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Abstract 
A delay differential equations which to describe a 
generic two compartments blood cell model which 
originates from hematopoietic stem cell compartment 
to period neutrophil blood diseases is discussed. The 
kinetics of peripheral neutrophil and auto-regulation 
of hematopoietic stem cells are both supposed to be 
negative feedback mechanism and governed by 
Holling function. By applying geometrical criterion 
in analyzing  stability of parameter region of steady 
states, we track the Hopf bifurcation position which 
is believed to give rise to blood cell oscillations in 
periodic neutropenia or other blood cell diseases. 
Keywords: Hopf bifurcation; Hematopoietic 
regulation; Stem cells; Neutropenia. 
 
1. Introduction 
The interaction relationships between the mature 
stem cells and their peripheral tissues are of intention 
and increasing interest in biomedical sciences. To 
understand the interesting aspects of stem cells 
within 
its tissue organization, the main feature of stem cells 
is illustrated. With the exception of the property of 
self-renewal and differentiation potential, stem cells 
own  the ability to undergo cell divisions, exist in a 
mitotically quiescent state. Stem cells also can be 
functioned as the clonally regenerate cells of  all  the 
different cell types that consist the tissue in which 
they exist. Alike "erythoropoiesis"  model, oscillation 
arise in stem cell population is the consequence of 
the loss of stability of homeostasis state, which is 
dominated by auto-regulatory loops with negative 
feedback control mechanism[1-4]. 
Due to dysfunctions in regulatory control process of 
blood cell production, some hematological diseases 
emerge. Cyclical neutropenia(CN) has been the most 
extensively studied hematological disorder. 
Periodically, circulating neutrophil falls in the 
dynamic states with its count varying from normal 
counts to low levels[5,6,7]. The population of 
neutrophils, a type of granulocyte cell, is highest 

among white blood cells in an ordinary level with 45 
to 75 percent and low number abnormally. 
The period of human with CN is typically reported to 
vary in the range of 19 to 21 days, and longer periods 
occur in some patients with 40 to 80 days[6,7]. It is 
now clear in grey collie that neutrophils oscillates 
from normal to extremely low levels  suffering from 
a similar disease with the exception of the period 
ranging from 11 to 15 days. Therefore, people use 
the contrast experiment results of grey collie to 
discover CN oscillating character to human being. 
Mathematically, with link to blood cell production 
and negative feedback regulation mechanism, the 
cyclical neutropenia system is introduced with time-
dependent proliferation coefficient[8,9]. 
Delay factors influence can't be omitted in the 
hematopoietic stem cell(HSCs) model due to time 
necessary in cell maturation[3]. As for neutrophils or 
granulocyte cells, Haurie analyzed the analytical 
form used for the density of the maturation time in 
bone marrow. He sums up delay factor as the total 
period of time that neutrophils spent in marrow and 
the maturation time in the blood[5,6]. He also further 
suggests that mechanism of CN oscillation is due to 
destabilization of the HSC regulation would explain 
the fact that the other cell lineages oscillate with the 
same period as the neutrophils. Bernard modelled CN 
in the grey collie and verified that increasing rate of 
apopotosis in neutrophil precursors induced the 
oscillation [10,11,12]. 
The important role of granulocyte colony-stimulating 
factor(G-CSF) for the in vivo control of 
granulopoiesis was demonstrated by Lieschke eta 
al[13]. They showed that mice lacking G-CSF have 
pronounced neutropenia. G-CSF adminstration is 
routinely used to treat chronic neutropenia. 
Destabilization of an early HSC population resulting 
in oscillations with a large range of periods in all the 
blood elements after chemotherapy observed in CN. 
In Mackey's work, modification of any of the 
parameters in his model described can potentially 
induce the onset of oscillations[10,12]. Lei 
functioned the effect by G-CSF adminstration by 
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adding a new parameter as apopotosis rate of 
granulopoiesis in the blood with the consideration of 
maturation time[8]. To coincide with Hauire's point 
of view, time delay adds the period of time that 
neutrophils spent in marrow and the maturation time 
in the blood[8,9]. 
However, the control of granulopoiesis via the 
circultating neutrophil level is obsure. In this paper, 
we develop the discussion of peripheral neutrophil 
oscillation with G-CSF administration. The apoptosis 
rate of granulopoiesis in the blood is combined into 
the proliferation coefficient with point of view that 
elevating granulopoies in the marrow decreasing the 
circulating neutrophil number. Due to the complexity 
of Hopf bifurcation, the simplified quasi-static 
hemotopoesis system and neutropenia system are 
respectively discussed. The geometrical criterion 
developed for delay differential equations is applied 
in Hopf bifurcation analyzing since delay factors are 
also physical parameters in system.  Finally, complex 
dynamical behaviors of the whole system are 
simulated numerically by the estimated apopotosis 
rate of neutrophil population in the blood  via 
tracking Hopf bifurcation position in parameter space. 

