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ABSTRACT 

Past researches have attributed level of 
inheritance as major contributor of effectiveness 
in prediction of severities of bugs. This research 
initially attempts to correlate effectiveness of 
prediction of severities of bugs with levels of 
inheritance. This research also attempts to take a 
step further by correlating the prediction of 
severities of bugs with types of inheritance as 
well. 

This present research has considered different 
levels of inheritance and has established a 
correlation framework for severities of bugs 
(non trivial bugs, major bugs, and critical bugs) 
with types and levels of inheritance. 

This research has successfully revealed that the 
severities of bugs can be associated with 
different levels and types of inheritance and has 
further concluded that with increasing levels as 
well as complexity of types of inheritance, the 
severity of bugs will also increase. 

In this research work, two back-propagation 
training functions such as Broyden–Fletcher–
Goldfarb–Shanno (BFG) and Levenberg-
Marquardt (LM) have been selected for 
evaluation. The present research work has used 
these two training functions to validate the 
results on the basis of mean square error (MSE),  

 

 

prediction accuracy, R on testing, R on training 
and R on validation. 

The present research has generated sufficient 
interest with the help of correlation framework 
associating levels and types of inheritance with 
severities of bugs. The present research work 
has also resulted in development of a tool for 
demonstrating type of inheritance (single 
inheritance, multilevel inheritance, hierarchical 
inheritance, and multiple inheritances) 
associated with each file containing bugs.  

Furthermore, the findings are of growing 
importance suggesting that levels and types of 
inheritance need to be rationalized in order to 
contain severities of bugs for effective quality 
control in software project.  

Keywords: Level & type of inheritance, 
Severities of software bugs, Neural Network. 

1.  INTRODUCTION 

In order to ensure reasonable quality and 
reliability in software development, bug 
prediction has to play a noticeable role. Software 
bug is generally known as an error, flaw, 
mistake, failure, or defect in a software program 
or system producing an incorrect or unexpected 
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result, or making it to behave in unintended 
ways. A large number of bugs interfering with 
functionality of software can make it bug prone. 
Bug prediction process tries to locate and 
identify the defective modules in software. The 
traditional processes involved in identifying 
bugs are as code review, unit testing, integration 
testing and system testing. With increasing code 
size, complexity and depth of inheritance, the 
process of finding and fixing bugs becomes 
more difficult and expensive using sophisticated 
testing and evaluation procedures. With growing 
complexity and depth of inheritance, the 
severities of bugs also rise to higher levels. This 
observation has formed the very basis of present 
research work highlighting inadequacies of 
existing bug finding approaches. This 
motivation has directed for the underlying 
research work to predict the severities of bugs.  

In this research, the researchers have used 
artificial neural network (ANN) for prediction. 
An ANN is a biologically inspired 
computational model composed of various 
processing elements called artificial neurons. 
They are connected with coefficients or weights 
which construct the neural network’s structure 
[24]. The processing elements have weighted 
inputs, transfer function and outputs for 
processing information. There are many types of 
neural networks with different structures have 
been designed, but all are described by the 
transfer functions used in processing elements 
(neurons), the way of training given or learning 
rule and by the connection formula. In a feed 
forward multilayer perceptron network, the 
inputs signals are multiplied by the connection 
weights are first summed and then directed to a 
transfer function to give output for that neuron. 
The transfer function (purelin, hardlim, sigmoid, 
logistic) executes on the weighted sum of the 
neuron’s inputs. 

Some files in the training set of software metrics 
have zero or near zero values of each type of 
severity of bug. So, training data can be 
classified into two clusters as buggy and non-
buggy sets. This partitioning enhances the 
performance of learning process and enables 
neural network to work only on training data 
consisting of files that are having any number of 
bugs. 
In this research, the researchers have used two 
training functions of neural network such as 
trainlm and trainbfg. Post analysis, the research 
has found that these functions are more effective 
in prediction of severities of bugs with almost 
zero possibility of errors. 
According to the above research most of the 
work has been done using C&K metrics and 
type of inheritance as the input of the network 
and number of bugs has been used as the output 
of the network. Some researchers have 
concluded that DIT and other inheritance related 
metrics have a strong relationship with bugs or 
the significant reasons of bugs in the software 
[1, 2, 3, 26 & 27]. However, previous researches 
haven’t associated/correlated levels and types of 
inheritance with severities of bugs.  
In this study, researchers have selected, two 
back-propagation training functions such as 
Broyden–Fletcher–Goldfarb–Shanno (BFG) and 
Levenberg-Marquardt (LM) for evaluating the 
result. The present research work has used these 
two training functions to validate the results on 
the basis of mean square error (MSE), prediction 
accuracy, R on testing, R on training and R on 
validation. 
 

