
 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

42

PREDICTION OF SEVERITIES OF BUGS WITH LEVELS AND TYPES
OF INHERITANCE

Varuna Gupta Dr. N. Ganeshan Dr. Tarun Kumar Singhal
Research Scholar Director MCA Professor
Christ University RICM, Bangalore Symbiosis Institute of Telecom

Management (SITM)
(A Constituent of Symbiosis
International University)

ABSTRACT

Past researches have attributed level of
inheritance as major contributor of effectiveness
in prediction of severities of bugs. This research
initially attempts to correlate effectiveness of
prediction of severities of bugs with levels of
inheritance. This research also attempts to take a
step further by correlating the prediction of
severities of bugs with types of inheritance as
well.

This present research has considered different
levels of inheritance and has established a
correlation framework for severities of bugs
(non trivial bugs, major bugs, and critical bugs)
with types and levels of inheritance.

This research has successfully revealed that the
severities of bugs can be associated with
different levels and types of inheritance and has
further concluded that with increasing levels as
well as complexity of types of inheritance, the
severity of bugs will also increase.

In this research work, two back-propagation
training functions such as Broyden–Fletcher–
Goldfarb–Shanno (BFG) and Levenberg-
Marquardt (LM) have been selected for
evaluation. The present research work has used
these two training functions to validate the
results on the basis of mean square error (MSE),

prediction accuracy, R on testing, R on training
and R on validation.

The present research has generated sufficient
interest with the help of correlation framework
associating levels and types of inheritance with
severities of bugs. The present research work
has also resulted in development of a tool for
demonstrating type of inheritance (single
inheritance, multilevel inheritance, hierarchical
inheritance, and multiple inheritances)
associated with each file containing bugs.

Furthermore, the findings are of growing
importance suggesting that levels and types of
inheritance need to be rationalized in order to
contain severities of bugs for effective quality
control in software project.

Keywords: Level & type of inheritance,
Severities of software bugs, Neural Network.

1. INTRODUCTION

In order to ensure reasonable quality and
reliability in software development, bug
prediction has to play a noticeable role. Software
bug is generally known as an error, flaw,
mistake, failure, or defect in a software program
or system producing an incorrect or unexpected

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

43

result, or making it to behave in unintended
ways. A large number of bugs interfering with
functionality of software can make it bug prone.
Bug prediction process tries to locate and
identify the defective modules in software. The
traditional processes involved in identifying
bugs are as code review, unit testing, integration
testing and system testing. With increasing code
size, complexity and depth of inheritance, the
process of finding and fixing bugs becomes
more difficult and expensive using sophisticated
testing and evaluation procedures. With growing
complexity and depth of inheritance, the
severities of bugs also rise to higher levels. This
observation has formed the very basis of present
research work highlighting inadequacies of
existing bug finding approaches. This
motivation has directed for the underlying
research work to predict the severities of bugs.

In this research, the researchers have used
artificial neural network (ANN) for prediction.
An ANN is a biologically inspired
computational model composed of various
processing elements called artificial neurons.
They are connected with coefficients or weights
which construct the neural network’s structure
[24]. The processing elements have weighted
inputs, transfer function and outputs for
processing information. There are many types of
neural networks with different structures have
been designed, but all are described by the
transfer functions used in processing elements
(neurons), the way of training given or learning
rule and by the connection formula. In a feed
forward multilayer perceptron network, the
inputs signals are multiplied by the connection
weights are first summed and then directed to a
transfer function to give output for that neuron.
The transfer function (purelin, hardlim, sigmoid,
logistic) executes on the weighted sum of the
neuron’s inputs.

Some files in the training set of software metrics
have zero or near zero values of each type of
severity of bug. So, training data can be
classified into two clusters as buggy and non-
buggy sets. This partitioning enhances the
performance of learning process and enables
neural network to work only on training data
consisting of files that are having any number of
bugs.
In this research, the researchers have used two
training functions of neural network such as
trainlm and trainbfg. Post analysis, the research
has found that these functions are more effective
in prediction of severities of bugs with almost
zero possibility of errors.
According to the above research most of the
work has been done using C&K metrics and
type of inheritance as the input of the network
and number of bugs has been used as the output
of the network. Some researchers have
concluded that DIT and other inheritance related
metrics have a strong relationship with bugs or
the significant reasons of bugs in the software
[1, 2, 3, 26 & 27]. However, previous researches
haven’t associated/correlated levels and types of
inheritance with severities of bugs.
In this study, researchers have selected, two
back-propagation training functions such as
Broyden–Fletcher–Goldfarb–Shanno (BFG) and
Levenberg-Marquardt (LM) for evaluating the
result. The present research work has used these
two training functions to validate the results on
the basis of mean square error (MSE), prediction
accuracy, R on testing, R on training and R on
validation.

