
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June  2016 
                              ISSN: 2395-3470 

www.ijseas.com 

140 
 

Efficient algorithms HCM and SM to solving system of non-
linear equations using animation techniques 

ASHOKA S. B., Research Scholar   
Department of Computer Science and Applications 
Bangalore University, Bangalore – 560 009, India 

 
Abstract 
 The standardize the measurement of 
algorithm efficiency depends an algorithm is 
a systematic method containing a sequence 
of instructions to solve a computational 
problem. It takes some inputs, performs a 
well defined sequence of steps, and 
produces some output. Once we design an 
algorithm, we need to know how well it 
performs on any input.1T 1T A major criterion for 
a good algorithm is its efficiency that is, 
how much time and memory are required to 
solve a particular problem. Intuitively, time 
and memory can be measured in real units 
such as seconds and megabytes. However, 
these measurements are not subjective for 
comparisons between algorithms, because 
they depend on the computing power of the 
specific machine and on the specific data 
set. Algorithm can be written in pseudo-
code because simplification of the actual 
implementation is very good way.  In 
homotopy continuation method algorithm 
for solving system of non linear algebraic 
equation, given the generalized  uniform 
approach of  three more problems  result. 
We comparison HCM results with other 
different methods algorithms observations 
like Shooting method[RK45]. The detailed 
observations of all the methods of algorithm 
noted and all algorithm yields unique 
approach on the results with limiting 
conditions. But our one of proposed works 
HCM algorithm given a excellent results, for 
all set of parameters with high end values. 
One more highlight of this chapter is 
obtained the solution also represented 

through 3D visualization using open source 
code Mayavi version 0.6. 
 
Keywords: Homotopy Continuation[HCM], 
Shooting[SM], DBF, RKF45.  
  
Introduction 
 The exact speed of an algorithm 
depends on where the algorithm is run, as 
well as the exact details of its 
implementation, computer scientists 
typically talk about the runtime relative to 
the size of the input. The time complexity of 
an algorithm is commonly expressed using 
big O notation, which excludes coefficients 
and lower order terms. When expressed this 
way, the time complexity is said to be 
described asymptotically, i.e., as the input 
size goes to infinity. For some optimization 
problems, we can reach an improved time 
complexity, but it seems that we have to pay 
for this with an exponential space 
complexity. Note that algorithms with 
exponential space complexities are 
absolutely useless for real life applications. 
Theoretical computer science has its uses 
and applications and can turn out to be quite 
practical. In this article, targeted at 
programmers who know their art but who 
don't have any theoretical computer science 
background, I will present one of the most 
pragmatic tools of computer science: Big O 
notation and algorithm complexity analysis. 
In general, time complexity is considered 
much more important than space 
complexity, in part because the memory 
requirement of most algorithms is lower 
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than the capacity of current machines. In the 
rest of the section, all calculations and 
comparisons of algorithm efficiency refer to 
time complexity as complexity unless 
otherwise specified. Also, time complexity 
and running time can be used 
interchangeably in most of the cases. The 
time complexity of an algorithm is 
calculated on the basis of the number of 
required elementary computational steps that 
are interpreted as a function of the input 
size. Most of the time, because of the 
presence of conditional constructs (e.g., if-
else statements) in an algorithm, the number 
of necessary steps differs from input to 
input. Thus, average-case complexity should 
be a more meaningful characterization of the 
algorithm. However, its calculations are 
often difficult and complicated, which 
necessitates the use of a worst-case 
complexity metric. An algorithm’s worst-
case complexity is its complexity with 
respect to the worst possible inputs, which 
gives an upper bound on the average-case 
complexity. As we shall see, the worst-case 
complexity may sometimes provide a decent 
approximation of the average-case 
complexity. The theory of computational 
complexity was developed Ullman (1984) 
Papadimitriou (1993, 1998), Wilf (2002). 
This allows an algorithm’s efficiency to be 
estimated and expressed conceptually as a 
mathematical function of its input size. 
Generally speaking, the input size of an 
algorithm refers to the number of items in 
the input data set. In this chapter we will try 
to found the computational complexity of 
our generalized module of  HCM with some 
standard results.   
 

//Algorithm of  Homotopy 
Continuation Method// 
Main module 
//Input: (Initial un-known values)// 
//Output: (Refined solution of the method)// 
Step 1: Start 

Step2: Initialization of matrices 
i) Initialization of x[n] 
ii) Initialization of final matrix 

final_k[n][n] 
iii) Initialization of previous matrix 

prev[n] 
iv) Initialization w_k[n] 

Calculation of the final K values 
Step 3: Differential equation (module 1) 
diff_eq(n),Parameters:mat, 
x[0],x[1],…..x[n],dim   
Step 4: Inverse equation (module 2) 
 inverse(n); 
 Parameters: mat, dim  
Step 5: Normal equation (module 3) 
 nrml_eq(n); 
 Calculation of Final matrix: 
multiplication(n) 
 Parameters: invmat, consteq, dim 
Step 6: Calculation of Sum of K values 
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    Where  n =  0, 1, 2, 3, . . . 

 1T 1Tis the increment based on the slope at 
the beginning of the interval, using1T 1T , 
( 33TUEuler's method U33T) ; 

1T 1Tis the increment based on the slope at the 

midpoint of the interval, using1T 1T  ; 
1T 1Tis again the increment based on the slope 

at the midpoint, but now using1T 1T  ; 
1T 1Tis the increment based on the slope at the 

end of the interval, using1T 1T 1T 1T. 
Step7:   Calculate  

http://en.wikipedia.org/wiki/Euler%27s_method
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 Now pick a step-size1T 1Th > 0 
Step 8: Calculation of  W  values 
Step 9: Print Refined values. 
Step10: Stop.  
 

