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Abstract

In this paper, we will see some alternative estimation methods for the multidimensional lognormal distribu-
tion three-parametric as the method of maximum likelihood, the median method, the method of the straight
of Wicksell and two different method of the maximum of likelihood amended. In the case of stochastic
lognormal three-parametric univariate process, we will see two alternative methods of estimation: The
method of moments and the estimation of maximum likelihood revised.
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I. INTRODUCTION

Given the importance of the lognormal distribution as to its applications, the problem of estimating
the parameters of the lognormal distribution from a given sample is a large problem that has been
addressed by several investigators. This has gone through the theoretical and computer problems
that appeared during the application of the estimation method of the maximum likelihood.
Therefore these difficulties, several alternative estimation methods have appeared. Most of them
have been discussed by Aitchison and Brown [1],Calitz [6] and Cohen [7] [8] [9] and others
more recent between which, we will mention Giesbrecht and Kempthorne [12], Wingo [21] [22],
Lifson and Bhattacharyya [17], Kappenman [15] and Arbai [2]. The one-dimensional case was
investigated by Brown and Hewitt [5]. The case of multidimensional diffusion was studied by
Basawa and Prakasa Rao [3]. These authors have used the continuous sample , and by method of
the maximum likelihood they found the corresponding estimators. The case of lognormal process
with exogenous factors was considered by Molina [18].
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II. ALTERNATIVE METHODS OF ESTIMATION IN MULTIVARIATE DISTRIBUTION WITH
THREE-PARAMETERS

Let X = (X3, -, X¢)" a random vector of multivariate three-parametric lognormal Ag(7, i, B) .
The density of X is:

kk
Fx, 1 B) = (@ T [ — 1) | B3 x exp{—2 (1n(x — 1) = /B~ (tn(x — 1) ~ )},
i=1

for x; > 7; and B a symmetric matrix positive definite such that ¢;; > 0

i. The method of maximum likelihood

Let {x/} a sample formed by 1 observations , 1 < j < n such that: X = (xlj,« . ,xk]-)’
The likelihood function is:

n .
L(x, -y, 1, B) =[] f(; 7,1 B)
=1
with
; 1 j_ Ip—1 j
f(;q,u,B) = ((27)2 H(xz] y) | B|3) x exp{—z (In(x) =) —p)' B~ (In(x) —7) =)}
then

n

k k 3
LGt 5y, 0, B) = T[(@)E T [ — ) | B 1™ x expl—5 (In(l — 1) = /B~ (1n(ad — ) — )}
i=1 i=1

. Lok _
= ) * 1B [T L0 —70) xnexp{—f In(xl —7) = p) B~ (In(xl — 1) — )}

j=1li=1

hence,

n . .
L(x', 5", 7,3, B) = ~ 2kin(2m) ~ 2in | B| -} zzn i~ 1) — tr{ Y (In( — ) — ) B~ (In( —7) — )}
j=1

j=li=
We derive:
n & "
dinL(x%,---x",v,u,B) = B~ldB) +]lez d'yi + %tr{;[(ln(xf —7) - y)’B‘ldBB‘l(ln(x] —) — 1)
+2(In(x — ) — p)'B ldp - 2(ln(xf — ) — w)'B ' Widy]}
where
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din(x — )
W-:
] dy
1
- 0 0
Xijj—m
. 0
0
0 SIS | R 1
Xkj — Yk

AInL(x, -3y, 1, B) = pir{Y_ (B~ (In(d —7) — ) (I ~7) — )~ B~ dB+2)_ dpe(in(l ) p B}

j=1 j=1
n . n k 1
=Y (In(x =) —w)'B " Widy + ) ) dy;
= j=1i=1 Xij =i
1 1 e ; ; B
= SVee(B1 Y [(In(xd — 9) = ) (In(xl — 7) — p)'B~" — ])'dVee(B)
=1
1 < i l - j Ip—1 n & 1
+[B7Y (In( =) —p@l'du =Y (In(d =) =)' B" Widy + ) ) ——dv;
=1 =1 j=1i=1 %ij ~ i
Thereafter , the maximum likelihood equations are:
=_1 n . ) =1
B7HY [(In(x =7) = @) (In(d =) —@)'B~ =] =0
j=1
By (In(W —7) =) =0
j=1
n PN 1 .
Y IWB~ (In(¥) = %) =) +uj] =0
j=1
1 1\
whereu]-: —, 0, -
Xj—m Xkj — Yk
Finally , maximum likelihood estimators are determined from:
~ 1
=3 In(x-7) (1)
n=
-~ 1 L ] s ~ ] o~ ~\/
B=_) In(¥ =7) - p(n(x' - 7) - ) @
j=1
n ~ . n
; B (ln(x]f'y)fy)JrZiuj:O 3)
= =
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with
1
— — 0 0
X1 =7
~ 0
W; =
0
0 0 - 1A
Xkj — Yk

