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Abstract 
The study of creeping motion of viscoelastic fluid 
around a rotating rigid torus is investigated. The 
problem is solved within the frame of slow flow 
approximation. The equations of motion governing the 
first and second-order are formulated and solved for 
the first-order only in this paper. However, the 
solution of the second-order equations will be the 
subject of a part two of this series of papers. 
Analytically, Laplace's equation is solved via the 
usual method of separation of variables. This method 
shows that, the solution is given in a form of infinite 
sums over Legendre functions of the first and second 
kinds. From the obtained solution it is found that, the 
leading term of the velocity represents the Newtonian 
flow. The second-order term shows that, the only non 
vanishing term is the stream function, which describes 
a secondary flow domain. The distribution of the 
surface traction at the toroid surface is calculated and 
discussed. Considering hydrodynamically conditions, 
the effects of toroidal geometrical parameters on the 
flow field are investigated in detail. 
Keywords: Creeping flow, Curved pipe, Rotating 
toroid, Second-order fluid, Toroidal coordinates, 
Viscoelastic fluid.. 

1. Introduction
The flow around a circular pipe is of importance in 
many engineering problems such as heat exchangers, 
lubrication systems, aerospace industries, chemical 
reactors, solar energy engineering and in bio-
mechanics such as blood flow in catheterized artery, 
arteriography of the blood vessel, etc. Steady flow in 
a curved pipe in terms of small values of parameters 
that characters the flow was first studied by Dean [1], 
[2]. In later works on curved pipes, a variety of Dean 
numbers have been used by different researchers [3]. 
Accurate calculations of the steady and laminar flow 
in a coiled pipe of circular cross section have been 
carried out by Collins and Dennis [4], and Dennis [5]. 

They used finite difference method to solve the flow 
equations in intermediate range of Dean number. 
Also, the effect of catheterization on the flow 
characteristics in a curved artery was studied by 
Karahalios [6], Jayaraman and Tiwari [7] and Dash et 
al. [8]. Approximate theories at high Dean number 
have been presented by Barua [9] and Ito [10]. The 
relationship between asymptotic theory and the full 
results has been surveyed by Dennis and Riley [11] 
and the technical difficulties associated with the 
former have been outlined. 

The physics of the fluid flow around a curved pipe are 
very complicated due to the presence of curvature 
generating centrifugal and pressure forces in the 
curvature direction. Typically the geometry that has 
received that most attention is that of small curvature 
and the steady solution structure in the limits of small 
and large Den number has been clarified [12]. 
Multiple solution branches are known to exist [13] 
and recent work has clarified the effects of finite pipe 
curvature on the steady solution branches [14] and 
also identified multiple periodic solutions [15]. 

In [16], Soh and Berger solved the Navier-Stokes 
equation for the fully developed flow of a homogenous 
Newtonian fluid in a curved pipe of circular cross-
section for arbitrary curvature ratio. They solved 
numerically the Navier-Stokes system in the primitive 
variables form using a finite difference scheme. 
Closed form perturbation solutions for a second-order 
model were obtained by several authors in the special 
case where the second normal stress coefficient is 
zero. For this model, Jitchote and Robertson [17] 
obtained analytical solutions to the perturbation 
equations and analyze the effects of non-zero second 
normal stress coefficient on the behavior of the 
solution. Theoretical results regarding this problem 
using a splitting method were obtained by Coscia and 
Robertson [18]. 
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Recently, Non-Newtonian fluid simulations in curved 
pipe have received some attention. Both analytical 
[19], [20], [21] and numerical [22], [23] approaches 
have been employed in these studies. Viscoelastic 
Dean flow in curved ducts is influenced by many 
factors such as centrifugal, inertia and viscous forces, 
curvature angle, aspect ratio and rheological 
properties (such as normal stress differences and 
nonlinear viscometric behavior). The first normal 
stress difference of viscoelastic fluids creates a strong 
hoop stress near the outer side of the curvature which 
strengthens the vortices while the negative second 
normal stress difference weakens the secondary flows 
intensity. Further research including experimental 
aspects [22], [24] has identified that the intensity of 
this flow is strongly linked to the toroid curvature 
radius and first normal stress difference. An increase 
in first normal stress difference induce an increase in 
secondary flow intensity and decreases the flow rate. 
The second normal stress difference has the opposite 
effect on the secondary flow i.e. it causes a reduction 
in the rate of the secondary flow, as demonstrated 
experimentally by Tsang and James [25] and 
numerically by Yanase et al. [26] in which they 
implemented the spectral method for flow through a 
slightly curved circular tube. 
 
