
International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016
 ISSN: 2395-3470

www.ijseas.com

Automation Testing Using Coded UI Test

1NIRANJANA S, 2BALAMURUGAN A

 1 PG Scholar, Department of Computer Science and Engineering , Sri Krishna College of Technology
Coimbatore ,Tamil Nadu

2 Professor, Department of Computer Science and Engineering , Sri Krishna College of Technology
Coimbatore ,Tamil Nadu

Abstract - Coded UI Test (CUIT) is a relatively new
automation tool in the software market. It was made
available as part of the Visual Studio 2010 update. The
produce has undergone a lot of enhancements and its new
version has been released as part of Visual Studio 2013.
Software code can be easily reviewed and debugged in
Visual Studio. It also has an IntelliSense code
achievement feature, which helps in generating code faster.
Coded UI mechanization tool is supported by high level
programming languages such as C# and Visual
Basic .NET.
Software testers respect the high level language maintain
offered by Coded UI automation tool. It is a known fact
that software testers prefer learning VB Script (used by
QTP [presently known as UFT] and Test Complete
automation tools), as it is easy compared to other
languages such as Java, C# or VB.NET. Software testers
who have knowledge of inscription code in object-oriented
programming language (OOPL) especially like better
using Coded UI automation tool.

Keywords – QTP, UFT, OOPL, Coded UI test

1. INTRODUCTION

Automated tests that drive your application through its
user interface (UI) [1] are known as coded UI tests (CUITs).
These tests include functional testing of the UI controls.
They let you verify that the whole application, including
its user interface, is functioning correctly. Coded UI Tests
are particularly functional where there is validation or
other logic in the user interface for example in a web
page [2]. They are also commonly used to automate an
breathing
Physical test.

A typical development experience might be one where, to
begin with, you simply build your submission (F5) and
click through the UI gearstick to verify that things are
working correctly. You then might decide to create a
coded test so that you don’t need to continue to test the
application manually. Depending on the particular
functionality being tested in your application, you can put
in writing code for either a purposeful test, or for an
integration test that might or might not include trying at
the UI level. If you simply want to directly access some
business logic, you might code a unit test. However, under
convinced circumstances, it can be beneficial to comprise
testing of the various UI controls in your application. A
coded UI test can automate the initial (F5) scenario,
verifying that code churn does not impact the functionality
of your application. Creating a coded UI test [5] is easy.
You simply perform the test manually while the CUIT
Test Builder runs in the background. You can also specify
what values should appear in specific fields. The CUIT
Test Builder records your actions and generates code from
them. After the test is created, you can edit it in a
specialized editor that lets you change the progression of
actions.
Alternatively, a test case that can be recorded in Microsoft
Test Manager (MTM), the code can be produced from
MTM.

2. PURPOSE OF CODED UI TESTING

The specialized CUIT Test Builder and editor make it easy
to create and edit coded UI tests even if your main skills
are concentrated in testing slightly than coding. But if you
are a developer and you want to make longer the test in a
more advanced technique, the code is structured so that it
is straightforward to copy and adapt.

190

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016
 ISSN: 2395-3470

www.ijseas.com

2.1 Why Coded UI is a Smart Choice in Test
Automation

The robust capabilities of Visual Studio and Team
Foundation Server (TFS) have made them hot favourites
among software developers. Developers utilize both these
tools to produce better-quality software applications [10].
The collective usage of TFS, Visual Studio and its testing
tools augments the process of agile development. Here
are few reasons why Coded UI tool is a preferred choice
for software testers:

1. Software testers and Developers can work using
the same tools/language, which enables them to
collaborate effectively.

2. The Coded UI automation tool chains both web
and windows projects, as both C# and VB.NET
are known for their robustness.

3. The element identification mechanism is a
powerful feature in Coded UI.

4. Coded UI strongly supports Synchronization. The
Playback Engine supports features such as ‘Wait
For Ready Level’, ‘Wait For Control Exist’ etc.,
it makes the test implementation stop till UI
Threads or All Threads are ready.

5. Automation tests can be run on remote machines
with the help of ‘Tests Agents’.

6. Coded UI supports AJAX controls.

7. Descriptive Programming is another impressive
feature supported by Coded UI tool, which allows
software testers to automate scenarios based on
object properties. There’s no need to wait for the
user interface to record/assert scenarios.