2. OBJECTIVES

The research work has generally tried to
associate different levels and types of
inheritance through neural network by
establishing correlation with severities of bugs.
Specifically, the research has tried to fulfill the
following objectives:

1. To establish the correlation among
levels of inheritance, types of
inheritance and severities of bugs.

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

44

2. To predict various types of severities of
bugs (Non Trivial, Major and Critical)
corresponding to increasing levels of
inheritance.

3. To assess the impact of types of
inheritance on severities of bugs.

3. LITERATURE REVIEW

In this research, researchers have used Machine
learning techniques (neural networks) to predict
the types of severities of the bugs using the
proprietary software. A research [1] based on C
& K metrics suits claimed that most CK metrics
were effective bug predictors, and among them,
independent variables DIT and RFC were
having significant influence on the dependent
variable (bugs). In another research, researchers
have concluded [2] that WMC (Weighted
methods per class) and DIT were significant
indicators for finding buggy files.
In this study [3], researchers have emphasized
on various sized oriented metrics and proved
that DIT, WMC, CBO (coupling between
objects) and LOC (Line of code) are significant
bug indicators for predicting number of bugs.
A significant amount of empirical work had
been already done for finding out buggy data
using object oriented design metrics and C&K
metrics suits. These research works have
basically proved that there is a significant
relationship between metrics and number of
bugs [4, 5, 7, 11, 12, 13]. After that some more
research studies [6, 8, 9, 10] have emphasized on
predicting the number of bugs using machine
learning methods. In machine learning methods
[14], Bayesian approach was used by the
researchers to demonstrate a strong relationship
between product metrics and number of bugs.
However, these studies failed to focus on the
severities of bugs. There are only a few studies
which were based on the severities of bugs. A
popular study [15] has focused on three levels of
severities of bugs (Low, Medium, and High) and
concluded that predictions using ANN methods
are better than predictions using statistical
methods. The researchers have confirmed that

CBO, WMC, RFC and SLOC metrics are more
significant than DIT for bug prediction at all
severity levels. Somewhat same results were
also derived in another research paper [16],
which demonstrated that the purposed model
was performing well with low and medium level
of severity rather than high level of severity.
This research also investigated the fault-
proneness prediction performance of OO design
metrics with respect to ungraded, high, and low
severity faults by employing statistical (LR) and
machine learning (Naïve Bayes, Random Forest,
and NNge) methods.
In another research [25], the researchers firstly
predicted the nature of file (buggy/not buggy)
and secondly predicted the magnitude of the
possible bugs with respect to various viewpoints
such as density, severity or priority. Finally, the
researchers concluded that ANN was successful
in predicting the really defected items.
According to their results, the MLP algorithm
approximates the bug severity values well only
when defected items reside in the input data set.

4. PROPOSED WORK

The experiments reported in this research work,
involve software named as work force scheduler
(WFS). WFS is the object oriented programming
based project, which is used widely in work
force management projects. However, WFS
presently doesn’t accommodate types of
inheritance. The researchers intend to develop a
new tool to calculate the types of inheritance
associated with files containing bugs. Also the
researchers intend to modify the Boolean values
received as a result of type of inheritance and
associate them with types of inheritance.

Our objective was to predict severities of bugs
on the basis of types and levels of inheritance
using neural network (NN) algorithms. Our
experiments with neural network consisted of
172 inputs with two inheritance related data
inputs.

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

45

This research work basically used two
experiments. In the first experiment, researchers
tried to find out the correlation among levels of
inheritance, types of inheritance and severities of
bugs. After that, in the second experiment, the
researchers tried to predict the type of severities
of bugs using levels and types of inheritance as
network input with the help of two training
functions of back-propagation neural network
algorithms. The researchers used trainlm and
trainbfg training functions with different number
of neurons (10 and 20). Validation of these two
training functions was done on the basis of mean
square error (MSE), prediction accuracy, R on
testing, R on training and R on validation.

To design a learning system, the data set in this
work is divided into two parts: the training data
set and the testing data set. Some predictor
functions are defined and trained with respect to
Multi-Layer Perceptron.