In the current paper, the viscoelastic creeping (very 
slow) flow around a rotating curved circular pipe is 
investigated analytically, using the second-order 
viscoelastic model. This rheological model is suitable 
for describing creeping flows of viscoelastic fluids. 
The governing equations can be written as two 
coupled, nonlinear partial differential equations for 
the stream function and rotational component. The 
format of this paper is as follows. The next section 
introduces the bipolar-toroidal coordinate system 
which is used in this paper. The formulation of the 
system of  equations that governing the flow fields are 
given in section three. The method of solution is 
described in section four. In section five, the solution 
of the  first order approximation is discussed. The 
discussion of the final results included in section six. 
Finally, our conclusions are given in section seven. 
 
 
 
 

2. Toroidal Coordinates  

Since we are interested in studying the behavior of 
steady flow around a curved pipe with circular cross 
section, it is more convenient to use the bipolar 
toroidal coordinate system, in the variables (  ,, ). 
The coordinates are related to the rectangular system 
x, y, z through: 

 cossinhhx  , 
 sinsinhhy  , 

sinhz  ,     (1a) 

 sinhhyx  22 ,  sinhz   (1b) 
where, 

 coscosh
ah


 ,                                      (1c) 

is the scale factor and "a" is the focal distance. 
Toroidal coordinates are generated by rotating the 
circles of Fig. 1 about the z-axis, [27], and [28]. The 
surfaces of .const are toroids, the surfaces of 

.const  are spherical bowls while the surfaces 

.const  are half planes through the axis of 
symmetry, Fig. 2. The coordinates varies between 

0 ,  20  ,  20  . The observations 

 
2

22













sinh
azcotha ,          (2a) 

 
2

22













sin
acotaz ,          (2b) 

enable the orthogonal circles of constant  and 
constant  to be drown in the (, z) plane as in 
Fig. 1. Note that, the origin of the (, z) plane is 
mapped to the point ),(),(  0  and the 
point at infinity in the (, z) plane is mapped to 
the point ),(),( 00  as  ,   is 
ignored and ),a()z,( 0 . 
 
In toroidal coordinates, the azimuthal angle denoting a 
rotation about the z-axis, and the distance from this 
axis is  sinhh . The coordinates are chosen so 
that, s   represents the toroidal surface.  
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Therefore, the original dimensions of the toroid s  
are: 

scothaR  , and 
ssinh

ar


 ,         (3a) 

so, the toroidal parameters,  a  and s , are related to 
the geometric parameters R, r of the torus as follow: 

22 rRa  , and 
r
Rcoshs

1 ,          (3b) 
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Fig. 1. Circles of constant  and   in a meridian 
 plane (, z) of toroidal coordinates. 

 
 

 
 
Fig. 2. The toroidal coordinates of any point are given 
by the intersection of a sphere, a torus, and azimuthal 
half plane. The torus shown here has 471.  and 

 40. . 

