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Abstract 
This paper presents a comprehensive stability 
analysis of a DC motor speed control system with 
communication delays. An effective and simple 
graphical method is proposed to compute all 
stabilizing Proportional Integral (PI) controller gains 
of a DC motor speed control system with 
communication time delay. The approach is based on 
extracting stability region and the stability boundary 
locus in the PI controller parameter space having user 
defined gain and phase margins, and relative stability. 
The time-domain simulation studies indicate that the 
proposed schemes give better desired dynamic 
performance as compared to the recently developed 
schemes for DC motor speed control with 
communication delays. 
Keywords: Control Design, Delay Systems, DC 
Motor Speed Control, Gain and Phase Margins, 
Stability region. 

1. Introduction 

The issue of time delay in feedback control has been 
received considerable attention in recent years with 
the proliferation of networked control systems 
(NCSs) [1-3]. The time delays in NCSs known as 
network-induced delay consist of sensor-to-controller 
delay and controller-to-actuator delay. Even though 
the advances in communication networks have 
reduced the magnitude of the networked-induced 
delay significantly, it still cannot be ignored when 
designing a control system. It is well known that time 
delays can degrade the performance of control 
systems and can even make closed-loop system 
unstable [4-7].  
 
The DC motor control system is a typical example of 
control systems in which the undesirable impacts of 
time delays on the system dynamic are observed [3]. 
DC motor control systems are stable systems in 
general when time delays are not considered. 
However, inevitable time delays may destabilize the 

closed-loop system when the DC motor is controlled 
through a network. Therefore, communication and 
measurement delays for stability analysis of a 
networked-controlled  DC motor must be taken into 
account in the process of a controller design, and 
methods need to be developed to compute the 
stability boundaries in terms of time delay and 
controller parameters. [8-9]. 
 
The description of the system stability boundary in 
terms of time delay for a given set of controller 
parameters includes the computation of maximum 
time delays, known as delay margin, such that the 
system will be stable. On the other hand, one also 
needs to identify all possible controller parameters, 
known as stability region, for a given time delay that 
guaranties a stable operation. Such stability 
boundaries help us design an appropriate controller 
for cases in which uncertainty in network-induced 
delays is unavoidable. To the best of our knowledge, 
the stability of networked control DC motor speed 
control systems has not been comprehensively 
analyzed, and in particular, the description of the 
stability boundary in terms of the controller 
parameters for a given time delay has not been 
reported in the literature.  
 
The existing studies in the stability analysis of time-
delayed systems mainly focus on the stability delay 
margin computation for a given set of controller 
parameters. Delay margin computation methods 
could be grouped into two main types, namely 
frequency-domain direct and time-domain indirect 
methods. The main goal of frequency domain 
approaches is to compute all critical purely imaginary 
roots of the characteristic equation for which the 
system will be marginally stable. The following three 
methods are the ones commonly used in delay 
margin computation: i) Schur-Cohn method [10]; ii) 
Elimination of exponential terms in the characteristic 
equation [11]; iii) Rekasius substitution [12]. Among 
these direct methods, the method based on the 
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elimination of exponential terms has been 
implemented into delay margin computation of DC 
motor speed control system with constant 
communication delay [13]. The indirect time-domain 
methods that utilize Lyapunov stability theory and 
linear matrix inequalities (LMIs) techniques have 
been used to estimate delay margins of the time-
delayed dynamical systems with a PI controller [14-
15]. 
 
Both frequency and time-domain methods discussed 
above aim to compute delay margins for a given set 
of PI controllers. However, for a complete picture of 
the stability of DC motor control system, it is also 
essential to determine all possible values of PI 
controller parameters that ensure a stable operation 
when a certain amount of time delay is observed in 
the system. Because, in practical networked-
controlled systems, the maximum value of time 
delays that might be observed is known and on needs 
to determine the set of PI controller parameters that 
makes the closed-loop system stable. In one of our 
earlier work [16], a graphical method based on 
stability boundary [17-18] has been applied to 
stability analysis of time-delayed  load frequency 
control  systems, and a stability region for a given 
time delay has been determined in the PI controller 
parameters space, ( , )I PK K -plane. However, for the 
analysis and design of practical control systems, 
besides stability feature, gain margin (GM) and phase 
margin (PM) are two important design specifications 
that must be taken into account in computing stability 
regions [19]. A set of PI controller parameters that 
guarantees not only the stability but also desired 
gain-phase margins of the time-delayed DC motor 
speed control system must be determined. For that 
purpose, the time-delayed DC motor speed control 
system [13] is modified to include a frequency 
independent Gain Phase Margin Tester (GPMT) as a 
“virtual compensator” in the feedforward part of the 
DC motor speed control system model. 
 
