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Abstract 
In the paper, we will focus on the use of the pressure 
correction method to solve incompressible, viscous 
flow. Incompressible flow is governed by elliptic 
partial differential equations, and the relaxation 
technique, which is essentially an if erative process, is 
a classical numerical method for solving elliptic 
problems. In contrast, viscous, incompressible flow is 
governed by the incompressible Navier-Stokes 
equations, which exhibit a mixed elliptic parabolic. 
The purpose of the present section is to describe an 
iterative process called the pressure correction 
technique, which has found widespread application in 
the numerical solution of the incompressible Navier-
Stokes equations. The pressure correction technique 
has been developed for practical engineering solutions 
by Patankar and Spalding. The technique is embodied 
in an algorithm called SIMPLE (semiimplicit method 
for pressure-linked equations), pioneered by Patankar 
and Spalding, which has found widespread application 
over the past 20 years for both compressible and 
incompressible flows.  
Keywords: Relaxation technique, Incompressible and 
viscous flow, Simple method, Navier-Stokes 
equations. 

1. Introduction
In the present section, we will apply this method to the 
solution of the incompressible, viscous flow between 
two parallel plates as sketched in Fig. 1. The upper 
plate is located a distance H above the lower plate and 
is in motion with velocity eu  relative to the lower 
plate. Although the plates are theoretically infinite in 
extent, the computational domain is finite, with length 
L and height H, as shown by the shaded region in Fig. 
1. We will treat the boundary conditions around this
finite computational domain in the same fashion, with 
p  and v  fixed and u  allowed to float at the inflow 

boundary, and with only p  fixed at the outflow 
boundary. 

Fig 1: The finite computational domain for the 
application of the pressure correction method for the 

solution of the incompressible flow between two 
plates in relative motion 

The pressure correction method is an iterative method, 
starting from arbitrarily assumed initial conditions. 
We will induce a two-dimensional flow within the 
computational domain by setting the initial conditions 
to be an arbitrary two dimensional flow field. Then, 
during the iterative procedure, we will watch this 
originally two-dimensional flow field converge to the 
exact solution for Couette flow. 

2. The  Numerical Approach
The physical problem is sketched in Fig. 2. We will 
carry out the present solution in dimensional terms, 
rather than nondimensionalizing the governing 
equations and dealing with a nondimensional space. 
We offer this calculation in part as an example that 
CFD solutions are frequently carried out using 
dimensional terms throughout the calculation. Hence, 
as shown in Fig. 2, we will treat a computational 
domain which is 152 mm long in the x direction and 3 
mm high in the y direction. The upper plate is moving 
with velocity eu , and the lower plate is stationary. 
The fluid is air at standard sea level conditions, with a 
density 3/05.1 mKg . Since we will employ a 
very coarse grid for the example, we treat the case of 
a low velocity; e.g., we set smue /3.0 for the 
present calculation. At this low velocity, there is 
absolutely no doubt about the assumption that the 
flow is incompressible. Also, nothing is to be gained 
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in terms of the objective of this example by 
considering higher values of eu . Based on the height 
D of 3mm, the Reynolds number for this case is 63.6. 
There are three systems of grid points shown in Fig. 
2; the solid points are where p is calculated, the open 
points are where u is calculated, and the points 
denoted by x are where v is calculated. The use of a 
staggered grid requires careful attention to the 
indexing system that identifies each set of points, and 
somewhat complicates the coding of the computer 
program. 

 
Fig 2: Staggered computational grid. p points, solid 

circles; u points, open circles; v points, x 
The pressure correction method is an iterative solution 
for the flow field. Hence, we need to set the initial 
conditions for the flow variables in order to start the 
iterative process. The choice is arbitrary. For the 
present calculation, we set the following initial 
conditions on all interior points, except for point (i,j) 
= (15,5), which will be addressed later: 

0
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The specification of the initial conditions for the 
pressure correction p' equal to zero seems reasonable. 
But why is the pressure itself, p*, set equal to zero? 
The answer is—simply for convenience. An 
examination of the x- and y-momentum equations, 
respectively, shows that only the pressure difference 
between adjacent grid points appears. Therefore, the 
individual values of p* are not so important—it is the 
pressure difference that counts. Therefore, it is totally 
appropriate to set p*=0 for the initial conditions, 
because the pressure difference will be dictated by the 
values of the pressure correction calculated for 
subsequent iterations. 
The boundary values are as follows: 
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Step 1. Guess at values of p* at all interior grid 
points. Also, arbitrarily set values of npu)( and 

npv)(  at all the appropriate grid points. As stated 
above, *p , *pu , and , *pv are all set to zero for the 
beginning of the iterative process, except for 

smue /3.0 at the upper wall and for 

smv /15.0*
5,15  s at the velocity spike. 

