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Abstract:                   
In this paper a SIR epidemic model with spatial behavior of susceptible and infected 
populations has been studied by incorporating a diffusion term to the model. The SIR 
epidemic model is considered here in bi-dimensional case. Finite difference method based 
on Euler scheme has been used to solve the considered system. Finally numerical results 
have been shown. 
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1.0  Introduction  

 
W. Kermack and A. McKendrick [1] first proposed a model in 1927 to explain the rapid rise 
and fall in the number of infected patients observed in epidemics such as Cholera and Plague 
[2]. In 1979 M. Anderson and M. May revived the Kermack-McKendrick model as known as 
the SIR (Susceptible-Infected-Recovered) model. For the analysis of rapid spread of 
infectious diseases recently this simple epidemiological model consisting of three coupled 
ordinary differential equations has been used for a variety of epidemics, including HIV and 
SARS. Due to its applicability it has become the foundation for more complex and realistic 
epidemiological models. 
 A detailed history of mathematical epidemiology and basics of SIR epidemic models can be 
found in the classical books of Bailey [3], Murray [4] and Anderson and May [5]. After 
Kermack-McKendrick model different epidemiological models have been proposed and 
studied in the literature say Capasso and Serio [6], Hethcote and Tudor [7], Liu et al [8][9], 
Hethcote et al [10], Hethcote and Van den Driessche [11].   
The population is divided into disjoint classes which change with time. The susceptible class 
consists of these individuals who can incur the disease but are not yet infective. The infective 
class consists of those who are removed from susceptible-infective interaction by recovery 
with immunity, isolation or death. The fractions of the total population in these classes are 
denoted by ( ) ( )tItS ,  and  ( )tR  respectively. 
Here the following assumptions are made: 
(i) The only way a person can leave the susceptible group is to become infected. 
(ii) The only way a person can leave the infected group is to recover from the disease 
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(iii) Once a per has recovered, the person received immunity 
(iv)  Probability of being infected is not depends on age, sex, social status and race. 
 2.0 Epidemic model 
The mathematical model which is to be studied takes the following form: 
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The model has a susceptible group designated by ( )tS , an infected group ( )tI  and a recovered group  
( )tR with permanent immunity, cr is the intrinsic growth rate of susceptible, k is the carrying 

capacity of the susceptible in the absence of infective, α is the maximum values of per capita 
reduction rate of ( )tS  due to ( )tI , ‘a’ is half saturation constant, γ  is the natural recovery rate 
from infection.  
 
3.0 Spatio-Temporal model 
 In recent years, the problems of infection are gradually more present in our daily lives. Each individual is 
required to meet a number of people in a day either in the workplace or at various outlets (travel, cinema 
hall, shopping centers etc). We can cite models of spatial diffusion for Hunter [12], Gilg [13] and El Berrai 
et al [2] which deal with different types of epidemics. To model the spread of the epidemic for this SIR 
model it is assumed that the population moves: if the population is distributed in several cities, 
individuals can become infected within the same city, but more likely an individual can move in a city 
where it is an infectious, then bring the disease in his hometown, or another infected individual can move 
in another city to spread the disease. The fact can be modeled by using the following system:  
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The Laplacian is the spatial dispersion of individuals susceptible (infected respectively), the latter being 
modeled by a dissemination phenomenon that is to say a result of movements of individuals susceptible 
(infected respectively). 
In the stationary problem, the system does not depend on time thus we obtain: 
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When this system depends on time then we obtained:  
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4.0  Approximation of the system 

Here the spread of epidemics in 2-dimensions have been studied. Say people moves on a plane ( digitally 
it is restricted to the polygon ] [ ] [maxminmaxmin ,,, YYXX   ) 
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Thus the problem has been considered to the limits associated with the system (4). 
 
We fixing 0>xM and 0>yM  the number of domestic points in the 

polygon ] [ ] [maxminmaxmin ,,, YYXX . We note the discretization in space 
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4.1 Proposition 

We have a space-time discretization 
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Thus we obtain:  
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5.0 Numerical Simulation 

For the numerical simulations following data have been used. 
 
Parameter      0S       0I      a         α        γ          k        cr  

Value      50     30    2.3      1.49     0.611       100      2.5 

 
Following diagrams are showing the spatial and temporal evolution of the infected populations for 
different times. 
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Initially at time 0=t , a proportion of infected is introduced. At time 100=t in fig. (ii) the 
infected population begins to disseminate. At time 550=t in fig. (iii) the dissemination is still 
amplifies. At time 1000=t in fig. (iv) there is no longer a sick in the centre. Finally at the time 

2000=t in fig. (v) the epidemic is finite. The infected population is constant which is equal to 
zero.  
 
6.0 Conclusions 

The spatio-temporal epidemiological model 9STEM) tool is designed to help scientists and       
public health officials to create and use spatial temporal models of emerging infectious 
diseases. These models can support in understanding and potentially preventing the spread of 
such diseases. Computations of this model are based on compartment models that assume an 
individual is in a particular state, either susceptible (S), infected (I) or recovered ( R) in 
classic SI(S), SIR(S) disease models. In this paper the SIR epidemic model of infectious 
diseases in populations is considered in bi-dimensional case. This model permits one hand to 
model the dynamic of spread of epidemic and on the other hand it permits to generalize the 
study proposed by El Berrai et al [2]. 
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