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Abstract 

In this paper we adopt a cooperative strategy based 
on ACO (Ant Colony Optimization) algorithms to 
coordinate a Multi Robots System (MRS). Our 
principal objective is to evaluate temporal 
performances for this system by choosing demining 
operations as a benchmark problem. In this work, we 
try to adapt the ACO algorithm parameters for 
different mine distribution in order to reduce time 
demining operations. In particular, we report effects 
of evaporation pheromone rate model and minefield 
configuration on temporal performances. 
Keywords: ACO algorithms, multi-robot system 
(MRS), evaporation pheromone rate, demining 
system. 
1. Introduction 

As stated in [1], the percentage of human victims 
and deaths caused by mine, improvised explosive 
device (IED) and explosive remain of war (ERW) has 
been declining since 1999. However, mine accidents 
number is still important, especially if we compare 
the civilian causalities percentage with military one, 
we find that it has risen for 73% in 2011 to 78% in 
2012.  

In 2012, the landmine report witnessed a high 
total number of 3628 mine/ERW/IED casualties 
especially among children and women. Also there is 
a detection of 1066 killed people and 2552 injuries. 
Despite all these figures, the real number of 
casualties is still unknown and related to world 
struggle. Although the clearness of landmine 
represents a recurrent problem because, the 
undamaged surface is extended yearly, and it needs 
efficient methods to ensure the clearance goal. 

At least, both the standard demining clearance 
model operations (UNDHA) and Mine Action 
Standards (IMAS) must ensure 99.6% and 100% of 
successful mine detection [2-4].  

Taking into consideration, the importance of 
personal safety even before timing demining process 
performances, the robots is used to replace the 
manual methods, in order to save the human being 
and improve the activity by speeding up reliably and 
safely the demining process. 

In order to achieve these goals, it must pay 
attention to the nature of landmine and the 
characterization of demining instruments, also it must 
use different types of sensors and equipment of 
detecting landmines. The application of robotic 
research to demining operations purposes requires 
the integration of various technologies, including 
demining-oriented functions like the adaptability to 
field mines distributions, type of control architecture, 
integration of heterogeneous sensors, autonomous 
navigation , coordination in the case of multi-robots 
system, communication implementation, Machine 
intelligence and signal processing algorithms [2].  

The operation of exploring unknown 
configuration minefield faces some difficulties which 
are: the limited performances of the existing robotic 
systems [5], also the highly sophisticated technology 
instrument on the robots [6].  

In addition, timing optimization in this operation 
presents a challenge that must be taken into account 
because of its relation to humanitarian objective [7]. 
So in order to ensure the security restrictions 
different assistant devices were added to the goal of 
limiting the risk of human error and rising the 
estimation of risk zone. However, the objective is 
still hard to be fullfiled because of the sophisticated 
robot agents and the mines distribution variety which 
enhance the demining operations cost. 

In this paper, there is a presentation of different 
applications of multi-robot systems, which are 
adapted to minimize the time detection of mines 
proportion (Mx%=90%) [8]. Due to the importance 
and complexity of the demining operations, it is 
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obvious and necessary to adapt an efficient 
coordination algorithm. So, in this work, we adopt 
Ant colony optimization algorithm as an example of 
coordination algorithm based on meta-heuristic 
algorithms to treat complexity of demining problem 
and scale of landmine fields [9, 10].  

The remainder of this paper is organized as 
follows. Sect. 2 focuses on different works where 
multi-robots are applied to ensure demining 
operations. In the case of mine distribution, type of 
meta-heuristics used for collaboration algorithms and 
performances metrics. Sect. 3 presents the field mine 
distribution and collaboration models used in 
demining operations. Sect. 4 describes the simulation 
considerations for performed experiences. Sect. 5 
lists and analyzes the simulations results. Sect. 6 is 
reserved for results discussion. 
2. Related works 

Multi-robots application in demining operations 
for humanitarian purposes represents an evaluation 
example of coordination strategy performance. Many 
researches such as [11-13] use specific coordination 
strategy in order to evaluate some criteria 
performances. General research organization starts 
with the definition of collaboration algorithms used 
in order to perform specific task. Demining process, 
which is highlighted in this research, includes many 
constraints related to the nature of minefield 
distribution and performance evaluation criteria. 
Some researches as in [11, 13, 14] give statistical 
studies on variety of spatial mine distribution in 
minefield. In fact, mines field spatial distributions in 
conflict zones are highly complex and varied. 
Landmine descriptions cannot be defined easily with 
deterministic clustering approaches. Landmine 
variety induces different mine distribution patterns, 
that one can be used to test hypotheses for demining 
operations. However, other assumptions have 
influence on performances evaluation systems. 
Combining the different parameters (incidents, 
populations, roads, agriculture field, etc.) for defining 
minefield map, would allow the consideration of 
environmental and social conditions [7]. 

