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Abstract 

Many practical problems can be solved by using finite 
element method like eigenvalue problems, steady state 
problems, plane elasticity problems and transient problems. 
Finite element analysis is a numerical technique to obtain 
the approximate solutions of integral equations and partial 
differential equations that arise in the various fields of 
science and engineering. Generally algebraic polynomial or 
Lagrange interpolation is used as shape function to 
approximate the field variable for the computation of 
eigenvalues of an eigenvalue problem. In this paper we have 
used trigonometric interpolation namely tangent 
interpolation instead of Lagrange interpolation for solving 
an eigenvalue problem by finite element method. After 
calculating the eigenvalues we have compared this result 
with those obtained by using Lagrange interpolation and 
this comparison shows a close similarity between them. 

Keywords: Interpolation Function, Lagrange Interpolation, 
Trigonometric Interpolation, Eigenvalue. 
 
1. Introduction 
The finite element method was initially developed on a 
physical basis for the structural analysis problems in civil 
and aeronautical engineering. The term ‘finite element’ was 
first used by Clough, R.W., 1960. After its introduction it 
has continually developed and improved. Though in early 
days the contributors have been almost engineers but now a 
day a large of them come from the field of mathematics. It 
was seen that the method also equally applied to solve many 
other classes of problems such as fluid flow, heat flow, 
electric and magnetic field. Different types of problems like 
hyperbolic Johnson, C., Navert, U. and Pitkaranta, J., 1984, 
transient Kohler, W. and Pittr, J., 1974 ; Zienkiewicz, O.C., 
and Parekh, C.J., 1970, heat transfer Bathe, K. J., and 
Khoshgftaar, M. R., 1979 and nonlinear problems Bathe, K. 
J., and  Cimento, A.P., 1980 are solved by using finite 
element analysis. Eigenvalue problems Fried, I, 1969; 
Shertzer, J, Ram-Mohan, L. R. and Dossa, D., 1989 ; Ram-
Mohan, L. R., Saigal S., Dossa, D. and Shertzer, J., 1990 are 
to solved in connections with various applications. The 
problem of trigonometric interpolation was first solved by 
Gauss in the book Scarborough, James B., 1966, who 
derived several formulas similar to Hermite’s. The formula 
usually called Gauss’s formula differs from Hermite’s only 

in having the factor ½ written in front of all the angles; thus, 
( )02

1sin xx −  etc. Lagrange interpolation is a special case 
of Hermite interpolation. Ram-Mohan, L. R., Saigal S., 
Dossa, D. and Shertzer, J., 1990 solved the eigenvalue 
problem
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where λ and ψ  denotes the eigenvalue and eigenfunction 
respectively. Here Lagrange interpolation is used to solve 
the equation by finite element method. In the present work 
the Lagrange interpolation will be replaced by trigonometric 
interpolation .The main object of this work is to investigate 
the effect in the solution of an eigenvalue problem by using 
finite element method if the trigonometric interpolation is 
used instead of Lagrange interpolation. 

2. Lagrange Interpolation and Trigonometric 
Interpolation Relationship 

Lagrange and trigonometric interpolation shape functions 
have been discussed here for the linear and quadratic 
elements. The Trigonometric interpolation is 
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It is evident that  0yy =  when 0xx = ,  1yy =   when 

1xx = , etc. 

For two points ( )1 1,x y and ( )2 2,x y the trigonometric 
interpolation is  
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For the purpose of integration by Gauss quadrature method 
the transformation is 

1 2, ,
2 2

A B B A
A B

x x x x x     where   x x x xξ+ −
= + = =

Then
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For the first element 0=Ax , 1=Bx  and therefore 
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The corresponding shape function from Lagrange 
interpolation function is 
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1 (1 )
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N ξ= +  

For three points ( ) ( )1 1 2 2, , , ,x y x y ( )3 3,x y the 
trigonometric interpolation is  
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Putting, 
2 2

A B B Ax x x x x ξ+ −
= + where 
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Taking the first element having length 2 for which 0=Ax , 

2=Bx   
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The corresponding shape function from Lagrange 
interpolation function is 
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3. Brief Formulation 

Ram-Mohan, L. R., Saigal S., Dossa, D. and Shertzer, J., 
1990 solved the following eigenvalue problem  

λψψψ
=−






−

xdx
dx

dx
d

x
21 2

2                (1) 

that possess the domain having limit 0 to 20 taking 20 linear 
elements. 