2. OBJECTIVES 

The research work has generally tried to 
associate different levels and types of 
inheritance through neural network by 
establishing correlation with severities of bugs. 
Specifically, the research has tried to fulfill the 
following objectives: 

1. To establish the correlation among 
levels of inheritance, types of 
inheritance and severities of bugs. 
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2. To predict various types of severities of 
bugs (Non Trivial, Major and Critical) 
corresponding to increasing levels of 
inheritance. 

3. To assess the impact of types of 
inheritance on severities of bugs. 
 

3. LITERATURE REVIEW 

In this research, researchers have used Machine 
learning techniques (neural networks) to predict 
the types of severities of the bugs using the 
proprietary software. A research [1] based on C 
& K metrics suits claimed that most CK metrics 
were effective bug predictors, and among them, 
independent variables DIT and RFC were 
having significant influence on the dependent 
variable (bugs). In another research, researchers 
have concluded [2] that WMC (Weighted 
methods per class) and DIT were significant 
indicators for finding buggy files. 
In this study [3], researchers have emphasized 
on various sized oriented metrics and proved 
that DIT, WMC, CBO (coupling between 
objects) and LOC (Line of code) are significant 
bug indicators for predicting number of bugs. 
A significant amount of empirical work had 
been already done for finding out buggy data 
using object oriented design metrics and C&K 
metrics suits. These research works have 
basically proved that there is a significant 
relationship between metrics and number of 
bugs [4, 5, 7, 11, 12, 13].   After that some more 
research studies [6, 8, 9, 10] have emphasized on 
predicting the number of bugs using machine 
learning methods. In machine learning methods 
[14], Bayesian approach was used by the 
researchers to demonstrate a strong relationship 
between product metrics and number of bugs. 
However, these studies failed to focus on the 
severities of bugs. There are only a few studies 
which were based on the severities of bugs. A 
popular study [15] has focused on three levels of 
severities of bugs (Low, Medium, and High) and 
concluded that predictions using ANN methods 
are better than predictions using statistical 
methods. The researchers have confirmed that 

CBO, WMC, RFC and SLOC metrics are more 
significant than DIT for bug prediction at all 
severity levels. Somewhat same results were 
also derived in another research paper [16], 
which demonstrated that the purposed model 
was performing well with low and medium level 
of severity rather than high level of severity. 
This research also investigated the fault-
proneness prediction performance of OO design 
metrics with respect to ungraded, high, and low 
severity faults by employing statistical (LR) and 
machine learning (Naïve Bayes, Random Forest, 
and NNge) methods.  
In another research [25], the researchers firstly 
predicted the nature of file (buggy/not buggy) 
and secondly predicted the magnitude of the 
possible bugs with respect to various viewpoints 
such as density, severity or priority. Finally, the 
researchers concluded that ANN was successful 
in predicting the really defected items. 
According to their results, the MLP algorithm 
approximates the bug severity values well only 
when defected items reside in the input data set. 
 
 

4. PROPOSED WORK 

The experiments reported in this research work, 
involve software named as work force scheduler 
(WFS). WFS is the object oriented programming 
based project, which is used widely in work 
force management projects. However, WFS 
presently doesn’t accommodate types of 
inheritance. The researchers intend to develop a 
new tool to calculate the types of inheritance 
associated with files containing bugs. Also the 
researchers intend to modify the Boolean values 
received as a result of type of inheritance and 
associate them with types of inheritance. 

Our objective was to predict severities of bugs 
on the basis of types and levels of inheritance 
using neural network (NN) algorithms. Our 
experiments with neural network consisted of 
172 inputs with two inheritance related data 
inputs.  
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This research work basically used two 
experiments. In the first experiment, researchers 
tried to find out the correlation among levels of 
inheritance, types of inheritance and severities of 
bugs. After that, in the second experiment, the 
researchers tried to predict the type of severities 
of bugs using levels and types of inheritance as 
network input with the help of two training 
functions of back-propagation neural network 
algorithms. The researchers used trainlm and 
trainbfg training functions with different number 
of neurons (10 and 20). Validation of these two 
training functions was done on the basis of mean 
square error (MSE), prediction accuracy, R on 
testing, R on training and R on validation. 