Simulation example given in [5] tests real case 
minefield distributions in order to realize an 
automatic estimator to mines localization. Mines 
distribution configuration represents a limitation in 
the case of unknown mined environment. 
Nevertheless, in several cases, mines distribution can 
be modeled by stochastic model like in [6, 7, 14]. 

Moreover, the efficiency of demining operations 
depends on the scenario followed for each robotic 
agent. 

On the other hand, the choice of collaboration 
strategy represents other constraints. In fact, 
demining operations with multi-robots systems raise 
complexity of collaboration interactions [11, 15]. In 
this case, the application of suitable meta-heuristic 
algorithms for multi-robot demining operations was 
performed in research such as [16-19]. Research 
studies focus on combined and modified heuristic (as 
is the case for Genetic algorithms, ACO algorithms, 
etc.) to enhance general performances of multi-robots 
systems.  

As a result, studies as [20] define some 
evaluation metrics to quantify collaboration 
performance cost. Localization and distribution 
robotic agents configuration were taken as evaluation 
criteria. These criteria depend on the application of 
constraints like possible robot agents interference 
[21]. A set of generic performance metrics was 
employed to evaluate each aspect of robotic 
demining systems. These performance metrics 
include demining processing speed to measure time 
elapsed until demining operations can be totally or 
partially achieved. The rest of experimentations focus 
on temporal performance optimization by using 
modified meta-heuristic algorithms.  

In particular, configuration parameters for 
minefield and coordination algorithm heuristic, as 
type of mine distributions and effects of evaporation 
pheromone rate, were treated in experimentations. 
Other performance metrics like: robotic agents 
displacements which represents aggregation of the 
distances inter-agent position during the demining 
operations (consumed energy), robotic Agents 
proportion of agents which ensure demining 
operations, robotic group size effect and 
communication flow exchanged between agents 
during robots interactions; represent other 
optimization objectives and they will be treated in 
further works. 
3. Methods and hypothesis 

This part represents general configuration 
parameters for tested environment. These parameters 
include minefield distribution and adaptation of ACO 
algorithms for collaborative demining robotic 
foraging. The measurement of demining operations 
time was performed at different values of 
configuration parameters. Tested mines proportion 
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(Mx %) has been fixed to 90% for a total number of 
50 mines [6]. 

At the first level, robots/mines ratio (RM%) is 
tested as an influential parameter for time system 
performances. At the second level, different 
configurations of minefield distribution were 
evaluated. At the third level, evaporation pheromone 
model is studied as influential parameter for research 
navigation model based on ACO algorithms [22]. 
The evaporation pheromone rate is increased 
gradually and the operation of detection mines time 
is noted. 

2.1 Mine configuration 

The mine spatial distribution has possible effect 
in mine detection time [6, 7]. The performance of 
different collaborative navigation methods is 
evaluated by the consideration of three types of 
distribution models. These distributions include 
random distribution, fixed spatial distribution and 
random line distribution.  

In the case of random distribution mines are 
placed randomly with uniform density of probability 
[23, 24], the second type of distributions are reserved 
to fixed mine position [25]. Two different 
dispositions with limited mined zone are evaluated. 
That type of distribution is based on normal mixture 
model (Figure. 2 and 3)[26, 27]. The definition of the 
mined zones in the version of fixed distributions 
depends on matrix variance normal distribution 
(Fixed 1: σ1

2=1 and σ2
2=16;Fixed 2: σ1

2=10 and 
σ2

2 =16)[28]. 
As presented in [29], and in the case of 

environment symmetry the localization represents a 
complicated task. This complexity is due to the 
correctness of robot position and orientation 
estimation (unknown mine land without specific 
information). Collaborative algorithms, as for ACO 
algorithms, can reduce elapsed time in mines 
research operations. 