2. The mathematical model 

Stem cells differentiate into more mature blood cells, 
including platelates, granulocytes and lymphocytes. 
During the process of the transition of HSCs from 
quiescence to cell proliferation, a clear link between 
the stem cell compartment and the differentiated 
mature cell linages form a fully hematopoietic system 
which supported by tissue coupling. Quiescent phase 
HSCs can enter into its proliferative phase with the 
assumption of undergoing mitosis during time sτ . As 
a common point of view[8,10,12], a generic model 
which is formed corporately by hematopoietic stem 
cell compartment as well as neutrophil compartment 
can be described as the following 

N
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The prominent character of the whole system lies in: 
(1) Stem cells population Q  is able to sustain itself 
through proliferation. After a cell division, the total 
duration of both proliferative phase assumed to be 

time NPτ  and maturation phase of neutropenia with 
time NMτ  is experienced to release into circulation 
through the body. Platelates and lymphocytes are not 
included in the model other than to assume that the 
total differentiation rate into these two cell lines 
being a constant δk  (days 1− ). 
(2) The rate at which stem cells differentiate into its 
given cell type is a function of the existing 
population of  cells )(NkN ; 
(3)HSCs are classified as quiescent Q  or 
proliferative phase cells and quiescent hematopoietic 
stem cells can enter into the  proliferative phase at a 
rate β . 
(4)  The tissue numbers are coupled to each other 
through their interaction via their delayed common 
origin in a small pool of stem cells and the delay time 
which is necessary for the complete maturation 
process is typically a number of days. 
In Eqs (2.1),   The differentiation rate into neutrophil 
cells Nk  as well as the proliferative rate β are 
considered as the holling function 
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The surviving neutrophil cells are released into 
circulating cycle with death rate Nγ which is a 
constant. 
Assume NMNPN τττ +=  hereafter. After 
differentiation from Q , the neutrophil precursors 
enter into a proliferative phase for a period of time 

NPτ (days) with proliferation rate )(tNPη . After that, 
neutrophils experience a mature period NMτ  and the 
apoptosis rate is given as a constant parameter 0γ  
due to the programmed death number.  Therefore, 

)(tAN  is given by 
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(2.3) 
Similarly, the recycle rate )(tAQ  into quiescent 
phase Q  is specially given by 
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For hematological normal individuals, the rate 
NPsr η,  and 0γ  are constants, and therefore, 

NMNPNPss eAeA N
r

Q
τγηττ 0,2 −− ==         (2.5) 

The estimated model parameters are referred[8] as 
shown in Table 1. 
 