Multi-layer perceptron method (feedforward
neural networks trained with the standard back
propagation algorithm) have been used for the
basic advantage offered in the form of a general
framework using non-linear functional mappings
between two sets (one for input variables and
second for output variables). For this, activation
functions have been used for representing the
nonlinear function of many variables in terms of
compositions of nonlinear functions of a single
variable [17].

4.1 Multilayer Feed Forward Neural
Networks
Multilayer feed forward neural networks (MLF)
consisting of multiple layers of computational
units are generally interconnected in a feed-
forward way known as the input layer. The last
layer is represented as the output layer and all
other layers in between are known as hidden
layers. Each layer is connected to the next layer
through connections to the neurons. Multilayer
Feed Forward Neural Networks (non-parametric
regression methods) approximate the underlying
functionality in data through reduction in the
loss function. Specified items of data records

used as input to neural network and weights are
respectively changed to ensure that output
approximates the values in the data set during
training activity [18].

4.2 Neural Network Training Algorithms

There are number of training algorithms which
can be used to train a network. In the present
research work, the researchers have used
basically two best training functions of neural
network algorithms as trainbfg and trainlm [23].

i. BFGS (Broyden–Fletcher–

Goldfarb–Shanno) algorithm
(trainbfg): approximates
Newton's method, a class of
hill-climbing optimization
techniques that seeks a
stationary point of a function.
For such problems, a necessary
condition for optimality is that
the gradient be zero [20]. BFGS
have good performance even for
non smooth optimizations and
an efficient training function for
smaller networks.

ii. Levenberg–Marquardt
backpropagation (trainlm)
algorithm locates the minimum
of a multivariate function that
can be expressed as the sum of
squares of non-linear real-
valued functions. It is an
iterative technique to reduce
performance function in each
iteration of the algorithm. This
feature makes trainlm the fastest
training algorithm for networks
of moderate size [21, 22].

5. EXPERIMENTAL RESULTS
AND CONCLUSIONS

To achieve the objectives of the study, the
researchers have performed two experiments.

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

46

Experiment-1:
Experiment 1 is depicted the correlation between
level & type of inheritance and severities of
bugs

Table 1- Correlation Table
Project Indicators Correlation

with
severity of
bugs

WFS (Object
Oriented)

Levels of
Inheritance

.746

Types of
Inheritance

.536

In the present research work, the researchers
have observed significant correlations of levels
and types of inheritance with severities of bugs.
This is further interesting to witness that above
two indicators are correlated significantly with
severities of bugs.
Experiment-2:
The training functions used were coded in
MATLAB using ANN toolbox [19]. The
experimental data consisted of 172 bug data
entries with two inputs. Experiment 2
demonstrated the 5 levels of inheritance and
related tables with the training functions and
types of severities of bugs.
In this experiment, table 2, table 3, table 4, table
5 and table 6 had shown that with amplification
in levels of inheritance the severities of bugs
would also amplify accordingly.

Table 2: Predicted Severities of Bugs at
Inheritance Level-1
Inheritance Level -1

 Training
Function

nontrivial
Bugs

Major
Bugs

Critical
Bugs

LM(10) 26 0 0
LM(20) 26 0 0
BFG(10) 26 0 0
BFG(20) 26 0 0

Table 3: Predicted Severities of Bugs at

Inheritance Level –2
Inheritance Level -2

Training
Functions

nontrivial
Bugs

Major
Bugs

Critical
Bugs

LM(10) 0 24 0
LM(20) 0 24 0
BFG(10) 0 24 0
BFG(20) 20 4 0

Table 4: Predicted Severities of Bugs at

Inheritance Level –3
Inheritance Level -3

Training
Functions

nontrivial
Bugs

Major
Bugs

Critical
Bugs

LM(10) 0 41 3
LM(20) 0 41 3
BFG(10) 0 41 3
BFG(20) 0 0 44

Table 5: Predicted Severities of Bugs at
Inheritance Level –4
Inheritance Level -4

Training
Functions

nontrivial
Bugs

Major
Bugs

Critical
Bugs

LM(10) 0 2 63
LM(20) 0 2 63
BFG(10) 0 0 65
BFG(20) 0 0 65

Table 6: Predicted Severities of Bugs at

Inheritance Level –5
Inheritance Level -5

Training
Functions

nontrivial
Bugs

Major
Bugs

Critical
Bugs

LM(10) 0 0 13
LM(20) 0 0 13
BFG(10) 0 0 13
BFG(20) 0 0 13

Table 7 is showing the comparative results of
two training functions with different number of

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

47

neurons. The parameters of comparisons are
number of neurons, MSE, R on training, R on
testing and R on validation. All the parameters
are checked for 10 and 20 number of neurons in
the hidden layer. The network is trained until the
MSE is equal to zero. According to this resultant
table training function trainlm with 10 & 20
neurons is performing well than the training
function trainbfg.
Trainlm is giving almost zero MSE.

