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Abstract— secure distance-based localization in the presence of cheating beacon (anchor) nodes is an important problem in mobile wireless 

ad hoc and sensor networks. Despite significant research efforts in this direction, some fundamental questions still remain unaddressed. 

When the number of cheating beacon nodes is greater than or equal to a given threshold, no two-dimensional distance-based localization 

algorithms exist that can guarantee a bounded error. In this project, the problem of robust distance-based localization in the presence of mali-

cious beacon nodes will assume theoretically that the number of malicious beacon nodes are below threshold and derive a necessary and 

sufficient condition for having a bounded localization error and use heuristic algorithm that can achieve a bounded error. Suppose if the num-

ber of cheating beacons is equal or more than the threshold will use the suspicious message detection by signal strength for detecting and 

eliminating malicious beacon nodes. This project verifies their accuracy and efficiency. The primary goal here is to conduct a thorough analyt-

ical study of the distance-based localization problem in the presence of cheating beacons. Finally, it shows that the heuristic-based algorithm 

provides good localization precision with a very small time cost.  

Index Terms—Wireless sensor networks, distance-based localization, security, beacon.  

 

1 INTRODUCTION

he Wireless sensor networks (WSNs) are shaping 
many activities in our society, as they have become 

the epitome of pervasive technology. WSNs have an end-
less array of potential applications in both military and 
civilian applications, including robotic land-mine detec-
tion, battlefield surveillance, target tracking, environmen-
tal monitoring, wildfire detection, and traffic regulation, 
to name just a few. One common feature shared by all of 
these critical applications is the vitality of sensor location. 
The core function of a WSN is to detect and report events 
which can be meaningfully assimilated and responded to 
only if the accurate location of the event is known. Also, 
in any WSN, the location information of nodes plays a 
vital role in understanding the application context. There 
are three visible advantages of knowing the location in-
formation of sensor nodes. First, location information is 
needed to identify the location of an event of interest. For 
instance, the location of an intruder, the location of a fire, 
or the location of enemy tanks in a battlefield is of critical 
importance for deploying rescue and relief troops. Se-
cond, location awareness facilitates numerous application 
services, such as location directory services that provide 
doctors with the information of nearby medical equip-
ment and personnel in a smart hospital, target-tracking 
applications for locating survivors in debris, or enemy 
tanks in a battlefield. Third, location information can as-
sist in various system functionalities, such as geograph-

ical routing [1, 2], network coverage checking [3], and 
location-based information querying [4]. Hence, with the-
se advantages and much more, it is but natural for loca-
tion-aware sensor devices to become the defacto standard 
in WSNs in all application domains that provide location-
based service. 

A straightforward solution is to equip each sen-
sor with a GPS receiver that can accurately provide the 
sensors with their exact location. This, however, is not a 
feasible solution from an economic perspective since sen-
sors are often deployed in very large numbers and manu-
al configuration is too cumbersome and hence not feasi-
ble. Therefore, localization in sensor networks is very 
challenging. Over the years, many protocols have been 
devised to enable the location discovery process in WSNs 
to be autonomous and able to function independently of 
GPS and other manual techniques [5, 6]. In all these litera-
tures, the focal point of location discovery has been a set 
of specialty nodes known as beacon nodes, which have 
been referred to by some researchers as anchor, locator, or 
seed nodes. These beacon nodes know their location, ei-
ther through a GPS receiver or through manual configu-
ration, which they provide to other sensor nodes. Using 
this location of beacon nodes, sensor nodes compute their 
location using various techniques is discussed. It is, there-
fore, critical that malicious beacon nodes be prevented 
from providing false location information since sensor 
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nodes completely rely on the information provided to 
them for computing their location The rest of the paper is 
organized as follows: In Section 2, we provide some 
background on secure localization and discuss the related 
work, and in Section 3, we present the network and ad-
versary model. In Section 4, we derive the conditions for 
secure distance-based localization and define the class of 
bounded error distance-based localization algorithm. In 
Section 5, we propose an algorithm that belongs to this 
class. In Section 6, we extend the existing localization 
framework to include more practical distance estimation 
error models. We conclude the paper with a summary of 
contributions. 

