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Fig. 3. Toroidal geometry. (a) Axonometric view; 

 (b) cross section of torus surface in  ,0  plane 
with centerline radius R and pipe radius r. 

 
Symmetry about the z-axis implies that the velocity 
field is independent on the coordinate . Thus, 

 ˆ),(Wˆ),(Vˆ),(Ux  ,  (6) 
since the flow is described in the meridian plane, the 
velocity components U and V can be expressed in 
terms of the stream function ),(  , which satisfy 
the continuity equation as: 
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so 




 ˆW
sinhh

ˆˆWVx 







  .          (7b) 

Taking the divergence of (5a) then substituting in 
(4c), we get  

02  px   .     (8a) 
where 
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Since ̂WVx    and  ˆ3   with 

 ˆVˆUV   and  ˆˆ 21  , then  (8a)  

may be decomposed into the  - component and the 
vector equation including the  - and  - components 
as: 
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2   ˆˆW ,    (9a) 

02   pV  .   (9b) 

Applying the curl operation to (9b) and using (7a), 
we get: 
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We assume that, the torus is rotating about z-axis 
with constant velocity ̂Ws . Therefore the linear 
velocity at infinity ( 0 ) vanishes, 00 ),(x  , 
while at the toroid surface  is  ˆW),(x ss  . So 
the boundary conditions take the form: 
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4. Approximate Solution for the Velocity Field  

The solution of the problem reduces to the 
determination of the scalar components W and   
such that boundary conditions (10) are satisfied. The 
solution is obtained by the perturbation method. This 
method may be summarized into the following step: 
1. For small  the dynamical functions W and   can 

be expanded into power series about  0  [30] 
as 
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2. Substitution from (11) into (5a) gives an expression 
for the stress tensor into powers of . 

3. After carrying out the decomposition, the result can 
be substituted into the pair of equations (9a) and 
(9c). 

4. Equating the coefficients of equal powers of  
produces a set of successive partial differential 
equations for the determination of the velocity 
components and the stream functions in successive 
order. 
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The previous introduction to the expansion 
technique allows the expansion of (5a), (9a) and 
(9c) in the form 
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The boundary conditions, (10), can be written as: 
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where ij  is the Kronecker delta function. 

5. Solution of the First-Order Approximation 

As usual, the solution of the first-order, 1k , 
produces the leading terms in the expansion of W, 
and  . The solution of these terms represent the 
creeping flow around the rotating torus. The lowest 
order in (12) are: 
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with the boundary conditions: 
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The boundary conditions, (13d), imposed on (13c) 
implies that the only solution satisfying this boundary 
value problem is: 

01 )( .     (14) 
Equation (13b) takes the form 
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this equation is R-separable in toroidal coordinate, 
details of the separated differential equations are 
outlined in several texts [27], [28]. Let  

)(f)(fcoscoshW )(  21
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so, the separated equations are: 
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with   cosh . The solutions of (16b) and (16c) 
are: 
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From (16d), the solutions are the associated Legendre 
function (toroidal function) of the first and second 
kinds )(coshPp 

2
1  and )(coshQ p 

2
1  with a 

parameter p.  Therefore, the solutions are products of 
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psin  or pcos . In boundary value problems 
involving the flow around a torus, the parameter p is 
determined by the requirement that the solution be 
periodic in . Therefore, (16b) has particular 
solutions of the form: 
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(17a) 
where pA  and pB  are arbitrary constants. In (17a), 
the upper row pertains to the interior problem 
( s ) and the lower row to the exterior 
problem ( s 0 ), [31].  
Due to the boundary conditions in (13d) and the 
boundedness requirements, only )(coshPp 

2
1  and 

pcos  survive. Therefore, the solution can be 
written as: 

28



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-02, Issue-05, May 2016 
                              ISSN: 2395-3470 

www.ijseas.com 
 

 
 



 




0

1

2
1

2
1

p sp

p
p

)( pcos
coshP

coshP
AcoscoshW 




 .

    (17b) 
We apply the first condition in (13d) to get pA . One 
may make use of the integral 
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to show that 
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The solution of (15b), thus, is 
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     (17e)               
Equation (17e) represents an expression for the 
creeping flow around the rotating torus. 

6. Second-Order Approximation 

This step of approximation requires the determination 
of the kinematics tensors up to the order )(O 3 . 

Therefore, the contributions of 
2A  and 2

1A  have to 

be evaluated up to the needed order. The contributions 
of these tensors are expressed in terms of )1(W  which 
is already calculated in the first-order approximation. 
This step of approximation leads to partial 
differential equations governing the second-order 
terms )(W 2  and )( 2 . Taking 2k  in (12), the 
coefficients of 2  are: 
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Equation of motion up to this order of approximation 
requires the determination the components 

321 ,,i,i   of the vector  , in (8b), up to 

)(O 3 . 
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The substitution of (19a) and (19b) into (8b) gives 
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The expression L:L   possesses the final form: 
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The vector   in (20a) is entirely in  -surface, so 
its components are: 
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The governing equations of the second-order 
approximation, (18), are decomposed into the 
following two boundary value problems; namely 
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The boundary conditions, (18d), imposed on (22a) 
implies that the only solution satisfying this boundary 
value problem is trivial solution, 02 )(W  , and the 
density function on the right hand side of (22b) which 
includes the first-order velocity ),(W )( 1  and its 
derivatives possesses a very complicated form. In fact, 
this expression is of the form of a double summation 
since ),(W )( 1  is given in the form of an infinite 
series. Therefore, the solution of the second-order 
system, (22), will be the subject of the second paper. 