 

Fig. 1. Fixed spatial distribution 1. 

 

Fig. 2. Fixed spatial distribution 2. 

In the case of random line distribution, mine 
lines are randomly placed along the line or dropped 
with a constant spacing. The random lines are given a 
very broad margin of placement error. The random 
spacing lines are assumed to represent positioning 
errors mainly due to navigation and drop timing 
errors. This distribution is based on Poisson mixture 
model [30, 31] with the probability to find a mine at 
the x position on the projected line is expressed as 
follow [5]: 
P(XN <= x)=(1- e-λx)N (1) 

With N is the number of mine detected and λ is 
the Poisson rate. 
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Random lines are assumed to have random 
orientation and mine spacing. But in these 
experimentations; random mine lines are parallel [5]. 

2.2 Navigation and research methods 

This part includes the presentation of mine research 
methods adopted by different robot agents. The evaluation 
of this methods effect is based on the time detection mines 
quality. In this experimentation, three main collaborative 
navigation algorithms were performed including random 
research model (BASE), ant research model (AS-ACO) 
and modified ant research model (M-AS-ACO).  

 

Fig. 3.  Random line distribution (s=1,µ=3 and areas 
dimensions=16x16). 

In the case of the BASE model, robot agents do not 
adopt a particular logic for mine research. So robot agents 
are not restricted to any constraint except some particular 
rules listed as fallows: 
− R1: when a robot agent finds a mine, it must return 

to the base for the deactivation of mine operation. 
− R2: used base is fixed. 
− R3: all robot agents are placed in the base at the 

demining operations beginning. 
The robot agents of the AS-ACO model adopt a mine 

research strategy based on ACO algorithm to find 
optimum demining operation. The same rules adopted in 
BASE model (R1, R2 and R3) are retained. The used 
robot agents’ path is fixed by pheromone rate τ deposited 
by other searching agents. Three main methods are 
adopted for pheromone rate calculation: 
a) 1st case:  

In this test, the evaporation pheromone rate ρ 
(static evaporation pheromone rate) is fixed and the 
pheromone rate calculation is given as follows [32]: 

τ(k)=τ(k-1)(1-ρ) (2) 
b) 2nd case:  

This ACO algorithm configuration adopts a 
programmable evaporation pheromone rate (dynamic 
evaporation pheromone rate) to calculate pheromone 
rate as follows: 
τ(k) )=τ(k-1)(1-ρ)+(1-(1+Q)-1) τ(k-1) (3) 
ρ=(1+(τ-α)4.(2α)-0.5), where α=0.5 (4) 

Eq. (3) introduces a heuristic Q factor, which 
represents an algorithm quality factor [22]. The α 
factor used in programmable evaporation pheromone 
rate was fixed to 0.3. The Q appreciation factor for 
method research rule is formulated as follows [11]: 
Q=TP.(TP+FN)-1.TN.(FP+TN)-1 (5) 

Eq. (5) introduces two main rules for demining 
research operations: 

- Dynamic rule 1= mine research operation 
(TP=find mine when trying to research mine, 
FP = robot does not find mine when trying to 
research mine) 

- Dynamic rule 2= base return (TN = robot 
already charging mine in return when trying 
to return to base, FN = mine discharged into 
the base) 

c) 3rd case:  
The navigation model in this case adopts also a 

programmable evaporation pheromone rate (timed 
evaporation pheromone rate). But, the evaporation 
pheromone rate is defined by the determination of 
wasted time elapsed between two successive mine 
detections as follows: 
ρ= (1+tM1)-1.Δt (5) 
Δt= tM1-tM2+1 (6) 

Where tM1=detection time for minei and tM2= 
detection time for minei-1 

The method adopted by M-AS-ACO model is 
also based on the ACO algorithm. This model 
considers a mobile base in order to minimize base-
mine displacement. Base coordinates are defined by 
Px and Py: 
Px(k)=0.5 (Px(k-1)+Rix(k)) (7) 
Py(k)=0.5 (Py(k-1)+Riy(k)) (8) 

The (Rix(k), Riy(k)) couple represents the 
coordinates of recent detected minei. The idea 
presented was inspired by the intensification and 
diversification [33, 34]. The diversification for 
robotic agent represents the ability to demine many 
and different mine land regions. Intensification is 
summarized in the ability of base guides demining 
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operation in specific zones with high mine 
concentration. At this stage, the robot agents are 
reserved for mine research and the deactivating 
operations are assigned to the base as a new agent 
type. 