3. The Governing Equations  

We consider a solid torus with a centerline (major) 
radius R and a cross-sectional (minor) radius r rotates 
in an infinite  incompressible steady second-order 
viscoelastic fluid with constant angular velocity sW  
about its polar axis. As a result of a torus rotation, a 
steady axially symmetric creeping flow has been 
established around the torus. Figure 3 shows the 
rotating curved pipe and its toroidal parameters. The 
flow is governed by the Navier Stokes and continuity 
equations: 

0 x ,    (4a) 
    pxx  ,  (4b) 

here x  is the velocity vector, p is the pressure and   
is the stress tensor. Assume that the forces due to 
viscoelasticity are dominate such that the inertial 
term, xx   , is negligible order. Thus, 

0 p .    (4c) 
The constitutive equation for a second-order fluid, as 
suggested by Coleman and Noll [29] relates the stress 
tensor   to the kinematical Rivilin-Ericksen tensor 

kA  by the expression 

2
12211 AAA   ,  (5a) 

where   is the coefficient of viscosity and 1  and 

2  are two second-order material coefficients related 
to the normal stress differences. The tensors 1A  and 

2A  stands for the first two Rivilin-Ericksen tensor 

defined by: 
 TxxA  1 ,   (5b) 

and 
 TAxAxAxA 1112   , (5c) 

The material constants must satisfy the following 
restrictions: 

0 , 01  , 021  ,  (5d) 
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Fig. 3. Toroidal geometry. (a) Axonometric view; 

 (b) cross section of torus surface in  ,0  plane 
with centerline radius R and pipe radius r. 

 
Symmetry about the z-axis implies that the velocity 
field is independent on the coordinate . Thus, 

 ˆ),(Wˆ),(Vˆ),(Ux  ,  (6) 
since the flow is described in the meridian plane, the 
velocity components U and V can be expressed in 
terms of the stream function ),(  , which satisfy 
the continuity equation as: 

 



















 

sinhh
ˆ

ˆ,ˆ,
sinhh

ˆVˆUV
2

1

,       (7a) 

so 




 ˆW
sinhh

ˆˆWVx 







  .          (7b) 

Taking the divergence of (5a) then substituting in 
(4c), we get  

02  px   .     (8a) 
where 

 2
1221 AA   ,   (8b) 

Since ̂WVx    and  ˆ3   with 

 ˆVˆUV   and  ˆˆ 21  , then  (8a)  

may be decomposed into the  - component and the 
vector equation including the  - and  - components 
as: 

  03
2   ˆˆW ,    (9a) 

02   pV  .   (9b) 

Applying the curl operation to (9b) and using (7a), 
we get: 

     0122
4 








 




 hh
h

ˆ
sinhh

ˆ
,    (9c) 

We assume that, the torus is rotating about z-axis 
with constant velocity ̂Ws . Therefore the linear 
velocity at infinity ( 0 ) vanishes, 00 ),(x  , 
while at the toroid surface  is  ˆW),(x ss  . So 
the boundary conditions take the form: 










0

sW
W ,










0
0

 , at 









0

s .       (10) 

4. Approximate Solution for the Velocity Field  

The solution of the problem reduces to the 
determination of the scalar components W and   
such that boundary conditions (10) are satisfied. The 
solution is obtained by the perturbation method. This 
method may be summarized into the following step: 
1. For small  the dynamical functions W and   can 

be expanded into power series about  0  [30] 
as 

)(OWW m

k

)k(k 



1

,   (11a) 

)(O m

k

)k(k  



1

,   (11b) 

2. Substitution from (11) into (5a) gives an expression 
for the stress tensor into powers of . 

3. After carrying out the decomposition, the result can 
be substituted into the pair of equations (9a) and 
(9c). 

4. Equating the coefficients of equal powers of  
produces a set of successive partial differential 
equations for the determination of the velocity 
components and the stream functions in successive 
order. 

R R 

r 
x 

̂sw  

s  

z 

(b) 
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The previous introduction to the expansion 
technique allows the expansion of (5a), (9a) and 
(9c) in the form 

  0
1

2
12211





 

k

)k()k()k()k(k AAA     

(12a) 

  



1

3
2 0

k

)k()n(k ˆˆW  ,               (12b) 

     



























1
122

4 0
k

)k()k(
)n(

k hh
h

ˆ
sinhh

ˆ






 

   (12c) 
The boundary conditions, (10), can be written as: 

,
W

W ks)k(










0

1










0
0)k()k( , for










0
s .(12d) 

where ij  is the Kronecker delta function. 