7. Surface Traction 

This section is devoted to the evaluation of the surface 
traction at the boundary s . The surface traction is 
defined by 
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where the unit vector ̂  is the normal to any arbitrary 
surface, .const  Hence, the surface traction is the 
stress vector per unit area on the surface of a toroidal 
shell s  . 

7.1 Determination of the Rivlin-Ericksen Tensors 
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Therefore, Rivlin-Ericksen tensor 1A  is given by the 

expression: 
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The tensor 
2

A  possesses the form 
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we calculate each term separately and the final form is 
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(29b) 
The tensor 2

1
A  is given by using (27a) as 
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where 
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So, the surface traction due to the tensors 
1

A , 
2

A  and 

2
1

A  is given as: 
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8. Results  and Discussion 

Here, we consider the problem of determining the 
velocity field of a second-order viscoelastic fluid due 
to a steady rotation of a rigid toroidal body along its 
symmetry axis, which is assumed to coincide with the 
axis Oz of the cylindrical coordinates. The solution of 
(13b) which satisfies the boundary conditions (13d) is 
given in (17e). The creeping flow is one in which fluid 
particles are carried in toroids eccentric with the 

rotating torus surface s . 
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Fig. 4a. Axial velocity contours at 2

71  R,r . 

Figures 4a, 4b and 4c display the patterns of axial 
velocity )(W 1  contours in the vicinity of a torus for 

1r  and 2
7R , 2

5  and 2
3 , respectively. The 

contours near the torus surface, s  , are 
completely different from that in the core flow, 

0 , (the velocity approaches zero in the core 
flow).  It depends on   only in the core and on   and 
  in the neighborhood of the wall. Therefore, such 
fluid exhibits boundary layer effects. 
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Fig. 4b. Axial velocity contours at 2

51  R,r . 
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Fig. 4c. Axial velocity contours at 2

31  R,r . 

 
The behavior of )(W 1  as a function of the coordinate 
  at 2

7R , 2
5  and 2

3  is shown in Figs. 5a, 5b and 

5c respectively. It is clear that, all curves satisfy the 
boundary condition at the torus surface s  . As 

0 , the core velocities are everywhere reduce with 
increasing . 
Figures 6 show the behavior of )(W 1  as a function of 
 for different values of . It is clear that, )(W 1  
increases with increasing  until reaching maxima at 

   then decreases as  2 . As the value of  
decreases (core flow), the maxima decrease. The same 
behavior is observed for different values of toroidal 
geometrical parameter R. To give more insight about 
the velocity fields around the torus, the axial velocity 

)(W 1  is plotted in three dimensional graphs as in 
Fig.7. 
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Fig. 5a. Axial velocity ),(W )( 1  versus   at 

27R , where   is taken as a parameter  
43240  ,,,  (bottom to top). 
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Fig. 5b. Axial velocity ),(W )( 1  versus   at 

25R , where   is taken as a parameter  
43240  ,,,  (bottom to top). 

 

32



International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-02, Issue-05, May 2016 
                              ISSN: 2395-3470 

www.ijseas.com 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0



Ax
ial

Ve
lo

cit
y
W

0


 
Fig. 5c. Axial velocity ),(W )( 1  versus   at 

23R , where   is taken as a parameter  
43240  ,,,  (bottom to top). 

 

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2



Ax
ial

Ve
lo

cit
y
W

0


 
Fig. 6b. Axial velocity ),(W )( 1  versus  at 

25R , where    is taken as a parameter ,s   
04243 ,,, sss   (top to bottom). 
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Fig. 6c. Axial velocity ),(W )( 1  versus  at 

23R , where    is taken as a parameter 
,, ss 43   042 ,, ss   (top to bottom). 

 
 
 

 
 

Fig. 7. Three dimensional view for the axial velocity 
),(W )( 1 . 
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Fig. 8. -component of the surface traction S  

versus  at s   and 27R . 

8. Conclusion

The viscoelastic flow around axisymmetric rotation of 
a rigid torus in an unbounded second order 
viscoelastic fluid is investigated. The problem is 
formulated and solved within the frame of slow flow 
approximation using retarded motion approximation. 
The equations of motion using the bipolar toroidal 
coordinate system are formulated. The first order 
velocity field are determined. The first order velocity 
component ),(W )( 1  which lies in the direction of 
the -coordinate representing the Newtonian flow is 
obtained but the first order stream function )(1  is a 
vanishing term. The equations of motion of a second 
order are formulated. The solution of the second order 
indicates that the axial velocity is vanished while the 
only nonvanishing term is the second order stream 
function which will be the subject of a second paper 
of this series of papers. Laplace's equation of first 
order velocity ),(W )( 1 is solved via the usual 
method of separation of variables. This method shows 
that, the solution is given in a form of infinite sums 
over Legendre functions of the first kind. From the 
obtained solution it is found that, the leading term, 

),(W )( 1  of the velocity. The second-order term 

shows to be a stream function, ),()(  2 , which 
describes a secondary flow in  -plane superimposed 
on the primary flow. The distribution of surface 

traction which represent the stress vector per unit area 
at the toroid surface are calculated and discussed. 
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