4. Simulation protocol 

This section introduces general simulation 
protocols followed in collaborative algorithms 
efficiency validation. All simulations are performed 
with NetLogo [35, 36]. NetLogo is used as a software 
platform to simulate robotic agents and landmine 
map. In fact, NetLogo supports advanced modeling 
of complex systems using a library of java 
programming primitives. In NetLogo simulation 
environment, robotic agents are modeled in simple 
design without the consideration of collision 
avoidance.  

As given in Table 1: the experience design was 
performed by variation of the evaporation pheromone 
rate and kind of landmine distributions. Each 
experience is repeated ten times using NetLogo API 
control. The mine detection time values was reported 
to MATLAB software platform in order to compare 
different configuration results.  

A simplified foraging scenario was taken to 
describe demining operations. Robots states include 
the searching and homing state. When a robot detects 
a mine, it picks it up and comes back toward 
neutralizing base. Execution demining time is 
accounted while a robot is either in searching or 
homing mode. Time of other robots avoidance is not 
considered in demining scenario. Fig. 4 shows the 
state diagram for demining operations scenario. 
Robotic agents detect, collect mines and bring them 
to a mine neutralizing base. 

5. Result 

Experimental studies in this manuscript were 
performed for different RM% ratio. According to 
[21], rising RM% ratio beyond some limits do not 
affect time detection because of the interference of 
robotic agents, which stabilizes the time result. In 
order to test evaporation pheromone rate influence on 
time demining optimization; some tests are 
performed with different RM% ratio. These tests 

identify limits that do not modify temporal 
performances. Additional experimentations, that 
perform the application of various RM% rate on 
presented mines distributions and collaboration 
models based on ACO algorithms, were conduct to 
verify the hypotheses. The rising robotic agents 
number (in order to minimize mine detection time) 
has no influence on system timing performances. Fig. 
5 gives an example of time detection mine 
stabilization for BASE model with different 
distributions and RM%. 

Table 1: Simulation parameters 

Model 
Evaporation 

pheromone rate 
%  

Distributions 

AS-ACO 0%-100% 
Random, fixed 1, 

fixed 2 and random 
line 

M-AS-ACO 0%-100% Random, fixed 1, 
fixed 2 and random 

line 

 
 

Fig. 4. Behavior diagram of a multi-robot demining 
system. 

This part presents the possible effect of 
evaporation pheromone rate variation on demining 
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time performances for both AS-ACO and M-AS-
ACO algorithms (Mx%=90%). In each 
experimentation, pheromone evaporation rate is 
increased regularly by 10%.  

 
(a). random distribution. 

 
(b). Fixed 1 spatial distribution. 

 
(c). Fixed 2 spatial distribution. 

 
(d). random line distribution. 

Fig.5: Demining MRS performances (1/demining 
time) for different mine distributions in the case of 

BASE model 

 
Fig. 6. Time detection results for the AS-ACO model 

 
Fig. 7. Time detection results for the M-AS-ACO 

model 
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Fig. 8. Time detection comparison between AS-ACO 

and M-AS-ACO models 
Fig.6 and 7 represent the detection time variation 

relating to the minefield distribution type for both 
AS-ACO and M-AS-ACO models. For lower 
pheromone evaporation rate, higher values of 
detection time results are taken with random 
distribution. The rising pheromone evaporation rate 
ameliorates temporal performances. However, this 
decrease of mine detection-time is stabilized for high 
evaporation. In fact, detection time results are limited 
to a range of 200 s.t for evaporation pheromone rate 
> 60% in the case of AS-ACO model and for 
evaporation pheromone rate > 30% in the case of M-
AS-ACO model. 

Fig. 8 indicates the time variation between AS-
ACO and M-AS-ACO models. Considering the effect 
of minefield distribution type separately, M-AS-ACO 
model presents better timing results than AS-ACO 
model with lower pheromone evaporation rate. AS-
ACO model presents better timing results than M-
AS-ACO model only in the case of fixed spatial 
distributions with high pheromone evaporation rate 
(>80%). 

