
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June 2016
 ISSN: 2395-3470

www.ijseas.com

140

Efficient algorithms HCM and SM to solving system of non-
linear equations using animation techniques

ASHOKA S. B., Research Scholar
Department of Computer Science and Applications
Bangalore University, Bangalore – 560 009, India

Abstract
 The standardize the measurement of
algorithm efficiency depends an algorithm is
a systematic method containing a sequence
of instructions to solve a computational
problem. It takes some inputs, performs a
well defined sequence of steps, and
produces some output. Once we design an
algorithm, we need to know how well it
performs on any input.1T 1T A major criterion for
a good algorithm is its efficiency that is,
how much time and memory are required to
solve a particular problem. Intuitively, time
and memory can be measured in real units
such as seconds and megabytes. However,
these measurements are not subjective for
comparisons between algorithms, because
they depend on the computing power of the
specific machine and on the specific data
set. Algorithm can be written in pseudo-
code because simplification of the actual
implementation is very good way. In
homotopy continuation method algorithm
for solving system of non linear algebraic
equation, given the generalized uniform
approach of three more problems result.
We comparison HCM results with other
different methods algorithms observations
like Shooting method[RK45]. The detailed
observations of all the methods of algorithm
noted and all algorithm yields unique
approach on the results with limiting
conditions. But our one of proposed works
HCM algorithm given a excellent results, for
all set of parameters with high end values.
One more highlight of this chapter is
obtained the solution also represented

through 3D visualization using open source
code Mayavi version 0.6.

Keywords: Homotopy Continuation[HCM],
Shooting[SM], DBF, RKF45.

Introduction
 The exact speed of an algorithm
depends on where the algorithm is run, as
well as the exact details of its
implementation, computer scientists
typically talk about the runtime relative to
the size of the input. The time complexity of
an algorithm is commonly expressed using
big O notation, which excludes coefficients
and lower order terms. When expressed this
way, the time complexity is said to be
described asymptotically, i.e., as the input
size goes to infinity. For some optimization
problems, we can reach an improved time
complexity, but it seems that we have to pay
for this with an exponential space
complexity. Note that algorithms with
exponential space complexities are
absolutely useless for real life applications.
Theoretical computer science has its uses
and applications and can turn out to be quite
practical. In this article, targeted at
programmers who know their art but who
don't have any theoretical computer science
background, I will present one of the most
pragmatic tools of computer science: Big O
notation and algorithm complexity analysis.
In general, time complexity is considered
much more important than space
complexity, in part because the memory
requirement of most algorithms is lower

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June 2016
 ISSN: 2395-3470

www.ijseas.com

141

than the capacity of current machines. In the
rest of the section, all calculations and
comparisons of algorithm efficiency refer to
time complexity as complexity unless
otherwise specified. Also, time complexity
and running time can be used
interchangeably in most of the cases. The
time complexity of an algorithm is
calculated on the basis of the number of
required elementary computational steps that
are interpreted as a function of the input
size. Most of the time, because of the
presence of conditional constructs (e.g., if-
else statements) in an algorithm, the number
of necessary steps differs from input to
input. Thus, average-case complexity should
be a more meaningful characterization of the
algorithm. However, its calculations are
often difficult and complicated, which
necessitates the use of a worst-case
complexity metric. An algorithm’s worst-
case complexity is its complexity with
respect to the worst possible inputs, which
gives an upper bound on the average-case
complexity. As we shall see, the worst-case
complexity may sometimes provide a decent
approximation of the average-case
complexity. The theory of computational
complexity was developed Ullman (1984)
Papadimitriou (1993, 1998), Wilf (2002).
This allows an algorithm’s efficiency to be
estimated and expressed conceptually as a
mathematical function of its input size.
Generally speaking, the input size of an
algorithm refers to the number of items in
the input data set. In this chapter we will try
to found the computational complexity of
our generalized module of HCM with some
standard results.