2 BACKGROUND AND RELATED WORK 
In this section, we survey some earlier research efforts 
toward securing distance-based localization schemes. 
Most of the prior works in this area have followed one of 
the following two themes: 1) detection and elimination of 
cheating nodes or 2) localization in the presence of cheat-
ing nodes and large errors. 

2.1 Malicious Node Detection and Elimination  
One approach followed by researchers to secure distance-
based localization approaches is to detect the cheating 
nodes and eliminate them from consideration during the 
localization process. Liu et al. [7] propose a method for 
securing beacon-based localization by eliminating mali-
cious data. This technique, called attack-resistant Mini-
mum Mean Square Estimation (MMSE), takes advantage 
of the fact that malicious location references introduced 
by cheating beacons are usually inconsistent with the be-
nign ones. Similarly, the Echo location verification proto-
col proposed by Sastry et al. [8] can securely verify loca-
tion claims by computing the relative distance between a 
prover and a verifier node using the time of propagation 
of ultrasound signals.Capkun and Hubaux [9] shortlist 
various attacks related to node localization in wireless 
sensor networks and propose mechanisms such as au-
thenticated distance estimation, authenticated distance 
bounding, verifiable trilateration, and verifiable time dif-
ference of arrival to secure localization. Pires et al. [10] 
propose protocols to detect malicious nodes in distance-
based localization approaches by detecting message 
transmissions whose signal strength is incompatible with 
its originator’s geographical position. In another similar 
work by Liu et al. [11], the authors propose techniques to 
detect malicious beacon nodes by employing special de-
tector nodes. Other nodes first compute the distance (or 

angle) estimates to a set of neighboring beacons and then 
estimate their own location using basic trilateration (or 
triangulation). The working of a two-dimensional beacon-
based localization scheme using distance estimates to 
neighboring beacons. In Figure 1(a), nodes B1, B2, B3, and 
B4 located at positions (x1, y1), (x2, y2), (x3, y3), and (x4, 
y4) respectively, act as beacon nodes. The target node T 
estimates distances z1, z2, z3, and z4, respectively, to the-
se beacon nodes and computes its own location by trilat-
eration. Efficient techniques for estimating distances such 
as Received Signal Strength Indicator (RSSI), Time of Ar-
rival (ToA), and Time Difference of Arrival (TDoA) exist 
and have been successfully used in the various beacon-
based localization protocols listed above. Although bea-
con-based techniques are very popular in most wireless 
systems, they have one shortcoming. Most beacon-based 
techniques in the literature assume that the nodes acting 
as beacons always behave honestly. It is not surprising 
that beacon-based methods perform well when all the 
beacon nodes are honest. But their accuracy suffers con-
siderably in the presence of malicious or cheating beacon 
nodes. Beacons can cheat by broadcasting their own loca-
tions inaccurately or by manipulating the distance estima-
tion process, thus, adversely affecting the location compu-
tation by the other nodes. This is depicted in Figure 1(b). 
In this figure, we can see that beacon nodes B1, B2, and B4 
behave honestly, whereas beacons B’3 and B3 cheat. This 
causes the target node T to compute its location incorrect-
ly. 

 

 