 
Step 2. Solve for 1* )( npu from Eq.1 and 1* )( npv  
from Eq.2 at all interior grid points. 
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Using a forward difference in time and forward 
differences and central difference in space, Eq.1 and 
Eq.2 becomes 
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In the above equations, the values of x , y , and 

t  for the present calculations are 

 

 
The value of t  was chosen somewhat arbitrarily. 
However, if t  is chosen to be too large, experience 
with the present calculation shows that the calculation 
becomes unstable. Examining Eqs. 1 and 2, we see 
that t  plays the role of a "relaxation factor"; the 
larger t , the larger is the change in pu* and pv* 
from one iteration to the next. It seems reasonable that 
if this change becomes too large, instabilities could 
arise. The value st 001.0 was found to be 
acceptable for the present calculation; no effort was 
made to optimize this value. 
Step 3. Using the values for pu* and pv* obtained 
from step 2, solve for p' fiord the pressure correction 
formula, Eq. 3, repeated below, 
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Step 4. Calculate 1np at all internal grid points from 
Eq. 4 
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where is an underrelaxation factor. In the present 
calculations, the value of   was set as 0.1: 
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step 4 as the new values of np )( *  to be inserted into 
the equivalents of Eq. 1 and 2 written at all interior 
grid points. Return to step 2, and repeat steps 2 to 5 
until convergence is achieved. For the present 
calculation, convergence of this primary iteration loop 
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was achieved after approximately 500 iterations. 
Again, no effort was made to optimize the calculation 
so as to obtain the smallest number of iterations 
necessary for convergence. 
Because of the insertion of the v velocity spike at 
point (i, j) = (10,2) in the initial conditions, the flow 
field is two-dimensional during the ensuing iterations. 
This is illustrated in Fig. 3, which shows v profiles as 
a function of distance y across the duct at the axial 
station where i = 10. Hence, these profiles include the 
grid point (10, 2) where the initial value of the 
velocity spike, smv /15.0 , was inserted. Indeed, 
this velocity spike is shown in Fig. 3 by the dashed 
line at y = 1.2mm extending to a value of 

smv /15.0 . In Fig. 3, R denotes the iteration 
number, hence the velocity spike at the zero the 
iteration (the initial conditions) is denoted by R = 0. 
Three other velocity profiles are shown in Fig. 3, each 
one the 

Fig 3: Profiles of the y component t of velocity v 
across the duct at the axial station denoted by i = 10. 

Profiles are shown at venous 
 

stages during the iterative process. The iteration 
number is denoted by R 
corresponding to the results obtained after R 
iterations. Note that the peak value of v has already 
been reduced to 0.104 m/s after only one iteration, as 
seen in the profile labeled R = 1. The profile labeled R 
= 10 shows that the peak value of v continues to 
reduced and that finite values of v are spreading both 

upward and downward away from grid point (10, 2); 
indeed, the region of two-dimensional flow introduced 
by the velocity spike is spreading throughout the flow 
field in both the x and y directions, although the 
magnitude of v progressively gets smaller as the 
iterations progress. Note in Fig. 3 that the profile 
labeled R=100 shows a major reduction in v by the 
end of the fiftieth iteration. Finally, after 500 
iterations, when convergence is obtained throughout 
the entire 
flow field, v has essentially gone to zero at all grid 
points. Reflecting on the results shown in Fig. 3, the 
pressure correction formula, E q. 3 and its equivalent 
at each grid point, is certainly doing its intended joy it 
is setting up a pressure field that pushes the velocity 
field in the correct direction, in this case in the 
direction of v going toward zero. 
 

Fig 4: Velocity profiles for the x component of 
velocity as a function of vertical distance across the 

duct. Profiles are shown for various iteration 
numbers, ranging from 40 to 500. At R = 300, the 
velocity profile has converged to the Couette flow 

solution. 
 
3. Conclusion 
In summary, in the present section we have illustrated 
the use and behavior of the pressure correction 
method for the solution of an incompressible viscous 
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flow. From our results, it is interesting to observe the 
relative roles played by pressure and viscosity in the 
formulation of the velocity field. In Fig. 3 we see the 
vertical velocity spike decaying fairly rapidly; the 
values of v throughout the whole flow field became 
small after about 80 iterations. The rapid decay of v is 
due to pressure gradients being set up in the flow and 
propagating via pressure waves that move rapidly 
throughout the flow field. Again, the calculated 
pressure corrections are acting to rapidly reduce v. In 
contrast, in Fig. 4 we see the horizontal velocity 
profiles more slowly converging to the proper 
solution. Here, the values of u are dominated by 
viscosity (shear stress), the effects of which are 
propagated more slowly than those due to pressure 
waves. Indeed, the values of u do not converge to the 
proper solution until about 500 iterations, well after 
the values of v have become very small. This 
numerical behavior is directly analogous to actual 
physical behavior in real flows. Flow fields are driven 
under the impetus of pressure gradients and shear 
stress, and generally the influence of pressure 
propagates more rapidly throughout the flow field 
than that of viscosity. 
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