//Algorithm of Homotopy
Continuation Method//
Main module
//Input: (Initial un-known values)//
//Output: (Refined solution of the method)//
Step 1: Start

Step2: Initialization of matrices
i) Initialization of x[n]
ii) Initialization of final matrix

final_k[n][n]
iii) Initialization of previous matrix

prev[n]
iv) Initialization w_k[n]

Calculation of the final K values
Step 3: Differential equation (module 1)
diff_eq(n),Parameters:mat,
x[0],x[1],…..x[n],dim
Step 4: Inverse equation (module 2)
 inverse(n);
 Parameters: mat, dim
Step 5: Normal equation (module 3)
 nrml_eq(n);
 Calculation of Final matrix:
multiplication(n)
 Parameters: invmat, consteq, dim
Step 6: Calculation of Sum of K values

1

2 1

3 2

4 3

(,),

(,),
2 2

(,),
2 2

(,).

n n

n n

n n

n n

K f t y
h hK f t y k

h hK f t y k

K f t h y hK

=

= + +

= + +

= + +

 Where n = 0, 1, 2, 3, . . .

 1T 1Tis the increment based on the slope at
the beginning of the interval, using1T 1T ,
(33TUEuler's method U33T) ;

1T 1Tis the increment based on the slope at the

midpoint of the interval, using1T 1T ;
1T 1Tis again the increment based on the slope

at the midpoint, but now using1T 1T ;
1T 1Tis the increment based on the slope at the

end of the interval, using1T 1T 1T 1T.
Step7: Calculate

http://en.wikipedia.org/wiki/Euler%27s_method

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June 2016
 ISSN: 2395-3470

www.ijseas.com

142

 Now pick a step-size1T 1Th > 0
Step 8: Calculation of W values
Step 9: Print Refined values.
Step10: Stop.

Normal matrix module
//Input: (write input to the module)//
//Output: (write output from the module)//
Step 1: Start
Step 2: Parameters: mat, dim ,n,N.
Step3:Intialization Normal_Matrixa[n][n]
 Initialization parameter matrices
gn[n],gdas[n], yn[n], esp1[n],
gnsqr[n], bkr=1.2;
Step 4: for n=1 DO n
 Calculate:

'

log(1) ()1

log(1) ()1

(1)()

()

log(1)() 1

n

n
n

n
n

v y

v y

y n n N

G y e

vG y e

εε

εε

εε

ε

+ −
−

+ −
−

−= +

=

+=
−

 where 1
2 1R Rε −= (ratio of inner to

outer cylinder radii).
 v variable viscosity.
 Step5:
 Calculate:

()
() ()

()

() ()

12
2 2

12

2

2

12
2

12

()
2 11

2
1

()
.

2 11

n n n
n n n n n n n

n n n

n n n
n n n n n

G Y GN
f U BY G U Y G N U

N
A Y G U

G Y GN
Y G N U Y G

δ

εε

ε

δ

εε

+

−

−
= − +

−−

+ + −
−

−
− − Λ

−−

 
  
 

 
  
 

 
  
 

Step6: Return Functional values.
Step8: Stop.

Differential matrix module
Step1: Start.
Step2: Accept A, B, N, v, δ, matrix (set of
parameters received)

Step3: For I = 1 DO N
Step4: Calculate:

2

1

log(1) ()1

log(1) ()1

log(1) ()1

1[] ((1),2)
(1)

log(1)
1

n

n
n

n
n

n
n

v y

v y

v y

esp n pow

Y n N

G e

G e

vG e

εε

εε

εε

ε
εε

ε

+ −
−

+ −
−

+ −
−

= −
−= +

=

=

+=
−

 where 1
2 1R Rε −= (ratio of inner

to outer cylinder radii).
v variable viscosity.
Step5:
 Calculate:

Step6: Return Functional values.
Step7 : Stop.

Inverse matrix module
//Input: (write input to the module)//
//Output: (write output from the module)//
Step 1: Start
Step 2: Parameters: mat, dim ,n
Step 3: Intialization of matrix a[n][n]
 Intialization of matrix b[n][n]
Step 4: Calculation of a[i][j]
 Calculation of b[i][j]
Step 5: if i==k
 r=a[i][k]/a[k][k]
 a[i][j]=a[i][j]-r*a[k][j]
 b[i][j]=b[i][j]-r*b[k][j]
Step 6: Matrix Multiplication
 Parameters: invmat, consteq, n1
 Initialization of matrices- cmat,
b[n][n], inv[n][n], c[n][n]

()
() ()

() () ()

12
2

12

12 2
2

12 2

()
2*

2 11

()
2 .