ii. Other alternative methods

We suppose that X is A (7, 4, B), so In(X — ) is Nx(p, B).
Thus In(X; — ;) is N(pi, i) and X; is A (i, pi, 07)
with 0’i2 = 0j;

ii.1 First method of maximum likelihood amended

In this method, we will replace the third equation of the maximum likelihood (3) by a statistical
function of rank 1 . The order statistic of rank 1 contains more information on the threshold
parameter.

For this, we will consider the following statistic function:

E [In(Xiy, —m)] = In(Xiy, =73) fori=1,--- k

thus
Yi +exp(ui + GiE(Zyn)) = xi,
with
Xy = fgjié‘n{xij}
and

xi(l) = 1]%;1;1”{)(1‘]'}

Z4,, is the order statistic of rank 1 of n independent random variables according to the nor-
mal distribution N(0,1).
Finally , the estimators can be determined from the following system:

peltimeon
B= 1Y (In(x) = %) = p)(In(x = %) — )/
Yi+exp(fli + GE(Zyn)) = i, fori=1---,k

with ¥/ = (xyj,- -+, xj)" and X,y = ming <j<u {x;j}
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ii.2 Second method of maximum likelihood amended

Same as the previous method, we will replace the third equation of the maximum likelihood (3)
by the following statistical function of rank 1:
E [P(Xi(l))] =F(x;,) fori=1,-,k

we obtain .

- n+1

E [P(Xim)}

and
In(xiy) — vi) — Wi
Ji

F(xi(l)) =& (

where @ is the distribution function of the standard normal distribution.

Thus, we obtain
" (l”(xi(l) =) = Hi) _ 1
0; n+1

_ 1 .

Estimators can be determined from the following system:

=3 Y In(x/ - ) ‘

= 3 L (n(¥ =7) = @) (In(x = 7) - B
¥i+exp (ﬁ,- + ;7! (%ﬂ)) =X, fori=1---,k

Finally

The only difference between these two methods is that in the first method, we have foR (n%l)
instead of E (Z ,,).

Remark 1. &1 (%H) depends only on n.

ii.3 The median method

Similarly, we will replace the equation (3) with an alternative equation.

Let Y a random variable that follow the normal distribution N(y,¢?) and a sample formed
by n observations vy, - -, Y.
Since Y is a symmetric variable then we obtain the following appriximation:

Yy =T =V-Yq)
with
Y = max{y;}, yq) = min {y;}

1<i<n 1<i<n

and 7 is the median of Y determined by the sample {y;, 1 <i < n}.
Therefore, if Y = In(X; — 7;), thus we obtain le following equation:

In(xi, —vi) — In(% — i)

In(%; — i) — In(xi,) — 7i)
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with

Xigy = 12?2(”{35:']'}/ Xigy = lrél],lgn{xij}
and £; is the median of X; determined by the sample {x;;, 1 <j < n}.
Finally, we obtain

=2
Xi\Xi,  — X7 .
vi:%/ fOi’l:l,"'k
Xig +xi(n) — 2%;

Estimators are determined by:

7 = Xigy Xigy ~ %
i xi(1) + xi(”) A* 23?12
Iiz %Z]r'lﬂ In(x! - 7) '
B=1yr (In(x - %) —p)(In(x) = 7) — &)’

ii.4 The method of the straight of Wicksell

Let Z(x) = w for 1 <i < nand n fixed.
i
We suppose that x = X; is A(7y;, i, 07)
which implies that x = v; + exp(0;Z + y;) = v + Biexp(0;Z)
where B; = exp(1;).

2
Let N(Z) = —\/—12:” Iz e~ 7 dt the distribution function of N(0,1) and F(x) = \/—12:” Iz e Tdt

the distribution function of A(v;, p;, 07).
Then

F(x) = N(Z(x)) 4)

If A; is the mean of X; then:

0'1'2
A =7i+ Biexp | —-

Finally
0; = 2N"'[F(A))] ®)

Let {(x,-j,F(x,'j)) :j=1,---,n} a given random sample.

We calculate first the mean A;, then by the interpolation method we calculate F(A4;).

From (5) and (4) we determinate 0; and Z(x;;).