The impact of pheromone evaporation rate on 
time system performances is noted at the beginning 
of the solutions construction. Adopting a 
programmable pheromone evaporation rate which 
induces new solution explorations should reduce time 
demining. Researches of [22, 37, 38], use different 
models of programmable evaporation rate based on a 
mathematical formulation. Dealing with the 
evaporation pheromone example given by [22], this 
model is taken as a reference to evaluate our 
evaporation pheromone rate model. Simplifying 

evaporation pheromone model is the principal 
motivation of selection of a timed algorithm model. 

 
Fig. 9. Evaporation pheromone rate model 

comparison 
Fig. 9 reports the temporal result difference 

between different evaporation pheromone models for 
AS-ACO and M-AS-ACO collaborative algorithms. 
Mathematical evaporation pheromone rate model 
[22] is represented by Q1 model. Our evaporation 
pheromone rate model is represented by Q2 model. 
In the case of AS-ACO model (m2d1, m2d2, m2d3 
and m2d4); temporal results obtained with Q1 model 
are better than with Q2 model except the result in 
fixed 2 distribution (m2d1). In fact, the system 
equipped with Q2 evaporation pheromone model 
takes double time to detect 90% of mines compared 
to Q1 model. This different change in the case of M-
AS-ACO model and better temporal performances is 
detected with Q2 model in the case of fixed 
distributions. Multi-robot system experimentations 
are performed on the software simulation platform. In 
real implementation, the application of mathematical 
complex model for evaporation pheromone rate 
should require more hardware resources and reduce 
temporal performances.  

6. Discussion 

The realized experimentations use a fixed setting 
of RM% rate. Generally, rising RM% rate is higher 
than 50% does not enhance cooperation impact on 
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demining time optimization. These results were 
treated also in the previous researches [21].  

The principal aim of research in this paper is the 
connection between evaporation pheromone rate and 
timing performance. In fact, as given in Fig. 6, 7 and 
8 better timing results are detected for M-AS-ACO 
model (in most studied cases: Table 2).  

Table 2: Summary of time result variation between 
AS-ACO and m-AS-ACO models 

Distribution 0%-
50% 

50%-
70% 

70%-
80% 

80%-
100% 

Random + - + - 
Fixed 1 + + + + 
Fixed 2 + + + + 
Random 

 
+ + - - 

(+/-) Sign of time result variation between AS-ACO 
and M-AS-ACO models for different static evaporation 
pheromone rates (timeAS-ACO – timeM-AS-ACO) 

In general, ACO algorithms are made from ant 
foraging behavior. ACO optimization gives a short 
path solution to one source of food. In the case of 
demining problems, the mines are distributed in 
various positions. The best initial situation ACO 
algorithm consists of a limited zone mine 
concentration. This situation is given by fixed1 and 
fixed2 distributions. For these two mine distributions 
and at a lower evaporation pheromone rate, better 
timing results are obtained in comparison to the base 
model. However, with random distributions (random 
and random line distributions), time demining results 
are degraded with AS-ACO model in favor of the 
BASE or M-AS-ACO model. The Amelioration of 
the AS-ACO model results is given by the raising 
evaporation pheromone rate. In fact, this action helps 
robotic agents to forget the previous detected mine 
positions and forces the agents to explore new zones. 
Time result experimentations are reduced for the 
evaporation pheromone rate, which are higher than 
60% in the case of AS-ACO model, and 30% rate in 
the case of M-AS-ACO model. The solution is 
ensured by M-AS-ACO model presents flexibility 
toward different mine distributions. 

The variation of the evaporation pheromone rate 
has an impact on timing results. With this 
interpretation, some researchers [22, 39] applied a 
specific  function  to  define  the  evaporation  
pheromone  rate.  In general, this function is bounded 

between 0 and 1. It rises exponentially with the 
pheromone rate. Our proposed evaporation 
pheromone rate Q2 gives lower timing performances 
for demining operations in the case of the AS-ACO 
model. The worst timing results are detected for 
random mine distribution (55% of time result 
reduction). However, the Q2 model gives better 
timing results in the case of the M-AS-ACO model 
with fixed mine distributions. The best results are 
detected for fixed 2 mine distribution. The 
evaporation pheromone Q1 model still has better 
results in random distributions (with M-AS-ACO 
model) but the timing performance differences 
between Q1 and Q2 models are reduced in 
comparison to AS-ACO model.  