This paper extends our earlier work [13] to compute 
all stabilizing PI controller parameters that ensure a 
desired dynamic performance of time-delayed DC 
motor speed control system with user defined phase-
gain margins. The approach is based on the stability 
boundary locus, which can be easily obtained by 
equating the real and imaginary parts of the 

characteristic equation to zero. The proposed method 
has been effectively applied to controller design and 
synthesis of time-delayed integrating systems [20] 
and large wind turbine systems [21]. The impact of 
the user-defined phase and gain margins on the 
stability region is analyzed. It has been observed that 
the stability region becomes smaller as the gain and 
phase margins increase.  
 
In addition to gain-phase margins specifications, in 
the analysis and design of control systems, it is also 
important to shift all poles of the characteristic 
equation of control system to a desired region in the 
complex plane, for example, to a shifted half plane 
that guarantees a specific settling time of the system 
response. In this paper, a relative stability region 
( , )I PK K -plane is also determined. All values of 
( , )I PK K  will put all the closed loop poles to the left 
of a desired s σ=  ( σ  is constant). Finally, the 
accuracy and effectiveness of the proposed methods 
are also verified by using time-domain simulation 
capabilities of Matlab/Simulink [22]. 

2. Modified DC Motor System Model With GPMT 

The block diagram of a DC motor system with a 
communication delay into the control loop is shown 
in Figure 1. The dynamic of a DC motor driving a 
load is described by a differential equation of the 
mechanical system and volt-ampere equations of the 
armature circuit [3], [6]. 
 

( )

m
m l e a

a a a a a a

dJ B T T Ki
dt

u t v e R i L di dt

ω
ω+ + = =

= = + +
    (1) 

 
where au v=  is the armature winding input voltage, 

ai , aR  and aL  are the current, resistance, and 
inductance of the armature circuit; respectively; 

a a me K ω=  is the back-electromotive-force (EMF) 
voltage  (i.e., generated speed voltage); mω  is the 
angular speed of the motor; eT  and lT  are the 
electromagnetic torque developed by the motor and 
the mechanical load torque opposing direction; J  is 
the combined moment of inertia of the load and the 
rotor, B is the equivalent viscous friction constant of 
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the load and the motor; K  and aK  are the torque 
constant and the back-EMF constant, respectively. 
The transfer function of the DC motor could be easily 
obtained as 
 

2
( ) a

a a a

a

K
JLG s

R R B KKBs s
L J JL

=
  +

+ + + 
 

.   (2) 

 
The transfer function of proportional-integral (PI) 
controller is given as follows:  
 

( ) I
c P

KG s K
s

= +      (3) 

 
where PK  and IK  are the proportional and integral 
gains, respectively. The proportional term affects the 
rate of angular speed rise after a step change. The 
integral term affects the angular speed settling time 
after initial overshoot. The integral controller adds a 
pole at origin and increases the system type by one 
and reduces the steady-state error. The combined 
effect of the PI controller will shape the response of 
the speed control system to reach the desired 
performance. 
 

Gc(s) G(s)+

-

PI Controller DC motor 

Reference
speed
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ω
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Measurement and 

communication delay

Processing delay
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Fig. 1. Block diagram of a DC motor control system with time delays. 
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Fig. 2. Modified block diagram of a DC motor control system with a 

GPMT. 
As illustrated in Figure 1, all time delays in the 
feedback loop that are lumped together into a 
feedback delay ( Bτ ) between the output and the 
controller. This delay represents  the measurement 
and communication delays (sensor-to-controller 

delay). The controller  processing and 
communication delay ( Fτ ) (controller-to-actuator 
delay) is placed in the feedforward part between the 
controller and DC motor. For the stability analysis, 
the characteristic equation given below of DC motor 
control system with time delay is required [13].  
 

( , ) ( ) ( ) 0ss P s Q s e ττ −∆ = + =     (4) 
 

where B Fτ τ τ= +  is the total time delay. ( )P s , ( )Q s  
are polynomials in s with real coefficients given in 
Eq. (2). 
 