Finally, we determinate u i such that uj = 2% for j = 1,---,n which is equivalent to
1 Yi
oy —

B Bi

Lle
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If we make a linear approximation to the data by {(x;j,u;) : j = 1,---

can determine the parameters §; and v; or y; and 7; (B; = % and y; =

,n} (u=cx+d), we
—4}
Cc

If we make an approximation of u = cx + d with quadratic mean, then we can get c and 4

minimizing :
n

flc,d) = i(u - u]»)2 =Y (cxij+d— uj)2

j=1 j=1
The partial derivatives of f(c,d) are:

df(c,d) z
T = Zg(cx,j +d— u/)

df (c,d) L
—aC :2];xij(cxjj+d—uj)

If these partial derivatives are equal to zero we obtain the following system:

{ 27:1 (cx,-]- +d— u]') =0

27:1 xij(cx;j+d—uj) =0

which is equivalent to:

n _ymn
ijlxij C—|—1’ld—§j:1uj

n 2 n _yn

j=1%j) €+ (2;':1 xif) d = Yjq xijtj

thus . . .
n Yy Xihj — Y Xij Y U

B n 2 n 2
n =1 Xij — (Ej:l xij)

and

Finally, we have

i = —Inc
= 2
’Yz—l p

B=—
n

Ly (In(x =) = ) (In(d = 7) — )’

III. ALTERNATIVE METHODS OF ESTIMATION IN THE CASE OF LOGNORMAL PROCESS

UNIVARIATE WITH THREE PARAMETERS

In this section , we will estimate the parameters of lognormal process univariate with three
parameters using the method of moments and the method of maximum likelihood modified.



1JSEAS International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-10, October 2016
) e ISSN: 2395-3470
| > www.ijseas.com

i. The method of moments

Let be a discrete sample of the process {Xto = x0, Xy, = x1,---,Xs, = xu} at the instants
{to,t1," -+ , tn} with the initial condition P[X;, = xo] = 1.
The density of X; given X; = x is equal to:

1 exp{_[li’l(y—'Y)—ln(x—'y)_‘g(t_.[)]z}
27t — )]z (y — 7) 20— Tha

f(T/ X, f,y) =

Therefore

Iy =9 —lnx— o) = BE =) o0 T
t—1

In the case t = t; and T = ty we obtain:

Z, = In(xi — ) — l"(txo —t’Y) —Blti—to) . N(0, V&)
i—fo

We might equate sampled moments Z; to corresponding moments of the distribution Z; to
obtain the following equations:

In(x; = 7) —In(xo — 7) = Bt —to) _

M-

= n\/ti —to
g In(i=9) = In(xo =9) —plti =t _ 5
i n(t; — to)
f [in(x; — %) —In(xo = 7) — Bt —t)1* _
i—1 n(t; — to)%
Finally, estimators are obtained from the following system:
~ 1 In(x; —7) —In(xo — %)
B= - T Lot 1 1
(i —to)? (ti —to)? )
g—yn fiztho (l”(xi -7 —In(xo-7%) _ E)
n t; —to
A7) =0
with
b — ¢ In(xj —7) —In(xo — 7)
In(xi =) = In(xo ) — S ‘(t Ot ¥ o — !
~ —1Uk —to i —to
A(’Y) = Z k=l 3 !
i=1 (ti —tp)2

ii. The method of maximum likelihood modified

In this method , we will replace the third L.M.L estimating equation (Local Maximum Likelihood)
[4] by a statistical function of rank 1 which contains more information on the threshold parameter

7.
As in the previous method , we will consider a discrete sample of the process {X;, = xo, Xt, =
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x1,- -+, Xy, = X} at the instants {to, t,- - - , £, } with the initial condition P[X;, = xo] = 1.
We obtain the maximum likelihood equations:

A = [In(xn — ) = In(xo — 7)]
P21) = 1Y e (in( =) — (s — )~ BN~ )
=17 "1
More,
since .
In(X —v)/ Xty = x0 is N(In(xo —v) + p(t — to), (t—to)20)
then

In(Xy, —v) —1 — ) —u(t;—t
Zi _ Tl( t; ’Y) H(XO 1’)/) I’l( i 0) is N(O,l)
(ti —to)20

However, the last equation can be obtained from the following approximation:

with

Zy) the order statistic of rank 1 with n random independent variables (Z;)1<i<, distributed
according to the normal law N(0,1)

and Z(y) = minj<x<,{Zx} such that

7, = =) — Inlxo — 7) — (7) (b — o)
(b — to) 25°(7)

To determine the maximum likelihood modified estimators , we develop a table of xi, ¢, 7k,
orand z; forallk=1---n.
Finally, estimators are 1, ji; and 0; such that Z; = Z).
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