Normal matrix module 
//Input: (write input to the module)// 
//Output: (write output from the module)// 
Step 1: Start 
Step 2: Parameters: mat, dim ,n,N. 
Step3:Intialization Normal_Matrixa[n][n] 
   Initialization parameter matrices 
gn[n],gdas[n], yn[n], esp1[n],           
gnsqr[n],  bkr=1.2; 
Step 4:  for n=1  DO   n 
 Calculate:
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 where   1
2 1R Rε −=  (ratio of inner to 

outer cylinder radii). 
 v     variable viscosity.  
 Step5:   
 Calculate: 
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Step6:  Return Functional values. 
Step8:  Stop. 
 

Differential  matrix module 
Step1:  Start. 
Step2:  Accept A, B, N, v, δ, matrix (set of 
parameters received) 

Step3:  For  I = 1  DO   N 
Step4:  Calculate: 
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 where     1
2 1R Rε −=  (ratio of inner 

to outer cylinder radii). 
v     variable viscosity.  
Step5: 
 Calculate: 
 

 

Step6:  Return Functional values. 
Step7 :  Stop. 
 
Inverse matrix module 
//Input: (write input to the module)// 
//Output: (write output from the module)// 
Step 1: Start 
Step 2: Parameters: mat, dim ,n  
Step 3: Intialization of matrix a[n][n] 
   Intialization of matrix b[n][n] 
Step 4: Calculation of a[i][j] 
   Calculation of b[i][j] 
Step 5: if i==k 
 r=a[i][k]/a[k][k] 
 a[i][j]=a[i][j]-r*a[k][j] 
 b[i][j]=b[i][j]-r*b[k][j] 
Step 6: Matrix Multiplication 
 Parameters: invmat, consteq, n1 
 Initialization of matrices-  cmat, 
b[n][n], inv[n][n], c[n][n] 
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 Calculation of matrices - inv[i][j], 
b[i][j] 
Step 7: Calculation of matrix cmat 
Step 8: Return the result   cmat 
Step 9: Stop 
 

Multiplication matrix module 
Step1:  Start. 
Step2:Accept N,h, Inverse_Matrix[n][n], 
Constant_Matrix[n][n]. 
Step3:  Calculate 
Step4:  For  I = 0  DO   N 
Step5:  For  J = 0  DO   N 
Step6:Multi_Matrix[n][n]=h*(Inverse_Matri
x[n][n]* Constant_Matrix[n][n]) 
Step9:  Return Functional values of  
Multi_Matrix[n][n]. 
Step10: Stop. 
 

Results and Discussions 
Comparisons between HCM and Shooting 
Method of solving DBF flow through an 
Rectangular porous channel, Cylindrical 
Porous Annulus 

Metho
d  
of 

Evalua
tion 

Fixed 
values of 

Da=5 
F=10,BR

K=1.2 

Fixed 
values of 
Da=10 

F=10,BR
K=1.2 

Fixed 
values of 
Da=20 

F=10,BR
K=1.2 

SHM 0.039296
897 

0.009989
651 

0.002499
844 

HCM 0.037789
136 

0.009522
840 

0.002380
943 

 

Table 1:  Difference between Homotopy and 
shooting method 

 
Methods HCM SM 

Fixed 
values of 
parameter 

Da=10, 
esp=0.02, 

h=0.1 

Da=10,esp=0.02 

, h=(1-esp)/N 

Results 0.01166 0.01044 

Table 2:  Difference between Homotopy and 
shooting method 

Diff = 0.0116- 0.0104 = 0.0012 
 

For Different Values of  Epsolen  Da=5, 
Re=10, Cf=0.05,  Lamda=1 

Eps=1.
0 

Eps=0.
2 

Eps=0.
3 

Eps=0.
02 

Eps=0.
01 

0.0344
61792 

0.0319
65518 

0.0290
35028 

0.0509
87731 

0.1826
333091 

Table 3: HCM result comparisons for 
different Epsolen 

 

Table 4(a): Difference  between Homotopy 
and Shooting Method Fixed  F=10, 

BRK=1.2 
 
 

 

Table 4(b): Difference  between Homotopy 
and Shooting Method Fixed  F=10,  

Da=10 
 

HCM result visualization in 3D 
Simulation    
 3D simulation software is used to 
present Darcy-Brikman-Forchheimer flow 
through annulus. Simulation gives visual 
sequence of different set of parameter in 
pours media.   

Different 
Da 

Values 

HCM Shooting  
method 

Differe
nces 

05 0.0377 0.0395 0.0017 

10 0.0095 0.0099 0.0004 

20 0.0023 0.0024 0.0001 

Diff. 
Brinkmen  

HCM SM Diff. 

0.8 0.0095                                                                  0.0099 0.0004 

1.0 0.0095 0.0099 0.0004 

1.2 0.0095                                                                  0.00999 0.0004 
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POROUS MEDIA MODELLING. 
Maya polygon is used to create 3 
dimensional porous media. 
Step1:Create cylinder 
1.Create a NURBS cylinder and name it 
"c_i", for "inferior constraint". Go    
    to the Channel Box and set its Y scale to 
10, and its Z scale to 0.4.  
2. Enter "Insert" to edit the Pivot Point 
position, and then go to         
    the Numerical Input Line, which is a 
white space just above the    
    Channel  Box. Enter the values 0  -  10 0. 

 

Step 2:  
Create cylinder with porous media. 
1.Create Polygonal sphere and name it 
“porous Particle”  

1. Duplicate porous particles to fill 

inside the cylinder. 

 

Step 3: 
Create annulus with porous media 
Fill the porous particles centered with iron 
rod inside the cylinder created in step 1. 
 

 

 
Animation: 
Create expression to animate velocity profile 
for different set of parameter. 
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