3 2
3 2 1 1 0

3 2 1

1 0

( , ) ( ) 0

1, ,

,

s

a a a

a a

P I

a a

s p s p s p s q s q e
R R B KKBp p p
L J JL

KK KKq q
JL JL

ττ −∆ = + + + + =

+
= = + =

= =

        (5) 
 

The user defined gain and phase margins tester 
(GPMT) as a “virtual compensator” is added to the 
feedforward path in control loop of the DC motor 
system as shown in Figure 2. The frequency 
independent GPMT is given in the form: 
 

( , ) jC A Ae φφ −=       (6) 
 

where A and φ  represent gain and phase margins, 
respectively.  
 
To find the controller parameters for a given value of 
gain margin A of the DC motor speed control system 
given in Figure 2, one needs to set 0φ =  in Eq. (6). 
On the other hand, setting 1A =  in Eq. (6), one can 
obtain the controller parameters for a given phase 
margin φ . The characteristic equation of the DC 
motor speed control system with a GPMT given in 
Figure 2 is first obtained. 

( , ) ( ) ( ) 0

           ( ) ( ) 0

s j

s

s P s Q s e e

P s Q s e

τ φ

τ

τ − −

′−

′ ′ ′∆ = + =

′ ′= + =
    (7) 

 
Where 
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( ) ( )

3 2
3 2 1

1 0

( ) ( )
( ) P a I a

P s P s p s p s p s
Q s A KK JL s A KK JL q s q

′ = = + +

′ ′ ′= + = +
 

 
Note that in Eq. (7) we have an exponential term 

se τ ′−  rather than se τ−  as in Eq. (1). This is obtained 
by combining se τ−  and je φ−  into a single 
exponential terms for cs jω=  which is the root of 
Eq. (7) on the imaginary axis. The relationship 
between and is given as 
 

c

φτ τ
ω

′ = +       (8) 

3. Gain and Phase Margins Based Stability Region 

In order to obtain the boundary of the stability 
region, we substitute cjs ω=  and 0>cω  into the 
characteristic equation in Eq. (7) as follows 
 

( ) ( )
3 2

3 2 1

( , ) ( )

              ( ) ( ) ( ) 0

cj
c a P c I

c c c

j A K JL e K j K

p j p j p j

ω τω τ ω

ω ω ω

′−′∆ = +

+ + + =
 

                    (9) 
 

Substituting cos( ) sin( )je jωτ ωτ ωτ′− ′ ′= −  into Eq. 
(9) and separating into the real and imaginary parts, 
we obtain the following characteristic equation. 
 

( )
( )

( )(
( ) )

2
2

3
3 1

( , ) sin( )

            cos( )

           cos( )

           sin( ) 0

a c c P

a c I c

a c c P

a c I c c

j A K JL K

A K JL K p

j A K JL K

A K JL K p p

ω τ ω ω τ

ω τ ω

ω ω τ

ω τ ω ω

′ ′ ∆ = + 

′  − 

′ + + 

′ − − + = 
      (10) 

 
Equating the real and imaginary parts of ( , )cjω τ ′∆  
in Eq. (10) to zero, we get the following equations. 
 

1 1 1

2 2 2

( ) ( ) ( ) 0
( ) ( ) ( ) 0

P c I c c

P c I c c

K A K B C
K A K B C

ω ω ω
ω ω ω

+ + =

+ + =
 (11) 

 
where  

 
( )
( )
( )
( )

1
2

1 1 2

2

2
3

2 3 1

( ) sin( );  

( ) cos( );  ( ) ;

( ) cos( );  

( ) sin( );  

( )

c a c c

c a c c c

c a c c

c a c
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A A K JL

B A K JL C p

A A K JL

B A K JL

C p p

ω ω ω τ

ω ω τ ω ω

ω ω ω τ

ω ω τ

ω ω ω
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′= = −

′=

′= −
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Solving two equations in Eq. (11) simultaneously, 
the stability boundary locus ( , , )P I cK K ω  in the 
( , )I PK K -plane is obtained. 
 

1 2 2 1

1 2 2 1

2 1 1 2

1 2 2 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

c c c c
P

c c c c

I
c c c c

B C B CK
A B A B

A C A CK
A B A B

ω ω ω ω
ω ω ω ω
ω ω ω ω

ω ω ω ω

−
=

−

−
=

−

 (12) 

 
Note that the line 0IK =  is also in the boundary 
locus since a real root of ( , ) 0s τ ′∆ =  given in Eq. (9) 
can cross the imaginary axis at 0cs jω= =  for 

0IK = . Therefore, the stability boundary locus, 
( , , )P I cK K ω  and the line 0IK =  divide 

( , )I PK K -plane into stable and unstable regions. 
This part of the boundary locus is known as the Real 
Root Boundary (RRB) and the one obtained from Eq. 
(12) is defined as the Complex Root Boundary 
(CRB) of the stability region [17-18]. 