Parameter Value Unit 
0k  8.0 days 1−  

0f  0.4 days 1−  

δk  0.01 days 1−  

1θ  0.36 810×  kgcells /  

2θ  0.3 610×  kgcells /  

sr  0.03—0.2 days 1−  

sτ  2.8 days 

NPη  2.542 days 1−  

Nγ  2.4 days 1−  

NMτ  6 days 

NPτ  5 days 

0γ  0.27 days 1−  

*Q  1.1 610×  kgcells /  
N * 6.3 810×  kgcells /  

 
Table1:The values of parameters used in system (2.1). 
 
As is well known, the hematological system usually 
demonstrates interesting observed dynamics. The 
dynamics of developed mathematical model which 
couple HSCs and CN population may demonstrate 
oscillations arise from Hopf bifurcation. DDE-
Biftool [14,15] is the useful mathematical software to 
discover the critical values of stability switching  
phenomena. In this paper, we develop the traditional 
biological research method and previous modeling 
efforts to analyze and understand the intrinsic 
dynamical behaviors of Eqs(2.1). 

3. Dynamics of hematopoietic stem cells 

Biologicaly and mathematically,  the models of 
hematopoietic system with description by delay 
differential equations have always  given some 

insights  to understand the mainly factor to influence 
the occurrence of some abnormalities and even 
severe diseases. Firstly, we discuss the dynamics of 
hematopoietic stem cells number by developing its 
stability analysis under the assumption 

*NN = (quiescent state of N ). We 
assume δδ kf N += with )( *Nkf NN = which 
implies per time, the  quiescence number of HSCs 
differentiating  into its tissue numbers. The 
decoupled dynamics of differentiation of the HSCs 
obeys 

)())((2)( ss
r tQtQeQQQ

dt
dQ ss ττββδ τ −−+−−= −  

(3.1) 
Setting 12 −= − ssre τµ , it is easily to calculate that, 
if δµ >0k , Eqs(3.1) has a positive equilibrium 
solution 
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k
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underlying the assumption .2,1 == nm  
Stability changes of the positive equilibrium solution 
always products the oscillating solutions periodically  
to predict dynamical illnesses of blood cells. Due to 
nonlinearity dynamics in system description, Hopf 
bifurcation occurs and periodic oscillating rhythms of 
HSC number appear. 
Equation (3.1)is rewritten into its simplified version 
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dQ ss ττβτ −−+−= −  (3.2) 

with 
).()( QQT βδ +=  

Doing transformation *QQQ −= , the linearized 
delay equation of Eq(3.2) is described as 
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where β ′  is the derivative of β . 
The characteristic equation for Eq(3.3) is written as 
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As a common point view, the occurrence of Hopf 
bifurcation in Eq(3.1) is due to the appearance of the 
imaginary roots of Eq(3.4) with zero real parts. We 
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set ωλ i=  and assume sK ωτ= , then get the 
formula 
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Equation (3.5) contains ω . If a pair of values 
),( * µK satisfies Eq(3.5),  the single value ω  is 

determined as 
)tan())()(( *** KQQQT βω ′+−=      (3.6) 

and the corresponding sτ  is computed as 
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The following proposition[16] is introduced to verify 
formula (3.8). 
Proposition: Suppose 
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Furthermore, set 
22 ),,(),,(),,( sss iQiPiF τµωτµωτµω −=  (3.10) 

then the equivalent formula  of (3.8) is 
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where IRIR PPQQ ,,,  are the real part and 
imaginary part of function P  and Q . 
Notice that 0=− ss RRRR QPPQ

τµτµ
, Eq.(3.11) is  

simplified as 
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We further give the illustration in geometry to 
determine the above conditions and sign of )(~ *Kδ  

with the limitation KK Ι∈* . 
Firstly, From Eqs (3.5), we solve variables τµ,   
respectively. Either of which has two branches to be 
described  as 
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(3.14) 
We obtain the symmetry curve of  2,1µµ =  with 
respect to variable )(),)22(,2( NnnnK ∈+∈ ππ , 
as shown in Figure 1(a). The derivative of function 

2,1µ  with respect to the variable K  are illustrated in 
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Fig.1(b), which is further illustrated in details as 
following 
For any ,k  
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We also obtain function ω  as the formula 

2
2,10

2,1
)tan(

uk
Kc

−=ω                       (3.16) 

with 
( ) )22( 02,1

2
2,10 kuukkfkfc NN −+++= δδ . 

