
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-5,May 2016
 ISSN: 2395-3470

www.ijseas.com

C Program Optimizations for ARM NEON Processors

Dae-Hwan Kim
Department of Computer and Information, Suwon Science College, Hwaseong-si, Gyeonggi-do, Rep. of Korea

Abstract
ARM is the most widely used 32-bit embedded
processor which is employed in smartphones, tablets,
vehicles, wearable devices, and IoT (Internet of
Things) devices. In the recent ARM processors for
smartphones and tablets, the ARM NEON is widely
deployed, which is the SIMD (Single Instruction
Multiple Data) accelerator for multimedia and signal
processing algorithms. In this paper, various C
program optimization techniques are presented such
as loop unrolling and function inlining for the NEON
architecture. The proposed techniques can greatly
enhance the generated assembly code both in size
and execution speed. The proposed techniques do not
depend on the specific platform, and thus, they are
expected to be applied to the software development
for the ARM NEON processors.
Keywords: ARM, NEON, Software Optimization, C
Programming Language, Loop Unrolling, Function
Inline.

1. Introduction
ARM [3-9, 12-13] is the most dominant 32-bit
embedded processor which is deployed in various
embedded systems such as smartphones, tablets,
vehicles, wearable devices, and IoT (Internet of
Things) devices. In 2015, 15 billion ARM-based
chips are sold, and the ARM’s market share is over
95% in the smartphone market [2]. The first
commercial version is ARM7TDMI [13], which is
introduce in 1995. The architecture version of
ARM7TDMI is four, and the successors of
ARM7TDMI are continuously introduced to meet the
market demands [3-9, 12]. The most recent
commercial version is ARMv8 (version 8) [3-4].

Thumb-2 is the new instruction set from the ARMv7
architecture [12]. This instruction set combines 32-bit
ARM instructions and 16-bit Thumb instructions into
a single instruction set where the 16-bit Thumb
instructions are the bit-width reduced versions for 32-
bit ARM instructions. Thumb-2 architecture contains

both 32-bit ARM instructions and 16-bit Thumb
instructions. This eliminates mode conversion
overhead between Thumb and ARM modes in the
previous architectures. In addition, new instructions
such as bit manipulation instructions are added to
improve the processor performance. With this
integration, Thumb-2 provides 16-bit Thumb code
density while preserving 32-bit ARM performance.

SIMD (Single Instruction Multiple Data) [10] engine
called NEON [6-7] is introduced from the ARMv7
architecture. The NEON instruction set can execute
several arithmetic operations in parallel, and thus, it
is useful for audio and video codecs, graphics, image
processing, and audio processing algorithms. The
NEON is employed in various recent ARM
processors such as Cortex-A7, Cortex-A8, Cortex-A9,
Cortex-A15, and Cortex-A53 processors where the
Cortex-A are the latest ARM processors for
performance intensive systems. NEON is used in
most recent smartphone application processors. It is
included in Cortex-A9 for NVidia’s Tegra3, Cortex-
A15 and Cortex-A7 for Samsung’s Exynos 5, and
Apple’s Swift architecture.

C language is one of the most widely used
programming languages, especially for embedded
systems. Therefore, it is important to optimize C code
for ARM processors. In this paper, various C
program software optimization techniques are
presented for the NEON C code.

The rest of this paper is organized as follows. Section
2 shows the overview of the C program optimization
techniques, and Section 3 explains each technique in
detail with an example. Conclusions are presented in
Section 4.

2. C Program Optimization Overview

Table 1 shows the overview of the proposed C
program optimization techniques. The __promise

234

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-5,May 2016
 ISSN: 2395-3470

www.ijseas.com

keyword notifies to the compiler the expression that
is true. This enables the compiler to generate efficient
code by performing more aggressive optimizations.

One of the most difficult challenges in compiler
optimization is the pointer variable analysis. When
the compiler encounters a pointer variable, it is hard
to know where the pointer is pointing. It becomes
more complicated because different pointer variables
can point to the same or the overlapping memory
locations. Thus, compilers take conservative
approaches [1, 11] for optimizations relevant to
pointer variables.

Programmers can give information on the pointer to
the compiler. The __restrict keyword declares that
different pointers do not point to the same and
overlapping memory region at runtime. It guarantees
that the data pointed by the pointer variable is not
modified by the other pointer variables. This enables
the compiler to perform optimizations which
otherwise are prevented by pointer aliasing.
Therefore, the compiler can perform various
optimizations which result in the efficient code.