Figure 1. Distance-based (range-based) localization. (a) 
Trilateration. (b) Cheating beacons. 
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2.2 Robust Localization Schemes 
The second approach toward securing localization is to 
design techniques that are robust enough to tolerate the 
cheating effect of malicious nodes (or beacons), rather 
than explicitly detecting and eliminating them. Priyantha 
et al. [12] propose the CRICKET system that eliminates 
the dependence on beacon nodes by using communica-
tion hops to estimate the network’s global layout, and 
then apply force-based relaxation to optimize this layout. 
Some other research attempts also to solve the secure lo-
calization problem by formulating it as a global optimiza-
tion problem. For example, Li et al. [13] develop robust 
statistical methods such as adaptive least squares and 
least median squares to make beacon-based localization 
attacktolerant. 
Alternatively, Doherty et al. [6] address the problem of 
beacon-based localization in the presence of large range 
measurement errors and describe a localization method 
using connectivity constraints and covex optimization. 
Moore et al. [14] formulate the localization problem in 
wireless sensor networks as a two-dimensional graph 
realization problem and describe a beaconless (an- 
horfree), distributed, linear-time algorithm for localizing 
nodes in the presence of large range measurement noise. 
Liu et al. [7] design an intelligent strategy, called vot-
ingbased scheme, where the deployment area is divided 
into a grid of cells such that the target node resides in one 
of the cells. Every beacon node votes on each cell depend-
ing on the distance between the target node and itself and 
the location of the target node is estimated as being with-
in the cell that had the maximum number of beacon votes. 
In another approach, Shang et al. [15] and Ji and Zha [16] 
apply efficient data analysis techniques such as Multi- 
Dimensional Scaling (MDS) using connectivity infor-
mation and distances between neighboring nodes to infer 
target locations. Fang et al. [17] model the localization 
problem as a statistical estimation problem. The authors 
use Maximum Likelihood Estimation (MLE) in order to 
estimate the most probable node location, given a set of 
neighborhood observations. Recently, ideas from coding 
theory have also been applied to achieve robust localiza-
tion, for example, [18], [19]. In another work, Lazos and 
Poovendran [20] propose a range-independent distribut-
ed localization algorithm using sectored antennas, called 
SeRLoc, which does not require any communication 
among nodes. However, SeRLoc is based on the assump-
tion that jamming of the wireless medium is not feasible. 
To overcome this problem, Lazos et al. [21] also present a 
hybrid approach, called RObust Position Estimation 

(ROPE), which unlike SeRLoc provides robust location 
computation and verification without centralized man-
agement and vulnerability to jamming. In another recent 
research effort by Misra et al. [22], the authors propose a 
convex optimization-based scheme to secure the dis-
tancebased localization process, which uses Barrier’s 
method to solve the optimization problem.  

2.3 Discussion 
Malicious node detection and elimination strategies, as 
dicussed in Section 2.1, take into account the inconsisten-
cy (caused by cheating behavior) in measurement of a 
particular network parameter in order to detect cheating 
nodes. One shortcoming of such an approach is the re-
quirement that verifier nodes have to be completely hon-
est. Moreover, these solutions do not provide any fixed 
guarantees of the number of detected cheating beacon 
nodes or the accuracy of the ensuing localization algo-
rithms. Any undetected cheating beacon node will only 
add to the error of the localization algorithm. 
On the contrary, a majority of the localization schemes 
discussed in Section 2.2 attempts to improve the robust-
ness of the localization procedure by employing optimi-
zation techniques. The main focus of these schemes is to 
minimize the effect of inconsistent or erroneous data on 
the overall localization accuracy. Some shortcomings of 
such a strategy include the complexity of the proposed 
solutions, e.g., [16], [15], or sometimes the requirement of 
special hardware and equipment, e.g., [20]. Moreover, 
most of the research efforts in this direction have failed to 
study the feasibility of the distance-based localization 
problem under adverse conditions. 
In view of the above, our primary goal here is to conduct 
a thorough analytical study of the distance-based localiza-
tion problem in the presence of cheating beacons. The 
secure distance-based localization framework and the 
associated results that we present in this paper are very 
general. The algorithms for secure localization that we 
propose achieve provable security and are computational-
ly feasible and efficient. As a matter of fact, it will be clear 
later that the class of bounded error distance-based locali-
zation algorithms proposed in this paper also includes 
other algorithms such as the optimization-based scheme 
by Misra et al. [22] and the voting-based technique by Liu 
et al. [7]. Next, we first outline the network and adversary 
model for the secure distance-based localization frame-
work. 
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3 NETWORK AND ADVERSARY MODEL 
In our network model, a device M in a nontrustworthy 
environment wants to compute its own location by using 
distance estimates to a set of beacon nodes. These beacons 
nodes know their own locations and may or may not 
cheat about their locations to the other nodes. The target 
node M and the beacon nodes are currently assumed to 
be located on a two-dimensional area (plane), i.e., the lo-
cation of each of these entities can be represented as two-
dimensional coordinates (x, y). 
Suppose that the target node M has a total of n beacon 
nodes available for localization. Let these beacon nodes 
be denoted by B1, B2, B3. . . ,Bn. Among these n beacons, 
some beacons are malicious (or cheating beacons). Let k 
denote the number of malicious or cheating beacons. It is 
important to note that k is not necessarily known to the 
target node or to any of the honest beacons. However, the 
value of k clearly has a great influence on whether a 
bounded localization error can be achieved or not. Let 
kmax (<=n) be an upper bound on the number of mali-
cious nodes, i.e., kmax is the maximum number of mali-
cious nodes that can exist in the network at any time. The 
parameter kmax is a system or environment-dependent 
constant and is assumed to be known to the localization 
algorithm.  
Beacons that are not malicious are honest, i.e., they fully 
cooperate with the localization protocol by disclosing the 
information as truthfully as possible. More details on the 
cheating behavior by the beacon nodes will follow short-
ly. Regardless of being honest or dishonest, each beacon 
Bi provides M with a measurement di of the distance be-
tween Bi and M. The precise distance between Bi and M is 
the euclidean distance between the position coordinates 
of Bi and M, and is denoted by dst (Bi, M). Let the set of 
honest beacons be denoted by H. Then, for each beacon Bi 
beloogs to H, di is a random variable that follows some 
probability distribution, denoted by msr(dst(Bi,M)), such 
that E[di]=dst(Bi,M),i.e., the expected (mean) value of the 
estimated distance di for each beacon Bi in H, is the pre-
cise distance between the beacon Bi and the node M. In 
the case when Bi is honest, the difference between the 
estimated and the true distance is very small, i.e.,  
                                                 (1) 
Where  is the maximum distance estimation error. Ide-
ally, this difference should be zero, but such discrepancies 
in distance estimates can occur due to measurement er-
rors, either at the source or target. Currently, ε can be as-
sumed to be a small constant. Later, we extend the cur-