4. Relative Stability Region 

In this section, the graphical approach is further 
developed to obtain relative stability regions. In the 
analysis and design of control systems, it is important 
to shift all poles of the characteristic equation of 
time-delayed DC motor control system to a desired 
region in the complex plane, for example, to a shifted 
half plane that guarantees a specific settling time of 
the system speed response. The objective of this 
section is to compute all values of ( , )I PK K that will 
put all the closed loop poles to the left of a desired 
s σ=  (σ  is negative constant). Using s σ+  instead 
of s  in Equations (4)-(5) we obtain the 
corresponding characteristic equation as 
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( ) ( )

( )

3 2
3 2 1

( )

( , ) ( ) ( ) 0

( , ) ( ) ( ) ( )

+ ( ) 0

s

s
a P I

s P s Q s e

s p s p s p s

K JL e K s K

τ σ

σ τ

σ τ σ σ

σ τ σ σ σ

σ

− +

− +

∆ + = + + + =

∆ + = + + + + +

+ + =
      (13) 
 
First we substitute cjs ω=  with 0cω >  and 

[ ]( ) cos( ) sin( )cj
c ce e jω σ τ στ ω τ ω τ− + −= −  into Eq. 

(13) and equate its real and imaginary parts into zero 
to determine the following equations. 

1 1 1

2 2 2

( ) ( ) ( ) 0
( ) ( ) ( ) 0

P c I c c

P c I c c

K A K B C
K A K B C

ω ω ω
ω ω ω

+ + =

+ + =
 (14) 

 
where  
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B K JL
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B K JL

C p p p p

στ στ
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στ στ

στ

ω σ ω τ ω ω τ

ω ω τ

ω ω σ σ σ σ

ω ω ω τ σ ω τ

ω ω τ

ω ω ω σ σ

− −

−

− −

−

= +

=

= − + + + +

= −
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= − + + +

      (15) 
 

Solving two equations in Eq. (14) simultaneously, 
the stability boundary locus ( , , )P I cK K ω  in the 
( , )I PK K -plane is obtained as: 
 

1 2 2 1

1 2 2 1

2 1 1 2

1 2 2 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

c c c c
P

c c c c

c c c c
I

c c c c

B C B CK
A B A B
A C A CK
A B A B

ω ω ω ω
ω ω ω ω
ω ω ω ω
ω ω ω ω

−
=

−

−
=

−

 (16) 

Similar to the previous section, we need to set 
0cs jω= =  to determine the real root boundary. It is 

clear from Equations (14)-(15) that 2 2 2, ,A B C  
become all zero for 0cs jω= = . Then, the functional 
relation between IK  and PK  could be easily 
determined from 1 1 1( ) ( ) ( ) 0P IK A K B Cω ω ω+ + =  as 
 

( )

3 2
3 2 1( )

I P
a

p p pK K
K JL e στ

σ σ σ
σ

−
+ +

= − −  (17) 

 
Note that the real root boundary defined by Eq. (17) 
is a straight line ( , )I PK K -plane. 

4. Results 

The section presents stability regions based on both 
gain-phase margins, and location of the roots of the 
characteristic equation. The parameters of the DC 
motor control system are given in [3] and [13].  

4.1 Relative stability regions based on gain and phase 
margins 

The time delay is chosen as 0.5sτ =  and the 
crossing frequency is selected in the range of 

[ ]0,10  /rad sω∈  for stability boundary locus. Our 
first main purpose is to determine the stabilizing 
values of PK  and IK  such that the characteristic 
equation of Eq. (7) should be Hurwitz stable with 
desired gain and phase margins. Suppose our desired 
phase and gain margins are 2A ≥  and 010φ ≥ , 

respectively, then we substitute 2A =  and 00φ =  in 
Equations (10)-(12) and get the stability boundary 
locus (SBL) for specific gain margin with a crossing 
frequency of 3.908 /rad sω = . The corresponding 
stability region is labeled as R1 in Figure 3. 
Similarly, by substituting 1A =  and 010φ =  in 
Equations (10)-(12), we obtain the SBL for specific 
phase margin with a crossing frequency of 

3.6410 /rad sω = . The  stability region is denoted 
by R2. The intersection of R1 and R2 regions gives 
the stability region in ( , )P IK K -plane shown in 
Figure 3, and ensures the DC motor speed control 
system will have a desired gain and phase margins of 