The maximum of 1ω of K  at maxKK = and the 
decreasing of 2ω  is described in Figure2.  The list of 
varying of derivative is  
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with the assumption  
 

 
(a)                                      (b) 

Figure 1. The function  µ  of K has two branches by 
varying K  in the interval ))22(,2( ππ +kk , here 

1,0=k . (a) the curve of )(Kµ . 2,1µ  are drawn  
respectively  in red color lines and in blue color lines; 
(b) The derivative curves of )(2,1 Kµ′  with 

)2,0( π∈K . 
 

 
(a)                                    (b) 

Figure 2. The function ω of K . (a) the red curve 
1ω and the blue curve 2ω attain its maximum at 

πkK 2max + or its minimum at 
max)22( Kk −+ π with  1,0=k .(b) the derivative 

of ω  w.r. K  with K varying in )2,0( π , 0)(1 =′ Kω  

at maxKK =  or  max2 KK −= π (green points). 
 

 
(a)                                     (b) 

Figure 3. The derivative of F  in Eq.(2.11) w.r. µ , 
)2,0( π∈K , (a) the case )(1 Kωω = , 
)(1 Kss ττ = , )(1 Kµµ = ; (b) another case  

)(2 Kωω = , )(2 Kss ττ = , )(2 Kµµ = . 
 

).)22(,)12((
),)12(,2(

),)22(,)22((

),)22(,)12((

),)12(,2(

),2,2(

6

5

max
4

max
3

max
2

max
1

ππ
ππ

ππ

ππ

ππ

ππ

++=
+=

+−+=

−++=

++=

+=

kkI
kkI

kKkI

KkkI

kkKI

kKkI

 

and 
 

0)(,0)( 21 << KFKF µµ .               (3.18) 
 

By Eqs(3.13)-Eqs(3.18), the sign of )(~ *Kδ in 
Eq.(3.12) is determined. 
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By dynamic theory of DDEs, Hopf bifurcation occurs 
at points ( ))(),( *

1
*

1 KKs µτ   or 

( ))(),( *
2

*
2 KKs µτ . 

The Hopf bifurcation curves are further drawn in 
Figure4(a). Notice to keep sτ  positive, the 
discussion is underlying the assumption of paramter 
value of K with limitation ππ )12(2 +<< kKk  
for any k . The whole plane is partitioned into four 
regimes, with N -regime below fold line denotes 
none existence of positive equilibrium solution.  The 
solely  positive equilibrium *Q  is stable in I -
regime;  However, due to Hopf bifurcation analyzed 
above, it changes to being unstable state which leads 
to periodic orbit in II -regime and III -regime. The 
similar discussion with logistic population model for 
DDEs have been reported[16,17]. 
 

 
(a)                                (b) 

Figure 4. The curves of Hopf bifurcation with respect 
to Eq.(3.1). (a) Hopf  bifurcation curves in µτ −s  
plane;(b)Hopf bifurcation curves in ssr τ− plane . 
 
4. Neutrophil compartment dynamics 

 
Hematopoiesis is a homeostatic system, consequently, 
most disorders of its regulation may lead to periodic 
dynamical diseases which exhibit transient or chronic 
failures in the production of one or more blood cell 
type. For example, one or more cellular elements of 
the blood are characterized by predictable 
oscillations. In cyclical neutropenia(CN), neutrophil 

numbers oscillate and may reach a dangerous low 
level during its period about 19-21 days in humans 
and 11-16 days in dogs.  Subsequently, we analyze 
the local dynamical behavior of the neutrophil 
compartment model by some theory   analyzing 
method as well as mathematical numerical 
simulations. 
By assuming HSCs numbers as a constant 