To design a learning system, the data set in this 
work is divided into two parts: the training data 
set and the testing data set. Some predictor 
functions are defined and trained with respect to 
Multi-Layer Perceptron. 

Multi-layer perceptron method (feedforward 
neural networks trained with the standard back 
propagation algorithm) have been used for the 
basic advantage offered in the form of a general 
framework using non-linear functional mappings 
between two sets (one for input variables and 
second for output variables). For this, activation 
functions have been used for representing the 
nonlinear function of many variables in terms of 
compositions of nonlinear functions of a single 
variable [17].  
 
4.1 Multilayer Feed Forward Neural 
Networks 
Multilayer feed forward neural networks (MLF) 
consisting of multiple layers of computational 
units are generally interconnected in a feed-
forward way known as the input layer. The last 
layer is represented as the output layer and all 
other layers in between are known as hidden 
layers. Each layer is connected to the next layer 
through connections to the neurons. Multilayer 
Feed Forward Neural Networks (non-parametric 
regression methods) approximate the underlying 
functionality in data through reduction in the 
loss function. Specified items of data records 

used as input to neural network and weights are 
respectively changed to ensure that output 
approximates the values in the data set during 
training activity [18].  
 
4.2 Neural Network Training Algorithms 
 
There are number of training algorithms which 
can be used to train a network.  In the present 
research work, the researchers have used 
basically two best training functions of neural 
network algorithms as trainbfg and trainlm [23].  
 

 
i. BFGS (Broyden–Fletcher–

Goldfarb–Shanno) algorithm 
(trainbfg):  approximates 
Newton's method, a class of 
hill-climbing optimization 
techniques that seeks a 
stationary point of a function. 
For such problems, a necessary 
condition for optimality is that 
the gradient be zero [20]. BFGS 
have good performance even for 
non smooth optimizations and 
an efficient training function for 
smaller networks.  

ii.  Levenberg–Marquardt 
backpropagation (trainlm) 
algorithm locates the minimum 
of a multivariate function that 
can be expressed as the sum of 
squares of non-linear real-
valued functions. It is an 
iterative technique to reduce 
performance function in each 
iteration of the algorithm. This 
feature makes trainlm the fastest 
training algorithm for networks 
of moderate size [21, 22]. 

 
 

5. EXPERIMENTAL RESULTS 
AND CONCLUSIONS  
 

To achieve the objectives of the study, the 
researchers have performed two experiments.  
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Experiment-1: 
Experiment 1 is depicted the correlation between 
level & type of inheritance and severities of 
bugs 

Table 1- Correlation Table 
Project Indicators Correlation 

with 
severity of 
bugs 

WFS (Object 
Oriented) 

Levels of 
Inheritance 

.746 

Types of 
Inheritance 

.536 

 
In the present research work, the researchers 
have observed significant correlations of levels 
and types of inheritance with severities of bugs.  
This is further interesting to witness that above 
two indicators are correlated significantly with 
severities of bugs. 
Experiment-2: 
The training functions used were coded in 
MATLAB using ANN toolbox [19]. The 
experimental data consisted of 172 bug data 
entries with two inputs.  Experiment 2 
demonstrated the 5 levels of inheritance and 
related tables with the training functions and 
types of severities of bugs.  
In this experiment, table 2, table 3, table 4, table 
5 and table 6 had shown that with amplification 
in levels of inheritance the severities of bugs 
would also amplify accordingly. 
 

