y)]$

By taking $X = Y = e_i$ in (3.4) and summing over $i = 1, 2, \dots, 2n + 1$, we obtain

$$d(2nf_1 + 3f_2 - f_3)(W) = A(W)(2nf_1 + 3f_2 - f_3). \qquad (3.5)$$

(3.4)

Let $2nf_1 + 3f_2 - f_3 = f$ then (3.5) reduces to

$$fA(W) = df(W).$$
 (3.6) (3.6)

Then from (3.6) we obtain

$$df(Y)A(W) + (\nabla_Y A)(W)f = d^2 f(W, Y).$$
(3.7) (3.7)

Interchanging Y and W we get

$$df(W)A(Y) + (\nabla_W A)(Y)f = d^2 f(Y, W).$$
(3.8) (3.8)

Subtracting (3.8) from (3.7) we get

$$(\nabla_{W}A)(Y) - (\nabla_{Y}A)(W) = 0.$$
 (3.9) (3.9)

Hence the 1-form A(W) is closed.

Thus we have the following

Theorem 3.1: In an η -recurrent generalized (k, μ)-space-form the 1-form A is closed.

Since A(W) is non-zero, equation (3.5) leads us to state the following:

Theorem 3.2: If a (2n+1)-dimensional generalized (k, μ)-space-form has η -recurrent Ricci tensor then $2nf_1 + 3f_2 - f_3$ can never be a non-zero constant.

Suppose Ricci tensor is η -parallel, *ie.*, $(\nabla_W S)(\phi X, \phi Y) = 0$ and taking $X = Y = e_i$ in (3.2) and summing over i = 1, 2, ..., 2n + 1, we obtain

$$d(2nf_1 + 3f_2 - f_3)(W) = 0.$$
(3.10)

it implies that $2nf_1 + 3f_2 - f_3$ is constant. This leads the following:

Lemma 3.1: A (2n+1)-dimensional generalized (k, μ)-space-form has η -parallel Ricci tensor then $2nf_1 + 3f_2 - f_3$ is constant.

Again from (2.11) we have

$$(\nabla_{Z}S)(X,Y) = d(2nf_{1} + 3f_{2} - f_{3})(Z)g(X,Y) + d[(2n-1)f_{4} - f_{6}](Z)g(hX,Y) - (2nf_{1} + 3f_{2} - f_{3})[(\nabla_{W}\eta)(X)\eta(Y) + \eta(X)(\nabla_{W}\eta)(Y)] - d(3f_{2} + (2n-1)f_{3})(Z)\eta(X)\eta(Y) - [3f_{2} + (2n-1)f_{3}][(\nabla_{Z}\eta)(X)\eta(Y) + \eta(X)(\nabla_{Z}\eta)(Y)]$$

$$(3.11)$$

By using above lemma(3.1) and taking $X = Y = e_i$ in (3.11) and summing over $i = 1, 2, \dots, 2n + 1$, we obtain

$$dr(Z) = -d[3f_2 + (2n-1)f_3](Z), \qquad (3.12)$$

which implies that,

For an

$$r = -[3f_2 + (2n-1)f_3]$$

Hence we can state that

Theorem 3.3: A (2n+1)-dimensional generalized (k, μ)-space-form with η -parallel Ricci tensor then $r = -[3f_2 + (2n-1)f_3]$

4. φ-RECURRENT GENERALIZED (k,μ)-SPACE-FORM

Definition 4.1: A (2n+1)-dimensional generalized (k,μ) -space form is said to have

 ϕ -recurrent if there exists a non-zero 1-form A such that

$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = A(W)R(X,Y)Z, \qquad (4.1)$$

arbitrary vector field X,Y,Z and W.

Two vector fields are said to be co-directional, if X = fY where f is a non-zero scalar, *ie.*,

g(X,Z) = fg(Y,Z)For all X.
(4.2)

Now from (2.1) and (4.1), we have

$$\left(\nabla_{W}R\right)(X,Y)Z = \eta\left(\left(\nabla_{W}R\right)(X,Y)Z\right)\xi - A(W)R(X,Y)Z \quad .$$

$$(4.3)$$

From (4.3) and the Bianchy identity we get

$$A(W)\eta(R(X,Y)Z) + A(X)\eta(R(Y,W)Z) + A(Y)\eta(R(W,X)Z) = 0.$$

$$(4.4)$$

By virtue of (2.14), we obtain from (4.4) that

$$A(W) \begin{bmatrix} (f_{1} - f_{3})[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \\ + (f_{4} - f_{6})[g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)] \end{bmatrix} \\ + A(W) \begin{bmatrix} (f_{1} - f_{3})[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \\ + (f_{4} - f_{6})[g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)] \end{bmatrix} \\ + A(W) \begin{bmatrix} (f_{1} - f_{3})[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \\ + (f_{4} - f_{6})[g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)] \\ + (f_{4} - f_{6})[g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)] \end{bmatrix} = 0.$$

$$(4.5)$$

Putting $Y = Z = e_i$ in (4.4) and taking summation over $i, 1 \le i \le 2n+1$, we get

$$2n(f_1 - f_3)[A(W)\eta(X) - A(X)\eta(W)] = 0.$$
(4.6)

If
$$(f_1 - f_3) \neq 0$$
, then
 $A(W)\eta(X) = A(X)\eta(W)$
(4.7)

For all vector fields X,W.

Replacing X by ξ in (4.7) we get

$$A(W) = \eta(\rho)\eta(W), \tag{4.8}$$

where $A(X) = g(X, \rho)$ and ρ is the vector field associated to the 1-form A. Thus we can state the following

Theorem 4.1:

In a ϕ -recurrent generalized (k, μ)-space form, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by (4.8), provided $(f_1 - f_3) \neq 0$.

References

- [1]P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian space-forms, Israel J. Math. 141(2004), 157-183.
- [2] Alfonso Carriazo and Veronica Martin-Molina, Generalized (k,μ)-space forms and D_a -homothetic deformations. Balkan Journal of Geometry and its Applications, Vol.16, No.1, 2011, 37-47.
- [3] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics, Vol.91, No.1-3, 1995, 189-214.
- [4] Kon.M, Invariant submanifoldsin Sasakian manifolds, Math.Ann.,219(1976),277-290.
- [5]A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (k,μ)-space forms, Mediterr. J. Math. DOI 10.1007/s00009-012-0196-2, April(2012).
- [6] Takahashi, Sasakian Ø-symmetric space, Tohoku Math. J., 29(1977), 91-113.
- [7] U. C. De, A. A. Shaikh, Sudipta Biswas, On Ø-recurrent Sasakian manifold, Novi. Sad. J. Math., 32(2)(2003), 43-48.