*)( QtQ = , we then obtain the single version 
dynamics for the neutrophil compartment which is 
modeling as 
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It is seen that Eq(4.1) balances the net production and 
the loss rates of circulating neutrophils in Eq.(4.1)  
and the measured population takes into account  
delay facto Nτ , which is assumed as  

NMNPN τττ += . 
As the description in Section 1, delay Nτ  physically 
and meaningfully expresses the total duration of the 
proliferative and maturation phases of the 
differentiated neutrophils. 
By computation, the governor dynamical equation 
(4.1) is proved to has a positive equilibrium solution 

*N  with the formula 
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Define new variable *)()( NtNty −= ， then the 
linear delay equation is expressed as 

N
Byy

dt
dy

N τγ +−= ,                       (4.2) 

with the coefficient )( *
* NKQAB NN ′= .Therefore, 

the related characteristic equation is derived and 
written as 

0)( =−+= − NBeh N
λτγλλ             (4.3) 

We assume characteristic equation (4.3) has a pair of 
imaginary roots, then substitute )0( >= ωωλ i into 
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)(λh  and separate the real part from the imaginary 
part to get 
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Set Nv ωτ=  and NBY τ−= , then express  
Eqs(4.4) as 
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By definition of  B , it satisfies that  0<B .In  
Eqs (4.5), therefore, 0)cos(,0)sin( <> vv is 

satisfied and this leads to )2,2
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( πππ
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for ,2,1,0=k . 
To track the Hopf bifurcation position with respect to 
delay Nτ , the geometrical criterion combined with 
proposition 3.1 is applied.  
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It is observed that for any 0Nk ∈ , if ** )( YvSk = , 
the characteristic equation (4.3) will have a pair of 
imaginary roots )( *viω±  which lie at the value of  
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NY τ . As shown in Figure5(a). 
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is determined by Eq (4.3)-Eq(4.6).The pair of 
imaginary roots )( *viω±  cross imaginary axis from 
left to right while increasing delay Nτ , if it meets 
positive *)(vδ ; whilst from right to left as  Nτ  

increasing across *
Nτ  if it meets negative *)(vδ . 

We prove that all above discussion can be 
contributed to the following conclusion. 
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









=iwNd
d

λτ
λ

. Therefore, Hopf bifurcation 

occurs at critical values 
kNN ττ =  for ,2,1,0=k . 

Proof: Set line ***: NBYL τ−= . 
Since  

Y
AQ

Nk
NN

N

*
)(

1 τ
−=

′
 

it is calculated that 

2
*0

1

)1)(cos(
)cos(

+
−=

vQf
v
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N

θγ
         (4.8) 
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v

τ
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γ
2
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1
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))cos(1(
)cos(

ln
+

−
+−

−=    (4.9) 

With respect to the critical value Nτ , suppose 
characteristic roots of Eq(4.6) can be expressed as 

)()()( NNN i τβτατλ ±= . and )( Nτλ  satisfy 

( ) ( ) ωτβτα ==
ii NN ,0  with )( *vωω = . By 

substituting 0,γNA  into the expression of B , with   

NA  and 0γ are respectively expressed by Eq(4.8) 
and by Eq(4.9). Further computation proves that 

{ } { } }.{)()(

Re)(

0

*

*
0

*

)(

*

γ

ωλ

γω

τ
λ

δ

BBsignvsignvsign

d
dsignv

vi

′⋅′⋅′=













=
=  

Since 0<B , we have { } 0)( * <′ vsign ω and 

)()( **
0 0

vBBv ′=′⋅′ γγ .  Therefore, 

{ } 0)tan()sec()()( **** <−=′= vvvBBsignv Nγδ . 
The phenomena of periodical oscillations may appear 
as delay Nτ  decreases to pass through corresponding 
Hopf bifurcation points. This makes system complex 
dynamical behaviors such as chaos possible. Follow-
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ing we show the bounded property of parameter 0γ  
as Hopf bifurcation occurs. 
4.1 )(lim 0 Nk τγ∞→  is bounded 