rent network model to include a more practical represen-
tation for the distance estimation error.  

For each beacon Bi doesnot belongs to H, i.e., a 
cheating beacon, the corresponding di is a value selected 
(possibly arbitrarily) by the adversary such that it may or 
may not follow (1). Note that we allow colluding attacks 
in this model, i.e., we assume that a single adversary con-
trols all the malicious beacon nodes (all Bi doesnot be-
longs to H) and decides di for them. This is a very strong 
adversary model that in addition to independent adver-
saries also covers all possibilities of collusion. 

As a distance-based localization strategy is as-
sumed here, the output O of the corresponding localiza-
tion algorithm can be defined by a function F of the 
measured distances (di) from the device M to every avail-
able beacon node, i.e., O=F(d1, . . . , dn). 

The error e of the localization algorithm is the 
expected value of the euclidean distance between the ac-
tual position of M and the one output by the algorithm, 
i.e., e = E[dst(M,O)]. 

In the next section, we outline the framework for 
bounded error distance-based localization in the presence 
of malicious beacon nodes. 

4 BOUNDED ERROR DISTANCE-BASED 
LOCALIZATION 

Before describing our secure localization framework, we 
derive the necessary condition for bounded error localiza-
tion in the presence of cheating beacons. This condition 
fixes the minmum number of beacons required to correct-
ly compute the target node location by using just the dis-
tance information, assuming that some of the beacon 
nodes will cheat during localization. 

4.1 Necessary Condition 
In order to achieve a bounded localization error, the first 
step is to derive a threshold for the number of malicious 
beacons k (in terms of the total number of available bea-
cons n) such that if k is greater than or equal to this 
threshold, then no algorithm would be able to guarantee 
a bounded localization error just based on the distances to 
the beacon nodes. Consequently, having the number of 
malicious beacons below this threshold is a necessary 
condition for getting a bounded localization error out of 
any distance-based localization algorithm. This condition 
is given by Theorem 4.1. 
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Theorem 4.1. Suppose that . Then, for any distance based 

localization algorithm, for any locations of the beacons, there 
exists a scenario in which e is unbounded. 
 