5. Solution of the First-Order Approximation 

As usual, the solution of the first-order, 1k , 
produces the leading terms in the expansion of W, 
and  . The solution of these terms represent the 
creeping flow around the rotating torus. The lowest 
order in (12) are: 

01
1

1  )()( A ,    (13a) 

  012  ̂W )( ,     (13b) 

0
1

4 














sinhh
ˆ)(

,    (13c) 

with the boundary conditions: 

,
W

W s)(










0

1  









0
011 )(

,
)(

 ,  for









0
s ,  (13d) 

The boundary conditions, (13d), imposed on (13c) 
implies that the only solution satisfying this boundary 
value problem is: 

01 )( .     (14) 
Equation (13b) takes the form 

01 1
22

2 









 )(W

sinhh 
,   (15a) 

or 

 

0

1

2

1
11

11















sinh
W,Wsin

a
h,W

,Wcoscosh
sinha

h,W

)(
)()(

)()(

(15b) 

this equation is R-separable in toroidal coordinate, 
details of the separated differential equations are 
outlined in several texts [27], [28]. Let  

)(f)(fcoscoshW )(  21
1  ,        (16a) 

so, the separated equations are: 

0
4
1

1
21 1

2
2

2

11
2 















 fp

q
,f,f)(


  (16b) 

02
2

2  fp,f  ,    (16c) 
with   cosh . The solutions of (16b) and (16c) 
are: 

   p
cos
sin

)(f,
Q

P
)(f

q
p

q
p































21

2
1

2
1

.   (16d) 

From (16d), the solutions are the associated Legendre 
function (toroidal function) of the first and second 
kinds )(coshPp 

2
1  and )(coshQ p 

2
1  with a 

parameter p.  Therefore, the solutions are products of 
)(coshPcoscosh p 

2
1  or )(coshQ p 

2
1  and 

psin  or pcos . In boundary value problems 
involving the flow around a torus, the parameter p is 
determined by the requirement that the solution be 
periodic in . Therefore, (16b) has particular 
solutions of the form: 

   


 

















0

1

2
1

2
1

p p

p
pp

)(

,cosh
Q

P
psinBpcosA

coscoshW





 

(17a) 
where pA  and pB  are arbitrary constants. In (17a), 
the upper row pertains to the interior problem 
( s ) and the lower row to the exterior 
problem ( s 0 ), [31].  
Due to the boundary conditions in (13d) and the 
boundedness requirements, only )(coshPp 

2
1  and 

pcos  survive. Therefore, the solution can be 
written as: 
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 .

    (17b) 
We apply the first condition in (13d) to get pA . One 
may make use of the integral 

 






2

0 2
122 )(coshQd

coscosh
pcos

p ,(17c) 

to show that 

  )(coshP

)(coshQ
A

sp

sp

po
p 




2
1

2
1

1
22






 .           (17d) 

The solution of (15b), thus, is 
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1

2
1

2
1

2
1

1
22

p
p

sp
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po
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pcoscoshP
)(coshP

)(coshQ

coscoshW










.

     (17e)               
Equation (17e) represents an expression for the 
creeping flow around the rotating torus. 

6. Second-Order Approximation 

This step of approximation requires the determination 
of the kinematics tensors up to the order )(O 3 . 

Therefore, the contributions of 
2A  and 2

1A  have to 

be evaluated up to the needed order. The contributions 
of these tensors are expressed in terms of )1(W  which 
is already calculated in the first-order approximation. 
This step of approximation leads to partial 
differential equations governing the second-order 
terms )(W 2  and )( 2 . Taking 2k  in (12), the 
coefficients of 2  are: 

02
1

2  )()( A ,     (18a) 

  01
3

22   ˆˆW )()( ,   (18b) 

     01
1

1
22

2
4 










 )()(

)(
hh

h

ˆ
sinhh

ˆ






 , (18c) 

with the boundary conditions: 










0
0212 )(

,
)()(W  ,  for  










0
s ,   (18d) 

Equation of motion up to this order of approximation 
requires the determination the components 

321 ,,i,i   of the vector  , in (8b), up to 

)(O 3 . 