Proposition: By Equation (4.9), as shown in 
Fig.5(b), Hopf bifurcation occurs on the curve line 

)(00 Nτγγ = , Now, we prove )(lim 0 Nk τγ∞→  
is bounded for given  Nτ . 
Proof :  By computation, 

NN QNKeBY NMNPNP ττ τγτη
*)(0 ′−=−= −    (4.10) 

Therefore, 
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which brings 
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τ

τητγ

(4.11) 
Since  

)tan(v
v

NN γτ −=  

For given Nτ , it is seen, there exists 0>ε  which 
satisfy 1)sin( << vε   and ε−<<− )cos(1 v . 
Therefore, 









−=

)cos(
lnln

v
Y N

N

γ
τ

 

Y  is bounded, 0γ is bounded to have been proven. 
 
For fixed parameter 0γ , the equilibrium  solution is 
stable if Nτ  is big enough. Varying parameter 0γ  
and Nτ , the Hopf bifurcation curves are  drawn on 

),( 0 Nτγ parameter space, as shown in Fig.5(b). The  
bifurcation curve lines are denoted as 

,2,1,0),(00 == kNτγγ , and it is  proven that 
)(lim 0 Nk τγ∞→  is bounded for given Nτ . As 

shown in Fig.5(b), the dense Hopf curve lines are 
clustered with 300,,1,0 =k  and the phenomena is 
seldom. 
 
 

 
(a)                                    (b) 

 
(c) 

Figure5 Hopf bifurcation for linearized equation of 
Eq.(4.1) and multi-stability occurrence. (a) Hopf 
bifurcations occur at 

kNN ττ =  for 3,2,1,0=k ; (b) 

Hopf bifurcation curves )(0 Nτγ on ),( 0γτ N   
parameter space, 300,,1,0 =k .(c) Fixed 16=Nτ , 

N  denotes the difference between the maximal  
and the minimal values of )(tN . The solution 
evolution with time length 1800 days and the last 400 
days are chosen. 
 
Fixed delay 16=Nτ , the branches amplitude N  
versus parameter 0γ  is shown in Fig. 5(c).   The 
initial values are randomly chosen , results of the 
distribution of N  with respect to varying parameter 

0γ further reveals the existence of different 
periodical solutions simultaneously. 
 
 
5 The whole system 
 
The whole dynamical system as the stem cell 
population coupling with the neutrophiles is 
represented by Eqs(2.1). The preceding analysis for 
the Hopf bifurcation have predicted that the whole 
system may experience stability switching between 
stable equilibrium and unstable equilibrium. This 
further induces the periodic oscillation of HSCs and 
neutrophil numbers. The analysis of Hopf bifurcation 
also give us some insights to seek out the possible 
periodic solutions which appear at certain value of 
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parameters. For example, suppose Ns τττ ==  for 
simplicity, varying parameter sr , the real part of a 
pair of eigenvalue changes its sign from negative  to 
be positive, thus Hopf bifurcation occurs. By 
choosing 

5.14=== sN τττ , 27.00 =γ , 02.0=sr  
we simulated periodical solution of the whole system 
numerically, as shown in Figure 6(a) and (b). Also 
chaos may happen while varying sr  due to the 
complexity and highly nonlinearity of system (1.1).  
Varying parameter sr , the period-doubling 
bifurcation of periodic solutions which  of system 
(2.1) is observed. By choosing initial values 

6068.1)( =tQ 8982.349)( =tN N(t)=349.8982 for 
[ ]0,τ−∈t , the time series solution and the phase 

portrait for parameter 032.0=sr  is drawn in 
Figure6 (c) and (d), respectively. Further choose a 
little bigger parameter sr , the again period-doubling 
bifurcation happens. As shown in Figure6 (e) and (f). 
The period-2 solution as parameter  032.0=sr  and 
the period-4 solution as parameter 034.0=sr  are 
simulated numerically.,  