Table 2: Predicted Severities of Bugs at 
Inheritance Level-1 
Inheritance Level -1 

 Training 
Function 

nontrivial 
Bugs 

Major 
Bugs 

Critical 
Bugs 

LM(10) 26 0 0 
LM(20) 26 0 0 
BFG(10) 26 0 0 
BFG(20) 26 0 0 

 
Table 3: Predicted Severities of Bugs at 

Inheritance Level –2 
Inheritance Level -2 

Training 
Functions 

nontrivial 
Bugs 

Major 
Bugs 

Critical 
Bugs 

LM(10) 0 24 0 
LM(20) 0 24 0 
BFG(10) 0 24 0 
BFG(20) 20 4 0 

 
Table 4: Predicted Severities of Bugs at 

Inheritance Level –3 
Inheritance Level -3 

Training 
Functions 

nontrivial 
Bugs 

Major 
Bugs 

Critical 
Bugs 

LM(10) 0 41 3 
LM(20) 0 41 3 
BFG(10) 0 41 3 
BFG(20) 0 0 44 

 
 
 
 
 
 

Table 5: Predicted Severities of Bugs at 
Inheritance Level –4 
Inheritance Level -4 

Training 
Functions 

nontrivial 
Bugs 

Major 
Bugs 

Critical 
Bugs 

LM(10) 0 2 63 
LM(20) 0 2 63 
BFG(10) 0 0 65 
BFG(20) 0 0 65 

 
Table 6: Predicted Severities of Bugs at 

Inheritance Level –5 
Inheritance Level -5 

Training 
Functions 

nontrivial 
Bugs 

Major 
Bugs 

Critical 
Bugs 

LM(10) 0 0 13 
LM(20) 0 0 13 
BFG(10) 0 0 13 
BFG(20) 0 0 13 

 
Table 7 is showing the comparative results of 
two training functions with different number of 
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neurons. The parameters of comparisons are 
number of neurons, MSE, R on training, R on 
testing and R on validation. All the parameters 
are checked for 10 and 20 number of neurons in 
the hidden layer. The network is trained until the 
MSE is equal to zero. According to this resultant 
table training function trainlm with 10 & 20 
neurons is performing well than the training 
function trainbfg.  
Trainlm is giving almost zero MSE. 
 
Table 7: Accuracy Measurement of Training 
Functions 
Traini
ng 
Funct
ions 

 
Neur
ons 

Best 
valida
tion 
MSE 

R on 
train
ing 

R 
on 
testi
ng 

R on 
valida
tion 

Trainl
m 

10 0.105 0.76
6 

0.71
5 

0.843 

20 0.119 0.76
3 

0.67
3 

0.838 

Trainb
fg 

10 0.174 0.72
6 

0.81
6 

0.865 

20 0.166 0.74
6 

0.74
0 

0.855 

Networks simulated using these two training 
functions are affected according to the number 
of neurons in their hidden layer. The regression 
analysis function compares the actual outputs of 
the neural network with the corresponding 
desired outputs (targets).  
It returns the correlation coefficient (R) in the 
range of 0 to 1. A value towards 1 represents a 
perfect positive correlation between actual and 
desired output. Regression value (R) on training, 
testing and validation in table 7 clearly indicates 
trainlm qualifies best.  
Table 8 indicates the impact of types of 
inheritance on the severities of bugs 
corresponding to the levels of inheritance.  
It has also been observed that with increasing 
levels of inheritance, types of inheritance are 
getting more complex and the severities of bugs 
are also escalating. 
Table 8 Impact of Types of Inheritance on 
Severities of Bugs 
Levels of 
Inheritance 

Types of 
Inheritance 

Severities of 
Bugs 

1 Single 
Inheritance 

Non trivial  

2 Multilevel 
Inheritance 

Major 

3 Multilevel Major, Critical 
4 Multilevel, 

Hierarchical 
Critical 

5 Hierarchical, 
Multiple 

Critical 

 
The ANNs were simulated and trained with both 
the training functions using the training dataset. 
In the proposed work we did not found much 
difference between trainlm and trainbfg. They 
are in acceptable range. On the basis of MSE, 
trainlm and trainbfg both performed well. 
Considering the sample size of input patterns, 
we found that trainlm suits to larger data set. It 
converges in less number of iterations and in 
lesser time than the other training functions. 
 

6. FUTURE WORK 
 
The tool developed during the course of these 
experiments looks promising and adds one more 
dimension of associating types of inheritance 
with severities of bugs, which was earlier 
associated with levels of inheritance only. 
However, this tool has definite scope of 
refinement so as to include higher levels of 
inheritance and investigating the impact after the 
level of inheritance goes above 5. 
The researchers intend to refine this tool further 
on the above mentioned lines and also look for 
association of other relevant factors in 
addressing severities of bugs. 
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