6.1 Calculation of 2A  

Let Lx    and ̂Wx )(1  then 
TLLA 1 , 

T)AL(ALAxA 1112   , 

 
TTT L:ALAA:L

AxAxA:LA





111

1
2

112


 

noting that 
   012  ̂Wx )( , 

therefore,  2A  becomes 
TT L:AA:LA:LA 

1112
 

or in a more convenient form 

)A:A(L:LA 112 2
12  .   (19a) 

6.2 Calculation of 2
1A  

1111
2
1

A:AA:AA   

since   012  ̂Wx )( , so 0
11
 A:A . 

Therefore, 2
1A  reduces to 11

2
1 A:AA   or 

 
11

2
1 4

12 A:AL:LA  .  (19b) 

The substitution of (19a) and (19b) into (8b) gives 

)(O)A:A()

(L:L)(

AA)(

3
112

121

2
1221

1

2
4
12













    (20a) 

The expression L:L   possesses the final form: 

),(Fˆ
a

sinˆ
sinha

)cos(cosh
hL:L 


















  12  (20b) 

with 
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         (20c) 

The vector   in (20a) is entirely in  -surface, so 
its components are: 

),(F
sinha

)cos(cosh
hˆ )()( 
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(21a) 
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2 ,      (21b) 

 011
3  )()( ˆ  ,                                   (21c) 

The governing equations of the second-order 
approximation, (18), are decomposed into the 
following two boundary value problems; namely 

  022  ̂W )( ,           (22a) 
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ˆ),(F
sinhha

)cos(cosh

),(F
ah

sin
h

)(
sinhh

ˆ)(

 (22b) 

The boundary conditions, (18d), imposed on (22a) 
implies that the only solution satisfying this boundary 
value problem is trivial solution, 02 )(W  , and the 
density function on the right hand side of (22b) which 
includes the first-order velocity ),(W )( 1  and its 
derivatives possesses a very complicated form. In fact, 
this expression is of the form of a double summation 
since ),(W )( 1  is given in the form of an infinite 
series. Therefore, the solution of the second-order 
system, (22), will be the subject of the second paper. 

7. Surface Traction 

This section is devoted to the evaluation of the surface 
traction at the boundary s . The surface traction is 
defined by 

 
s

ss

ˆAAA

ˆ),(),(S













2
12211

         (23) 

where the unit vector ̂  is the normal to any arbitrary 
surface, .const  Hence, the surface traction is the 
stress vector per unit area on the surface of a toroidal 
shell s  . 

7.1 Determination of the Rivlin-Ericksen Tensors 

The velocity field x  is defined by  

 ˆ),(Wx )(1 ,            (24) 
therefore, 

 





 

ˆˆaˆˆaˆˆaˆˆa

ˆW
sinh

ˆˆˆhx )(

32312313

11











 

 (25b) 

where 





























)(

)(

)(

)(

W
a

sina

W
sinha

)cos(cosha

,Wha

,Wha

1
32

1
31

11
23

11
13

1









,   (25b) 
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Therefore, Rivlin-Ericksen tensor 1A  is given by the 

expression: 
    ˆˆˆˆCˆˆˆˆCA  23131 ,       (27a) 
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The tensor 
2

A  possesses the form 
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    TTT xAxAAxA   1112 ,    (28) 

we calculate each term separately and the final form is 
 ˆˆQˆˆQˆˆQˆˆQA 222112112  ,        (29a) 

where 
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(29b) 
The tensor 2

1
A  is given by using (27a) as 

 ˆˆGˆˆGˆˆGˆˆGˆˆGA 3322211211
2
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(30) 
where 
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So, the surface traction due to the tensors 
1

A , 
2

A  and 

2
1

A  is given as: 
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where 
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,    (31b) 