8. Coded UI allows developing an extensive test
suite and performing tests in local environments.

9. Using Coded UI with layered framework,
automation teams can develop sophisticated tests.

10. Utilizing Log4net.dll, software testers can log the
results and capture exceptions in an effective
manner.

2.1.1 How to Begin with Coded UI Testing

Creating a coded UI test generates a UIMap object that is
specific to your test and represents the windows, controls,
parameters, and assertions that are in the UI or that you
created during the test recording. You can then perform
actions on these UI objects to automate your user
interface. For example, you can have your test method
click a hyperlink in a Web application, type a value in a
text box, or branch off and take different testing actions
based on a value in a field.

A coded UI test class is identified by a class. Each coded
UI test is a test method in a coded UI test class. You can
add multiple test methods to each coded UI test class and
identify each coded UI test method by using the Test
Method Attribute.

Your test method can also add validation code for a UI test
control to obtain the value of a property of a UI test
control. The test method can use an Assert statement to
compare the actual value of the property to an expected
value. The result of this comparison determines the
outcome of the test. Every time that you run a coded UI
test, you can analyze the test result and if the test fails, you
can see or store the details of which assertion failed.

2.1.1.1 Software Requirements

Software testers can use either Visual Studio Premium or
Visual Studio Ultimate to create Coded UI tests. Visit the
MSDN website to obtain more information on supported
configurations and platforms.

3. BENEFITS OF CODED UI

3.1. Coded UI Framework

The below illustration depicts the Coded UI Framework

191

http://www.evoketechnologies.com/agile
http://www.w3schools.com/ajax/
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testmethodattribute%28v=vs.100%29.aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testmethodattribute%28v=vs.100%29.aspx
https://msdn.microsoft.com/en-us/library/dd380742.aspx

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016
 ISSN: 2395-3470

www.ijseas.com

Let’s scrutinize the above framework illustration to
interpret it effectively. As depicted in the above
illustration, the App code folder contains all the reusable
functions, which are used to write test scripts. Let’s
assume that a software tester is automating a Gmail
application, the Login, Home page and Logout code are
written in different functions such as Login(), Homepage()
and Logout() under ‘Gmail’ class. While writing the test
scripts, software testers can reuse the above functions.
Here’s the code to achieve the above functionality.

3.2. Improving Performance of Coded UI Test

Automated tests that drive your application through its
user interface (UI) are known as coded UI tests (CUITs).
These tests include functional testing of the UI controls.
They let you verify that the whole application including its
user interface is functioning correctly [6]. Coded UI Tests
are particularly useful where there is validation or other
logic in the user interface for example in a web page. They
are also recurrently used to automate an existing manual
test.

3.3. Advantages

• Everything seems very stable.

• User can test many different kinds of user
interfaces, not just the web.

• Frequently recurring test steps can easily be re-
used. It’s up to user how fine-grained user wants
to record user test steps. Calling a step (consisting
of one or more actions) is just a matter of a single
function call.

• Generates C# and XML code by default.

• Features fuzzy matching of UI elements. This
seems to make the tests more robust when
updating the user interface.

3.4. Disadvantages

• Even very simple tests generate a lot of code.

• Test steps are stored in an XML file (called
UIMap) which in turn compiles to C# code. The
UIMap is big and clunky and there currently is no
editor or documentation for it. So if user wants to
make some changes, things can get complicated
unless user wants to re-record an entire test step.

• Creating very simple assertions (such as “look for
the string “foo” on this web page”) is a bit
clumsy and requires too many mouse clicks. An
IE accelerator would be great!

• No support for Safari, Opera or Chrome. On the
bright side, Coded UI has an open interface, so
anyone could implement it.

• While fuzzy matching works great in most cases,
It can get in the way in others.

• Not quite as intuitive as Selenium at the
beginning.

• Tests record and run quite a bit slower than with
Selenium.

4. Coded UI Supported Technologies

Using Coded UI, one can easily test an application which
has UI (User Interface). The application can be of Web
based or Windows based, coded UI supports them.

4.1. UI technologies

192

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016
 ISSN: 2395-3470

www.ijseas.com

The following are the UI technologies that supports Coded
UI

1. Windows based Desktop Applications (Windows
Forms etc)

2. WPF (Windows Presentation Foundation)

3. Web Applications (Html, Silver light, Jscript,
HTML 5)

4. Web Services (SOAP, ASPX etc)

5. Windows Phone applications (Available
from Visual Studio 2013 Update 2 or later)

6. Windows Store applications

4.2. Other tools

The following are the Comparison of Coded UI with other
tools available for automation testing. It’s very obvious
here that,

1. Selenium does not support any Windows
applications as well as WPF applications.

2. QTP does support Windows application, but
requires .Net Plug-in to be purchased and
installed separately

3. Test complete does support Windows application,
but requires plug-in to be installed

4. No other tool, other than Visual Studio Coded UI
support Windows phone application testing

5. No other tool, other than Visual Studio Coded UI
support Windows store application testing

The comparison is just some of the most commonly used
popular tools against Visual Studio Coded UI testing.