For the sake of brevity, we skip the proof of this theorem. 
Interested readers can find the proof in [31]. Theorem 4.1 
proves that having  or more cheating beacons makes 
it impossible to compute the location of the target node M 
with a bounded error. In the next set of results, we estab-
lish that having  or fewer cheating beacons makes it 
possible to compute the location of M with a bounded 
error. This condition can also be regarded as a sufficient 
condition for secure and robust distance based localiza-
tion. 

4.2 Class of Robust Localization Algorithm 
Before defining the class of algorithms that can achieve 
bounded error localization in the presence of cheating beacons, 
let us introduce some terminology used for its definition (see 
Fig. 2). For each beacon Bi, define a ring2 Ri using the following 
inequality: 

                         
 
As mentioned in Section 3,  is assumed to be a constant de-
noting some (small) maximum distance estimation er-
ror.Clearly, there are altogether n rings. The boundaries of the-
se n rings consist of 2n circles called the boundary circles. In 
particular, the inner circle of the ring is called an inner bound-
ary circle and the outer circle is called an outer boundary 
circle. 
 
Definition 4.1. A point is a critical point if it is the inter-
section of at least two boundary circles. 
 

 
Fig. 2. Terminology for the class of robust localization algorithms. 
 

Definition 4.2. An arc is a continuous arc if it satisfies the 
following three conditions: 

• The arc is part of a boundary circle. 
It is either a complete circle or an arc with two distinct 
endpoints, both of which are critical points. 

• There is no other critical point inside the arc. 
 
Definition 4.3. An area is a continuous region if it satisfies 
the following two conditions: 

• The boundary of this area is one or more contin-
uous arcs. 

There is no other continuous arc inside the area 
 
Definition 4.4. A localization algorithm is in the class of 
robust localization algorithms if its output is a point in a 
continuous region r such that r is contained in the inter-
section of at least k+3 rings. 

5 BOUNDED ERROR ALGORITHM 
The class of robust localization algorithms, as defined in 
Definition 4.4, contains algorithms that output the loc tion 
of a target in the continuous region of at least k+3 rings. In 
this section, we propose an algorithm that belongs to this 
class and it is much faster than an exhaustive search of all 
the grid points [17] is heuristic-based algorithm.Yet, the 
probability of reaching the worst-case is less and the heu-
ristic-based algorithms run efficiently in most cases and 
for most network topologies. Recall that the algorithm 
work under the condition . Thus, an upper 
bound for k (number of malicious beacons) can be de-
fined as .The algorithm presented here output a 
point within the continuous region r in the intersection of 
kmax+3 rings as the location of the target node, but they 
differ in the way they determine this point. 

The heuristic tries to guess the location of the target 
closer to the center (or centroid) of the continuous region 
of at least kmax+3 intersecting rings. This is because the 
actual location of the target is more likely to be near the 
center of the continuous region than near the boundary. 
Thus, assuming that the continuous region is convex, we 
first compute three distinct critical points, instead of just 
one, that lie on the intersection of a large number of rings. 
If (x1,y1),(x2,y2) and (x3,y3) are the coordinates of these 
critical points, the coordinates (xM, yM) of the target loca-
tion are guessed by computing the centroid of the triangle 
formed by (x1,y1),(x2,y2) and (x3,y3) as shown below: 
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If this guessed point (xM,yM) lies in the intersection 

of kmax+3 rings, then it is output as the location of the 
target, otherwise, the procedure is repeated for a new set 
of critical points. Details of this heuristic are outlined in 
Algorithm (or Heuristic) shown below 

 
Heuristic Algorithm. 

 

6 CONCLUSION 
The research on securing localization services presented 
in this paper targets a very specific type of localization 
technique, referred to as the beacon-based technique. Un-
like previous techniques on securing beacon-based locali-
zation, this paper takes a two-pronged approach. Rather 
than directly going out for a solution based on some heu-
ristic, this project conducts a detailed mathematical anal-
ysis of the problem using a practical network model and a 
strong adversary model. The necessary and sufficient 
conditions and the bounds on the worst case localization 
errors obtained by this study may help in understanding 
how best any distance-based algorithm could perform. 
Such bounds are also useful to other researchers and al-
gorithm designers, because they provide a reference scale 

to compare the solution quality of new algorithms in this 
area. The class of robust localization algorithm defined 
for secure distance-based localization approaches. 
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