Table 7: Accuracy Measurement of Training
Functions
Traini
ng
Funct
ions

Neur
ons

Best
valida
tion
MSE

R on
train
ing

R
on
testi
ng

R on
valida
tion

Trainl
m

10 0.105 0.76
6

0.71
5

0.843

20 0.119 0.76
3

0.67
3

0.838

Trainb
fg

10 0.174 0.72
6

0.81
6

0.865

20 0.166 0.74
6

0.74
0

0.855

Networks simulated using these two training
functions are affected according to the number
of neurons in their hidden layer. The regression
analysis function compares the actual outputs of
the neural network with the corresponding
desired outputs (targets).
It returns the correlation coefficient (R) in the
range of 0 to 1. A value towards 1 represents a
perfect positive correlation between actual and
desired output. Regression value (R) on training,
testing and validation in table 7 clearly indicates
trainlm qualifies best.
Table 8 indicates the impact of types of
inheritance on the severities of bugs
corresponding to the levels of inheritance.
It has also been observed that with increasing
levels of inheritance, types of inheritance are
getting more complex and the severities of bugs
are also escalating.
Table 8 Impact of Types of Inheritance on
Severities of Bugs
Levels of
Inheritance

Types of
Inheritance

Severities of
Bugs

1 Single
Inheritance

Non trivial

2 Multilevel
Inheritance

Major

3 Multilevel Major, Critical
4 Multilevel,

Hierarchical
Critical

5 Hierarchical,
Multiple

Critical

The ANNs were simulated and trained with both
the training functions using the training dataset.
In the proposed work we did not found much
difference between trainlm and trainbfg. They
are in acceptable range. On the basis of MSE,
trainlm and trainbfg both performed well.
Considering the sample size of input patterns,
we found that trainlm suits to larger data set. It
converges in less number of iterations and in
lesser time than the other training functions.

6. FUTURE WORK

The tool developed during the course of these
experiments looks promising and adds one more
dimension of associating types of inheritance
with severities of bugs, which was earlier
associated with levels of inheritance only.
However, this tool has definite scope of
refinement so as to include higher levels of
inheritance and investigating the impact after the
level of inheritance goes above 5.
The researchers intend to refine this tool further
on the above mentioned lines and also look for
association of other relevant factors in
addressing severities of bugs.

References

[1] Basili, V.R., L.C. Briand and W.L. Melo,
1996. A validation of object-oriented design
metrics as quality indicators. IEEE Trans.
Software Eng., 22: 751-761. DOI:
10.1109/32.544352.
[2] Tang, M.H., M.H. Kao and M.H. Chen,
1999. An empirical study on object-oriented
metrics. Proceedings of the 6th International

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

48

Symposium on Software Metrics, Oct. 04-06,
IEEE Computer Society, Boca Raton, FL.,
USA., pp: 242-249. DOI:
10.1109/METRIC.1999.809745.
[3] Gupta. V, Ganeshan N. and Singhal T.K.,
“Developing Software Bug Prediction Model
Using Various Software Metrics ” IJACSA,
vol.6, No. 2, pp. 60-65, 2015
[4] C. Catal and B. Diri, “A systematic review of
software fault prediction studies,” Expert
Systems with Applications,vol.36, pp. 7346-
7354, 2009.
[5] K.E. Emam and W. Melo, “The Prediction of
Faulty Classes Using Object-Oriented Design
Metrics,” Technical report: NRC 43609, 1999.
[6] I. Gondra, “Applying machine learning to
software fault-proneness prediction,” The
Journal of Systems and Software, vol.81, pp.
186-195, 2008.
[7] T. Gyimothy, R. Ferenc and I. Siket,
“Empirical validation of object oriented metrics
on open source software for fault prediction,”
IEEE
Transactions on Software Engineering, vol.31,
no.10, pp. 897-910, 2005.
[8] R. Malhotra and Y. Singh, “On the
Applicability of Machine Learning Techniques
for Object- Oriented Software Fault Prediction,”
Software
Engineering: An International Journal, vol.1,
no.1, pp. 24-37, 2011.
[9] R. Malhotra and A. Jain, “Fault Prediction
Using Statistical and Machine Learning Methods
for Improving Software Quality,” Journal of
Information Processing Systems,vol. 8, no.2, pp.
241- 262, 2012.
[10] N. Ohlsson, M. Zhao, M and M. Helander,
“Application of multivariate analysis for
software fault prediction,” Software Quality
Journal, vol.7, pp.51-66, 1998.
[11] H. Olague, L. Etzkorn, S. Gholston and S.
Quattlebaum, “Empirical validation of three
software metrics suites to predict fault-proneness
of object oriented classes developed using
highly iterative or agile software development
processes,” IEEE Transactions on Software
Engineering, vol.33, no.8, pp. 402-419, 2007.