The __inline intrinsic is the directive which suggests
the compiler to substitute the function call by the
body of the function. Compiler inserts the function
code at each function call, which removes the
function call overhead. In addition, the size of the
basic block is increased, which accordingly increases
the optimization opportunity for vectorization. In a
structure programming like C programming language,
the complex function is normally divided into sub
functions. When a function is called in a loop, the
NEON vectorization is often restricted at the function
call instruction. The __inline keyword gives
vectorization opportunity including the code of
subfunctions together.

Loop unrolling replicates the body of the loop and
decreases the number of iterations. This reduces loop
overhead occurring from the branch instruction, and
increases the number of instructions in the loop,
which provides more vectorization opportunity. This
technique attempts to improve the execution speed at
the expense of the code size in the space-time trade-
off. However, the unrolling by the compiler is often
conservative and not sufficient even when the

resources such as registers are available for more
unrolling. Thus, hand unrolling by the programmer
can achieve the better performance. Programmers can
be guided by the compiler generate assembly code.
The loop unrolling count and resource usages can be
easily estimated in the assembly code, and thus, it is
not difficult to determine the resource availability.
When resources are available, the programmer can
increase the unrolling number by using the pragma
unroll function.

The vectorization can be more improved if the hint is
given for the number of loop iterations. For example,
when the number of iteration is a multiple of four,
this information can be explicitly given in the loop
termination condition. This gives the compiler the
vectorization hint.

Table 1: C optimization overview

Technique
Description

Example

Use
__promise

It notifies to the compiler the
expression that is true. This enables the
compiler to generate more efficient
code by performing aggressive
optimizations.
__promise (0<len&&

(len% 8) ==0);

for (int i=0; i<len; i++) {
... }

Use
__restrict
keyword
for pointer
variables

It guarantees that there is no other
pointers point to the memory block
pointed by the __restrict pointer
variable.
__restrict *ptr;

This declaration notifies the compiler
that the area pointed by ptr is not
referenced by other pointer variables.

Use
__inline

This keyword guides the compiler to
replace the function call with the
function body. It provides more
opportunity for vectorization by
increase the number of instructions in
the basic block.
__inline add(int a, int b)
{

235

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-5,May 2016
 ISSN: 2395-3470

www.ijseas.com

return a+b;
}

int caller(int x, int y)
{

add(x, y);
}

loop
unroll

It specifies the optimal loop unrolling
number to the compiler.
#pragma unroll(n)

Inform
loop
iteration
number

It gives the loop iteration information
to the compiler for the vectorization.
If the array size is the multiple of four,
the following code gives the loop
iteration information to the compiler.

for(n=0; n<(limit/4)*4; n++)

Table 2 shows the result of the C level software
optimizations. When no optimization keyword is
specified for variables d, n, and m, the ARM
Realview compiler generates total 60 instructions
which consist of 4 NEON instructions and 56
Thumb-2 instructions. Many instructions are
generated because the compiler can not be sure that
memory locations pointed by variables d, n and m are
not overlapping. In addition, because no information
on the loop iteration number is given, compiler
should generate code to handle various possible loop
iterations. If point variables d, n, and m do not point
to the same and overlapping memory regions, we can
specify those pointers with __restrict keyword.
Furthermore, if variable len is a multiple of eight, we
can notify to the compiler that information for
optimization. As the result of specifying two
keywords, we can obtain far more compact code
which consists of total 8 instructions including 4
NEON instructions.

Table 2: C optimization example code

Type Description

Original
C Code

// suppose that len is multiple of eight

void vadd (

short* d, short* n,
short* m, int len)

{
int i;

for(i=0; i<len; i++)
{

d[i]= n[i] + m[i];
 }

}

Original
Assembly
Code

vadd PROC
PUSH {r4-r6}
; test if d and n alias
CMP r0,r1
BLS |L1.24|
SUB r12,r0,r1
CMP r3,r12,ASR #1
BGT |L1.176|

|L1.24|
; test if d and m alias
CMP r0,r2
BLS |L1.44|
SUB r12,r0,r2
CMP r3,r12,ASR #1
BGT |L1.176|

|L1.44|
 ; test if len is multiple of 8
CMP r3,#0
BLE |L1.168|
ASR r12,r3,#31
MOV r4,r1
MOV r5,r2
ADD r12,r3,r12,LSR #2
MOV r6,r0
ASRS r12,r12,#3
BEQ |L1.104|
|L1.80| ; vector loop
VLD1.16 {d0,d1},[r4]!
SUBS r12,r12,#1
VLD1.16 {d2,d3},[r5]!
VADD.I16 q0,q0,q1
VST1.16 {d0,d1},[r6]!
BNE |L1.80|