8. Results  and Discussion 

Here, we consider the problem of determining the 
velocity field of a second-order viscoelastic fluid due 
to a steady rotation of a rigid toroidal body along its 
symmetry axis, which is assumed to coincide with the 
axis Oz of the cylindrical coordinates. The solution of 
(13b) which satisfies the boundary conditions (13d) is 
given in (17e). The creeping flow is one in which fluid 
particles are carried in toroids eccentric with the 

rotating torus surface s . 
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Fig. 4a. Axial velocity contours at 2

71  R,r . 

Figures 4a, 4b and 4c display the patterns of axial 
velocity )(W 1  contours in the vicinity of a torus for 

1r  and 2
7R , 2

5  and 2
3 , respectively. The 

contours near the torus surface, s  , are 
completely different from that in the core flow, 

0 , (the velocity approaches zero in the core 
flow).  It depends on   only in the core and on   and 
  in the neighborhood of the wall. Therefore, such 
fluid exhibits boundary layer effects. 
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Fig. 4b. Axial velocity contours at 2

51  R,r . 
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Fig. 4c. Axial velocity contours at 2

31  R,r . 

 
The behavior of )(W 1  as a function of the coordinate 
  at 2

7R , 2
5  and 2

3  is shown in Figs. 5a, 5b and 

5c respectively. It is clear that, all curves satisfy the 
boundary condition at the torus surface s  . As 

0 , the core velocities are everywhere reduce with 
increasing . 
Figures 6 show the behavior of )(W 1  as a function of 
 for different values of . It is clear that, )(W 1  
increases with increasing  until reaching maxima at 

   then decreases as  2 . As the value of  
decreases (core flow), the maxima decrease. The same 
behavior is observed for different values of toroidal 
geometrical parameter R. To give more insight about 
the velocity fields around the torus, the axial velocity 

)(W 1  is plotted in three dimensional graphs as in 
Fig.7. 
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Fig. 5a. Axial velocity ),(W )( 1  versus   at 

27R , where   is taken as a parameter  
43240  ,,,  (bottom to top). 
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Fig. 5b. Axial velocity ),(W )( 1  versus   at 

25R , where   is taken as a parameter  
43240  ,,,  (bottom to top). 
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Fig. 5c. Axial velocity ),(W )( 1  versus   at 

23R , where   is taken as a parameter  
43240  ,,,  (bottom to top). 
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Fig. 6b. Axial velocity ),(W )( 1  versus  at 

25R , where    is taken as a parameter ,s   
04243 ,,, sss   (top to bottom). 
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Fig. 6c. Axial velocity ),(W )( 1  versus  at 

23R , where    is taken as a parameter 
,, ss 43   042 ,, ss   (top to bottom). 

 
 
 

 
 

Fig. 7. Three dimensional view for the axial velocity 
),(W )( 1 . 
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Fig. 8. -component of the surface traction S  

versus  at s   and 27R . 

8. Conclusion

The viscoelastic flow around axisymmetric rotation of 
a rigid torus in an unbounded second order 
viscoelastic fluid is investigated. The problem is 
formulated and solved within the frame of slow flow 
approximation using retarded motion approximation. 
The equations of motion using the bipolar toroidal 
coordinate system are formulated. The first order 
velocity field are determined. The first order velocity 
component ),(W )( 1  which lies in the direction of 
the -coordinate representing the Newtonian flow is 
obtained but the first order stream function )(1  is a 
vanishing term. The equations of motion of a second 
order are formulated. The solution of the second order 
indicates that the axial velocity is vanished while the 
only nonvanishing term is the second order stream 
function which will be the subject of a second paper 
of this series of papers. Laplace's equation of first 
order velocity ),(W )( 1 is solved via the usual 
method of separation of variables. This method shows 
that, the solution is given in a form of infinite sums 
over Legendre functions of the first kind. From the 
obtained solution it is found that, the leading term, 

),(W )( 1  of the velocity. The second-order term 

shows to be a stream function, ),()(  2 , which 
describes a secondary flow in  -plane superimposed 
on the primary flow. The distribution of surface 

traction which represent the stress vector per unit area 
at the toroid surface are calculated and discussed. 
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