2 11 1

n n n
n n n n n n n

n n n
n n n n n n n n

G Y GNf U BY G U Y G N U

G Y GN NA Y G U Y G N U Y G

δ
εε

δ
εε ε

+

−

 − = + +
 −− 

   −   + + − − − Λ
   −− −   

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June 2016
 ISSN: 2395-3470

www.ijseas.com

143

 Calculation of matrices - inv[i][j],
b[i][j]
Step 7: Calculation of matrix cmat
Step 8: Return the result cmat
Step 9: Stop

Multiplication matrix module
Step1: Start.
Step2:Accept N,h, Inverse_Matrix[n][n],
Constant_Matrix[n][n].
Step3: Calculate
Step4: For I = 0 DO N
Step5: For J = 0 DO N
Step6:Multi_Matrix[n][n]=h*(Inverse_Matri
x[n][n]* Constant_Matrix[n][n])
Step9: Return Functional values of
Multi_Matrix[n][n].
Step10: Stop.

Results and Discussions
Comparisons between HCM and Shooting
Method of solving DBF flow through an
Rectangular porous channel, Cylindrical
Porous Annulus

Metho
d
of

Evalua
tion

Fixed
values of

Da=5
F=10,BR

K=1.2

Fixed
values of
Da=10

F=10,BR
K=1.2

Fixed
values of
Da=20

F=10,BR
K=1.2

SHM 0.039296
897

0.009989
651

0.002499
844

HCM 0.037789
136

0.009522
840

0.002380
943

Table 1: Difference between Homotopy and
shooting method

Methods HCM SM

Fixed
values of
parameter

Da=10,
esp=0.02,

h=0.1

Da=10,esp=0.02

, h=(1-esp)/N

Results 0.01166 0.01044

Table 2: Difference between Homotopy and
shooting method

Diff = 0.0116- 0.0104 = 0.0012

For Different Values of Epsolen Da=5,
Re=10, Cf=0.05, Lamda=1

Eps=1.
0

Eps=0.
2

Eps=0.
3

Eps=0.
02

Eps=0.
01

0.0344
61792

0.0319
65518

0.0290
35028

0.0509
87731

0.1826
333091

Table 3: HCM result comparisons for
different Epsolen

Table 4(a): Difference between Homotopy
and Shooting Method Fixed F=10,

BRK=1.2

Table 4(b): Difference between Homotopy
and Shooting Method Fixed F=10,

Da=10

HCM result visualization in 3D
Simulation
 3D simulation software is used to
present Darcy-Brikman-Forchheimer flow
through annulus. Simulation gives visual
sequence of different set of parameter in
pours media.

Different
Da

Values

HCM Shooting
method

Differe
nces

05 0.0377 0.0395 0.0017

10 0.0095 0.0099 0.0004

20 0.0023 0.0024 0.0001

Diff.
Brinkmen

HCM SM Diff.

0.8 0.0095 0.0099 0.0004

1.0 0.0095 0.0099 0.0004

1.2 0.0095 0.00999 0.0004

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June 2016
 ISSN: 2395-3470

www.ijseas.com

144

POROUS MEDIA MODELLING.
Maya polygon is used to create 3
dimensional porous media.
Step1:Create cylinder
1.Create a NURBS cylinder and name it
"c_i", for "inferior constraint". Go
 to the Channel Box and set its Y scale to
10, and its Z scale to 0.4.
2. Enter "Insert" to edit the Pivot Point
position, and then go to
 the Numerical Input Line, which is a
white space just above the
 Channel Box. Enter the values 0 - 10 0.

Step 2:
Create cylinder with porous media.
1.Create Polygonal sphere and name it
“porous Particle”

1. Duplicate porous particles to fill

inside the cylinder.

Step 3:
Create annulus with porous media
Fill the porous particles centered with iron
rod inside the cylinder created in step 1.

Animation:
Create expression to animate velocity profile
for different set of parameter.

References
[1] D. A. Nield and A. Bejan, Convection
in porous media, Springer Verlag, New
York, 2006.
[2] K. Vafai, Hand book of porous media,
CRC Press, 2005.

 [3] N. Rudraiah, P. G. Siddheshwar, D. Pal,
and D. Vortmeyer, Non – Darcy effects on
transient dispersion in porous media, ASME
Proc. 1988, Nat. Heat Trans. Conf.,
Houston, Texas, USA (Ed. H. R. Jacobs),
HTD – 96 (1) (1988) 623 - 629.
[4] E. Skjetne and J. L. Auriault, New
insights on steady, non-linear flow in porous
 media, Eur. J. Mech. B/Fluids, 18 (1999)
131-145.