|L1.104|
AND r12,r3,#7
; cleanup loopcount
CMP r12,#0
BLE |L1.168|

236

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-5,May 2016
 ISSN: 2395-3470

www.ijseas.com

SUB r12,r3,r12
CMP r12,r3
BGE |L1.168|

|L1.128|
; clean-up loop
ADD r4,r1,r12,LSL #1
ADD r5,r2,r12,LSL #1
ADD r6,r0,r12,LSL #1
LDRH r4,[r4,#0]
ADD r12,r12,#1
LDRH r5,[r5,#0]
CMP r12,r3
ADD r4,r4,r5
STRH r4,[r6,#0]
BLT |L1.128|

|L1.168|
; return sequence
POP {r4-r6 }
BX lr

|L1.176|
; test loop count >0
CMP r3,#0
MOV r12,#0
BLE |L1.168|

|L1.188|
; non vector loop
ADD r4,r1,r12,LSL #1
ADD r5,r2,r12,LSL #1
ADD r6,r0,r12,LSL #1
ADD r12,r12,#1
LDRH r4,[r4,#0]
CMP r12,r3
LDRH r5,[r5,#0]
ADD r4,r4,r5
STRH r4,[r6,#0]
BLT |L1.188|
POP {r4-r6 }
BX lr

ENDP
Total instruction count: 60
(NEON: 4 + Thumb-2: 56)

Optimized
C Code

void vadd(
short* __restrict d,
short* __restrict n,
short* __restrict m,
int len)

{

/* len is positive and

a multiple of 8 */

__promise(0<len &&

(len% 8) == 0);

int i;
for (i=0; i<len; i++) {

d[i] = n[i] + m[i];
}

}

Optimized
Assembly
Code

vadd PROC
ASR r3,r3,#3

|L0.4|
VLD1.16 {d2,d3},[r1]!
VLD1.16 {d0,d1},[r2]!
VADD.I16 q0,q1,q0
VST1.16 {d0,d1},[r0]!
SUBS r3,r3,#1
BNE |L0.4|
BX lr

ENDP
Total instruction count: 8 (NEON:
4 + Thumb-2: 4)

4. Conclusions

In this paper, various C program software
optimization techniques are presented for the ARM
processors, mainly targeted for the NEON
multimedia accelerator which is widely used in
recent smartphones and tablets. Most of proposed
techniques do not depend on the specific
hardware/OS platform, and therefore, they are
expected to be applied to the software development
for ARM NEON processors.

References
[1] A. V. Aho, R. Sethi, and J.D. Ullman,

Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, USA, 1986.

[2] ARM Ltd., ARM Annual Report & Accounts
2015, ARM Ltd., 2016.

[3] ARM Ltd., ARM Architecture Reference
Manual ARMv8, for ARMv8-A architecture
profile, ARM Ltd., 2013.

[4] ARM Ltd., ARMv8 Instruction Set Overview,
ARM Ltd., 2012.

237

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-5,May 2016
 ISSN: 2395-3470

www.ijseas.com

[5] ARM Ltd., Introducing NEON™ Development
Article, ARM Ltd., 2009.

[6] ARM Ltd., NEON support in the ARM
Compiler, 2008.

[7] ARM Ltd., Overview of NEON Technology,
2012.

[8] D. Brash., The ARM Architecture Version 6,
ARM White Paper, 2002.

[9] F. Hedley, ARM DSP-Enhanced Extensions,
ARM Ltd., 2001.

[10] J. L. Hennessy, and D. A. Patterson, David,
Computer Architecture, Fifth Edition: A
Quantitative Approach, Morgan Kaufmann
Publishers Inc., CA, USA, 2011.

[11] S.S. Muchnick, Advanced Compiler Design and
Implementation. Morgan Kaufmann, San
Francisco, CA, USA, 1997.

[12] R. Phelan, Improving ARM Code Density and
Performance, Technical Report, ARM Ltd., 2003.

[13] S. Segars, K. Clarke, L. Goudge, “Embedded
control problems, Thumb, and the ARM7TDMI”.
IEEE Micro, Vol. 15, No. 5, 1995, pp. 22-30.

Dae-Hwan Kim is an associate professor at the
Department of Computer and Information in Suwon
Science College. Previously, he worked as a
Principal Engineer at Samsung Electronics and LG
Electronics where he developed commercial
compilers and multimedia embedded processors. He
received the Ph.D. degree from the School of
Electrical and Computer Engineering of Seoul
National University in 2010, and received the B.S.
and M.S. degrees in Computer Science from Seoul
National University in 1993 and 1995, respectively.
His current research interests include computer
architecture, compiler, and embedded systems.

238

	Technique
	Type