4.3 Coded UI Application Testing feature

Coded UI has two different ways feature to test your
applications

1. Coded UI Record and Playback

2. Coded UI Hand coding (which will involve
intense coding)

Coded UI record and playback feature allows to record the
actions (i.e.) mouse click events in the UIMap Designer
and plays the recorded steps

Coded UI hand coding allows to code the recording
manually in C# language.

The way Coded UI automation is designed by Microsoft is
to target both the non-programmers as well
as programmers to work with Coded UI.

Microsoft Test Manager (MTM) uses Coded UI Record
and Playback feature to record all the user action and save
it as a test case, which can then be used to replay while
executing the test case.

Coded UI Hand coding is used prevalently while
designing custom frameworks while working with larger
projects.

5 CONCLUSION

The sole purpose of Coded UI is to perform automatic
functional testing that doesn't need human interactions.
We can have a list of Test Cases managed in TFS and we
can corroboration User Action while organization a Test
Case using MTM (Microsoft Test Manager). These
automated recorded actions can also be repeated any
number of time after we find a change in build.
Converting to a Coded UI test does not directly add the
checks, but Coded UI allows automated checks to be
added into the test. Having converted an MTM test to a
Coded UI test, the cross-hairs tool of Coded UI (also
called the declaration tool and similar terms) can be used
to add assertions that values on the screen include the
expected values.

6. REFERENCES

[1] Xun Yuan, Myra B. Cohen, Atif M. Memon, (2010)
“GUI Interaction Testing: Incorporating Event Context”,
IEEE Transactions on Software Engineering, vol. 99.

[2] A. M. Memon, M. E. Pollack, and M. L. Soffa, (2001)
“Hierarchical GUI test case generation using automated

193

International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016
 ISSN: 2395-3470

www.ijseas.com

planning”, IEEE Transactions on Software Engineering,
Vol. 27, no. 2, pp. 144- 155.

[3] X. Yuan and A. M. Memon, (2007) “Using GUI run-
time state as feedback to generate test cases”, in
International Conference on Software Engineering (ICSE),
pp. 396-405.

[4] X. Yuan, M. Cohen, and A. M. Memon, (2007)
“Covering array sampling of input event sequences for
automated GUI testing”, in International Conference on
Automated Software Engineering (ASE), pp. 405-408.

[5] X. Yuan, M. Cohen, and A. M. Memon, (2009)
“Towards dynamic adaptive automated test generation for
graphical user interfaces”, in First International Workshop
on TESTing Techniques & Experimentation Benchmarks
for Event-Driven Software (TESTBEDS), pp. 1-4.

[6] Si Huang, Myra Cohen, and Atif M. Memon, (2010)
“Repairing GUI Test Suites Using a Genetic Algorithm,
“in Proceedings of the 3rd IEEE International
Conference on Software Testing Verification and
Validation (ICST).

[7] P. Brooks, B. Robinson, and A. M. Memon, (2009)
“An initial characterization of industrial nd graphical user
interface systems”, in ICST 2009: Proceedings of the 2
IEEE International Conference on Software Testing,
Verification and Validation, Washington, DC, USA: IEEE
Computer Society.

[8] Q. Xie, and A.M. Memon (2006) “Model-based testing
of community driven open-source GUI applications”, in
International Conference on Software Maintenance
(ICSM), pp. 145-154.

[9] Q. Xie and A. M. Memon, (2005) “Rapid “crash
testing” for continuously evolving GUI- based software
applications”, in International Conference on Software
Maintenance (ICSM), pp. 473- 482.

[10] A. M. Memon and Q. Xie, (2005) “Studying the
fault-detection effectiveness of GUI test cases for rapidly
evolving software”, IEEE Transactions on Software
Engineering, vol. 31, no. 10, pp. 884- 896.

194

	2.1 Why Coded UI is a Smart Choice in Test Automation
	2.1.1 How to Begin with Coded UI Testing
	Creating a coded UI test generates a UIMap object that is specific to your test and represents the windows, controls, parameters, and assertions that are in the UI or that you created during the test recording. You can then perform actions on these UI...
	2.1.1.1 Software Requirements

	3.2. Improving Performance of Coded UI Test
	3.3. Advantages
	4.2. Other tools
	4.3 Coded UI Application Testing feature