 
(a)                                    (b) 

 

 
(c)                                   (d) 

 

 
(e)                                   (f) 

Figure6 Periodic solution of the  whole system 
(2.1)with different parameter sr  while choosing 
fixed parameters  5.14=== sN τττ , 27.00 =γ . 
(a) Time series evolution solution as 

02.0=sr , Q versus t ; (b) Phase portraits  of system 
as 02.0=sr , )( τ−tQ  versus Q ; (c) Time series 
evolution solution  as 032.0=sr  ;(d) Phase portraits  
of system as 032.0=sr  (e) Time  series evolution 
solution as 034.0=sr  (f) Phase portraits of system 
as 034.0=sr . 
 
By choosing 5.16=sτ , 16=Nτ ,  then varying 
parameters 0,γsr , the  coexistence phenomena of 
different oscillating  solutions  are observed ,as 
drawn in figure 7 and figure 8. Both regular periodic 
solution and unregular oscillating solution are 
simulated numerically  as parameter values being 

,27.00 =γ  032.0=sr , as shown in Figure 7(a) and 
(b). Set parameter 0γ  to be fixed, then simulation the 
amplitude )(tN  by the difference between its 
maximal and its minimal values reveals the 
coexistence of different solutions, with parameter sr  
varying in the interval ]046.0,01.0[ . Choose 

32.00 =γ , 016.0=sr , the coexistence of two 
different periodic solutions are shown in Figure 8(a) 
and (b), and different solutions with oscillating 
rhythm are illustrated by its oscillating amplitudes of 
CN versus parameter sr with ]037.0,005.0[∈sr , as 
shown in Figure 8(c). 
’ 
Conclusion 
All blood cells arise from a common origin in the 
bone marrow, the hematopoietic stem cells(HSCs). 
HSCs are morphologically undifferentiated cells 
which can either proliferate or differentiate to 
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produce all   types of blood cells(crythrocytes, 
neutrophils and platelets).The development of 
theoretical and analytical method has given some 
insights in how to reveal and exhibit intrinsic 
dynamics of HSCs compartment. Furthermore, the 
findings are applied tounderstand the disease of 
cyclical neutropenia which express abnormal low 
level phenomena regularly. The period doubling 
bifurcation appears as varying apopotosis rate of 
HSCs in profliearation phase. The bifurcation may 
lead to chaotic phenomena which happen in system 
further. The coexistence of different oscillating 
rhythms of solutions via  estimating Hopf bifurcation 
position at parameter space  are observed. 
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(a)                                      (b) 

 
(c) 

 
Figure 7  Different oscillating solutions coexistence 
in system(2.1).For ,5.16,16 == sN ττ 032.0=sr . 
Periodic solutions with rhythms and chaos solution 
appear simultaneously. (a) time evolution series with 

27.00 =γ ; Q versus t . (b) time evolution series 

with 27.00 =γ ; N  versus t . (c) N  denotes the 
difference between the maximal  and the minimal 
values of amplitude )(tN . The solution evolution 
with time length 1800 days and the last 400 days are 
chosen. 
 
 
 

 
(a)                                  (b) 

 

 
                                        (c) 
 
Figure 8 Different oscillating solutions coexistence in 
system (1.1). For ,5.16,16 == sN ττ 32.00 =γ , 
Periodic solutions with rhythms and chaos solution 
appear simultaneously. (a) time evolution series with 

016.0=sr ; Q  versus t . (b) time evolution series 

with 016.0=sr ; N  versus t . (c) N  denotes the 
difference between the maximal  and the minimal 
values of amplitude )(tN . The solution evolution 
with time length 1800 days and the last 400 days are 
chosen. 
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