Table 3: Comparison time result between Q1 and Q2 
models 

Distribution 
AS-ACO 

model 
M-AS-ACO model 

Random 55% 32% 

Fixed 1 46% -8% 

Fixed 2 12% -27% 

Random line 42% 28% 

(*) %=(timeQ2-timeQ1)/ timeQ2 
To explain the results given by Table 3, the 

worst and the best result for Q2 model are selected. 
The worst time result corresponds to the AS-ACO 
cooperative model with random distribution. The best 
time result corresponds to the M-AS-ACO 
cooperative model associated with fixed 2 mine 
distribution.  
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(a) AS-ACO model with random distribution 

 
(b) M-AS-ACO model with fixed 2 distribution 

 
(c) Comparison of evaporation pheromone rate Q1 

model 

 
(d) Comparison of evaporation pheromone rate Q2 

model 
Fig. 10. Evaluation of the evaporation pheromone 

rate model (Q1 and Q2 models) for AS-ACO and M-
AS-ACO model 

Fig. 10 reports the variation of the evaporation 
pheromone rate models in the worst time result (Fig. 
10.a) and the best time result (Fig. 10.b). The 
recorded evaporation pheromone rate from Q1 model 
simulations differs from theoretical evaporation 
pheromone rate formulation (4). This difference is 
amplified for the M-AS-ACO model. In addition, the 
model guided by Q2 approaches the theoretical 
model but it presents higher sensitivity of the 
pheromone rate variation and saturates fast bounded 
limit. Fig. 10.c gives a comparison between Q1 
model in the AS-ACO and M-AS-ACO model. 
Evaporation pheromone model converges to the 
theoretical model with additional delay in the M-AS-
ACO model. In Fig. 10.d, the Q2 model preserves the 
same pattern and therefore gives better time results 
for fixed distributions. 
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Fig. 11. Time results for different models of 

evaporation pheromone rate 
Fig. 11 presents the time demining results for the 

reduction of evaporation pheromone rate sensitivity 
to variation of the pheromone rate. These attempts of 
Q2 model amelioration are based on the introduction 
of delay in the iterations of evaporation pheromone 
rate calculation. Some increasing values of delays 
(10 s.t, 40 s.t, 70 s.t and 200 s.t) are experimented. 
The general time performances of the demining 
system is degraded for the AS-ACO and M-AS-ACO 
models and there is no modification of evaporation 
pheromone rate pattern in the function of pheromone 
rate. 

4. Conclusions 

This paper presents the experimentations of the 
pheromone evaporation rate on the multi-robotic 
demining system. The effects of the pheromone 
evaporation rate are noted for particular rates and 
better results are obtained with M-AS-ACO 
algorithms.  The temporal performance of demining 
multi-robot systems is obtained by modifying the 
ACO algorithms. However, results are still 
depending on the environment configurations and on 
the other modifications can be performed on ACO 
algorithms especially by studying the pheromone 
evaporation rate.  

The application of programmable evaporation 
pheromone rate helps to improve temporal 
performances. The improvement of temporal 
performances is set up with the evaporation 
pheromone rate pulse (instead of high evaporation 

pheromone rate maintain). The choice of the model 
of evaporation pheromone rate modifies temporal 
performances of the demining system. The proposed 
evaporation pheromone rate Q2 enhances temporal 
performances of the demining operations for a 
particular configuration mainly with the M-AS-ACO 
model and fixed mine distribution. The studied Q1 
model is an example of programmable evaporation 
pheromone rate. Other functional models can be 
tested. The aim of the algorithmic evaporation 
pheromone model is to simplify the implementation 
of this system. In our case, the additional 
experimentations on real implementation of multi-
robot controller must be performed to evaluate the 
algorithmic model of evaporation pheromone rate. A 
collaborative model based on Ant Colony 
Optimization is selected. In addition, other meta-
heuristic algorithms can be applied in the same case. 
In particular, hybrid meta-heuristic algorithms should 
be experimented on multi-robotic controllers. 
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