The equation (1) is multiplied by the weight function w and 
integrated from 0 to 20 to get  
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Performing the integration by parts yields the equation 
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where the boundary condition ( ) 020 =ψ  is applied. 
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Taking the linear element from Ax x=  to Bx x=  and 

writing 2211 ψψψ NN += , the use of Galerkin approach 

21   and  NwNw == , gives the elements of the stiffness 

matrix as  ∫ 
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After the substitution  
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where, ==− hxx AB length of an element. 
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the first element 0 1 1x ,  x ,  hBA = = =  

The elements of the mass matrix are  

∫=
B

A

x

x
jiij dxNNxM 2  with , 1, 2i j =  

21

1 2 2 2
A B B A

ij i j
x x x x hM N N dξ ξ

−

+ − = +∫  
   

Ram-Mohan, L. R., Saigal S., Dossa, D. and Shertzer, J., 
1990 used the shape function 1N and 2N which are 

obtained from Lagrange interpolation. We have used 1S  

and 2S  which are obtained from trigonometric 

interpolation, instead of 1N  and 2N . The global stiffness 
matrix K and the global mass matrix M will be a 21×21 
matrix. 

The matrix eigenvalue equation is Kψ = λMψ. The equation 
is solved by Jacobi’s method, to find the eigenvalues λ1, λ2,     
, λ20. Eigenvalues obtained by Ram-Mohan et al, 1990 and 

those obtained by using trigonometric interpolation are 
shown in the table 1. 

4. Result and Discussion 

Ram-Mohan, L. R., Saigal S., Dossa, D. and Shertzer, J., 
1990 used linear element and calculated the eigenvalues 
using Lagrange interpolation for the domain 0 to 20 taking 
20 elements having length 1 for each element. We have 
calculated the eigenvalues using trigonometric interpolation 
taking same number of elements but different domain and 
different length for each element. The results are shown in 
table for comparison. The eigenvalues are calculated for the 
domain 0 to 20, 0 to 10 and 0 to 5 taking the length of 
elements 1, 0.5 and 0.25 respectively but the number of 
elements is 20 in each case. Ram-Mohan, L. R., Saigal S., 
Dossa, D. and Shertzer, J., 1990 calculated the eigenvalues 
using Lagrange interpolation which is shown in the second 
column of table 1 and the third column of table 1 shows the 
eigenvalues that are obtained using trigonometric 
interpolation. Table 2 and table 3 show the behavior of 
results in the case of smaller lengths of the elements. 

Table 1. Eigenvalues for the domain 0 to 20 having length 1 
for each element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eigenvalues Lagrange Trigonometric 
λ1 12.928 16.055 

λ2 11.565 12.305 
λ3 10.786 11.824 
λ4 9.724 11.109 
λ5 8.522 10.217 
λ6 7.292 9.216 
λ7 6.110 8.165 
λ8 5.022 7.117 
λ9 4.050 6.107 
λ10 3.199 5.162 
λ11 2.462 4.298 
λ12 1.842 3.526 
λ13 1.319 2.848 
λ14 0.8855 2.266 
λ15 0.5333 1.780 
λ16 0.2550 1.390 
λ17 0.0475 1.094 
λ18 -0.0929 0.8961 
λ19 -0.2381 0.6656 
λ20 -0.9417 -1.334 
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Table 2. Eigenvalues for the domain 0 to 10 having length 
0.5 for each element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Eigenvalues for the domain 0 to 5 having length 
0.25 for each element 

 
Eigenvalues Lagrange Trigonometric  

λ1 243.971 245.751 

λ2 188.434 187.462 
λ3 177.243 176.785 
λ4 160.941 161.058 
λ5 142.041 142.646 
λ6 122.491 123.439 
λ7 103.606 104.748 
λ8 86.160 87.365 
λ9 70.522 71.694 
λ10 56.799 57.873 
λ11 44.944 45.880 
λ12 34.826 35.607 
λ13 26.288 26.911 
λ14 19.165 19.638 
λ15 13.308 13.644 
λ16 8.585 8.805 
λ17 4.891 5.015 
λ18 2.144 2.196 
λ19 0.2985 0.3064 
λ20 -0.9623 -1.009 

 

From table 1 it is seen that in Lagrange interpolation the 
first nineteen values are smaller and last value is larger than 
trigonometric interpolation. But from table 2 and 3 it is seen 
that the first value is smaller, next two values are larger and 
next sixteen values are smaller and last value is larger. It is 
noticeable that for smaller length of element the deviation 
between the two sets of values is comparatively small than 
larger length of element. 

5. Conclusion 

We have calculated the eigenvalues by using trigonometric 
interpolation for different length of elements. The result 
shows a better agreement for smaller values of element 
length. The deviation can be minimized by taking the small 
size element.  
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