2A ≥  and 010φ ≥ . Finally, the stability region 
without considering phase and gain margins is 
determined by substituting 1A =  and 00φ =  in 
Equations (10)-(12). This region is represented by R3 
in Figure 3. Observe that stability region with desired 
gain and/or phase margins, R1 and R2 are much 
smaller than stability region R3.  
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Next, we select three points each region, 
( 0.02, 0.03)P IK K= =  in R1, 
( 0.02, 0.06)P IK K= =  in R2, and 
( 0.02, 0.085)P IK K= =  in R3 region, respectively. 
Figure 4 shows the speed responses of the DC motor 
control system. It is clear that all responses are stable. 
However, the speed deviation for 
( 0.02, 0.085)P IK K= =  contain undesirable 
oscillations as compared to other two responses. 
From a practical point of view, such oscillations are 
not acceptable. It is clear that the disturbance 
rejection performance of the DC motor speed control 
system is quicker and non-oscillatory for the 
( , )P IK K  values selected from relative stability 
regions R1 and R2 with desired gain and/or phase 
margins. 
 
Moreover, the impact of the time delay on the size 
and shape of the stability region for a given gain-and 
phase margin is investigated. Figure 5 shows stability 
regions for three different time delays, 

0.5 , 1.0 , 1.5 s s sτ τ τ= = =  and 02, 0 .A φ= =  It is 
clear that the size  stability region decreases and the 
shape does not change as the time delay increases. 
 

 
Fig. 3. Stability region of PI controller for 2A ≥ , 010φ ≥ ,  and 

0.5 .sτ =  

 

Fig. 4. Speed deviation responses for three different values controller 
gains. 

 

Fig. 5. Stability region of PI controller for three different time delays and 
2, 0A φ= = . 

 

Fig. 6. Relative stability regions for 0, 0.1, 0.2σ = − − . 
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Fig. 7. Speed deviation responses for three different values controller 
gains. 

 
Fig. 8. Relative stability regions for three different time delays and 

0.1σ = − . 

4.2 Relative stability regions based on the root 
location 

Our second main purpose is to obtain all stabilizing 
values of PK  and IK  such that the characteristic 
equation of Eq. (13) should be Hurwitz stable and its 
roots should lie in a desired region with a boundary 
s σ=  ( 0)σ <  in the left-half complex plane. Similar 
procedure of the gain-phase margins case is followed 
and relative stability regions are obtained for three 
different σ  values, 0σ = , 0.1σ = −  and 0.2σ = − . 
Figure 6 presents the corresponding relative stability 
regions for 0.5sτ = . Note that the region for 0σ =  
is the same region R3 in Figure 3, whose stability 
boundary is the imaginary axis. Note that R1 region 
with 0.2σ = −  and R2 region with 0.1σ = −  are much 
smaller that R3 region with 0σ =  as expected. The 
complex root boundary of R1 and R2 are determined 
by Eq. (16) while the real root boundary of R3 is 
determined by Eq. (17). Time-domain simulations are 
carried out for three different ( , )P IK K  values one 
each region, ( 0.02, 0.04)P IK K= =  in R1, 
( 0.02, 0.075)P IK K= =  in R2 and 
( 0.02, 0.085)P IK K= =  in R3. Figure 7 depicts the 
speed deviations of the time-delayed DC motor 
control system. Once again, the controller gains 
chosen from R1 gives better dynamic performance 
without having any oscillations in the speed 
deviation and the speed deviation quickly reaches to 
zero. 
 
Additionally, the effect of the time delay on the 

relative stability region is the same as the gain-phase 
based stability regions. Figure 8 illustrates how the 
size of the region decreases as the time delay 
increases for 0.1σ = − . 

4. Conclusions 

This paper has presented a graphical method based 
on the stability boundary locus to determine stability 
regions in the PI controller parameter space for user 
defined gain-phase margins and for a desired location 
of the closed-loop roots of DC motor speed control 
system with communication delay. The relative 
stability regions provide us all stabilizing values of 
controller gains that ensure that the time-delayed DC 
motor speed control system will have desired gain 
and phase margins. Relative stability regions shrink 
as gain and/or phase margins increase. 
 
With the help of the stability region, the PI controller 
parameters could be properly selected such that the 
DC motor speed control containing certain amount of 
communication delay will be not only stable and but 
also will have a desired dynamic performance in 
terms of damping, settling time and non-oscillatory 
behaviors. 
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