[12] P. Yu, T. Systa, and H. Muller, “Predicting
fault-proneness using OO metrics: An industrial
case study,” In Proceedings of Sixth European
Conference on Software Maintenance and
Reengineering, Budapest, Hungary, pp.99-107,
2002.
 [13] Y. Zhou, B. Xu, and H. Leung, “On the
ability of complexity metrics to predict fault-
prone classes in object -oriented systems,” The
journal of Systems and Software, vol.83, pp.660-
674, 2010.
 [14] G. Pai, “Empirical analysis of software
fault content and fault proneness using Bayesian
methods,” IEEE Transactions on Software
Engineering, vol. 33, no. 10, pp. 675-686, 2007.
[15] Y. Singh, A. Kaur and R.
Malhotra,“Empirical validation of object
oriented metrics for predicting fault proneness
models,” Software Quality Journal, vol.18, pp.
3-35, 2010.
[16] Y. Zhou, and H. Leung,“Empirical Analysis
of Object-Oriented Design Metrics for
Predicting High and Low Severity Faults,” IEEE
Transactions on Software Engineering, vol. 32,
no. 10, pp. 771-789, 2006.
[17] Bishop, M., 1995, Neural Networks for
Pattern Recognition, Oxford University Press.
[18] Gayathri M, A. Sudha ,“Software Defect
Prediction System using Multilayer Perceptron
Neural Network with Data Mining” ,
International Journal of Recent Technology and
Engineering (IJRTE) ISSN: 2277-3878, Vol. 3,
no. 2, 2014.
[19]. M. Beale, M. Hagan, H. Demut, “Neural
Network Toolbox User’s Guide,” 2010.
[20]’Mathworks’, 2015, available:
http://www.mathworks.in/help/nnet/ref/trainbfg.
html
 [21] D.Pham, S. Sagiroglu, “Training
multilayered perceptrons for pattern recognition:
a comparative study of four training algorithms”,
International Journal of Machine Tools and
Manufacture, vol.41, pp. 419–430, 2001
[22]B. Sharma, K. Venugopalan, “Comparison
of Neural Network Training Functions for
Hematoma Classification in Brain CT Images ”,
IOSR Journal of Computer Engineering, vol 16,
pp- 31-35, -2014

 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-1, January 2016
 ISSN: 2395-3470

www.ijseas.com

49

[23] S. Ali and K. A. Smith, “On learning
algorithm selection for classification”, Applied
Soft Computing, (6), pp.119–138, 2006.
[24] S. Haykin, “Neural Networks- A
Comprehensive Foundation,” 2nd ed., Pearson
Prentice Hall, 2005.
[25] Kutlubay O. and A. Bener, "A Machine
Learning Based Model For Software Defect
Prediction," Boǧaziçi University, Computer
Engineering Department, 2005.
[26] Succi, G., W. Pedrycz, M. Stefanovic and J.
Miller, “Practical assessment of the models for
identification of defect-prone classes in
objectoriented commercial systems using design
metrics”. J. Syst. Software, 65: 1-12. DOI:
10.1016/S0164- 1212(02)00024-9, 2003.
[27] Madhu Rohilla1, P. K. Bhatia2 Prediction
of Fault-Proneness UsingCK Metrics”,
International Journal of Emerging Technology
and Advanced Engineering ISSN 2250-2459,
ISO 9001:2008 Certified Journal, Vol 3, Issue 8,
2013.

