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The quasi-differencing approach assumes time-varying individual effects and thus defines the 
orthogonality conditions separately for each time period. Thereby, the quasi-differencing approach 
can satisfy the orthogonality conditions more closely and produce smaller standard errors than the 
first-differencing approach, which assumes time-invariant individual effects and defines its 
orthogonality conditions for the entire period. Empirical results support the superiority of the 
quasi-differencing over the first-differencing approach for realistically finite samples. 

 
Keywords: individual effects in panel data; quasi-differencing; orthogonality condition 
JEL classication: C13, C33, C36 
 
I. Introduction 
 
In this study we consider a dynamic panel data model which includes lagged dependent variables 
as regressors and compare two approaches which are designed to remove the individual effects: the 
quasi-differencing (QD) and the first-differencing (FD) approach. Assuming that individual effects 
vary over time, the QD approach includes a product term of the individual effect multiplied by a 
time-varying coefficient, and eliminates the product term by a quasi-differencing transformation [3, 
4]. In contrast, the FD approach, currently the most widely employed, eliminates the time-invariant 
individual effect by subtracting the equation for time period t-1 from the one for t. 
 This study focuses on estimation efficiency and suggests the use of the QD approach, 
particularly for realistically finite samples. After removing the individual effects, the two 
approaches estimate their transformed models using the generalized method of moment (GMM) 
with appropriate instrumental variables (IVs) [1, 2]. The standard errors and thus the efficiency of 
the estimators depend on how closely the IVs satisfy the orthogonality conditions. The empirical 
findings reveal that the QD approach dominates over the FD one for estimation of dynamic panel 
data models. It is because the QD can define the orthogonality conditions separately for each time 
period but the FD has to define its orthogonality conditions for the entire period. 
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II. The Quasi-differencing Approach 
 
We consider the following dynamic panel data model which allows for time-specific and individual 
effects. For cross-sectional unit i (=1,..., M) and time period t (=1, ..., T),  
 

ititttitiit ufxyy ++++= −− yδβα 1,1,     (1) 

 
where the error term itu  is uncorrelated between units and time periods, and also satisfies the 
orthogonality conditions 0][][ == itisitis uxEuyE  )( ts < . The time-specific effect ( tδ ) is common 
to all cross-sectional units. This model allows individual effects to vary over time as the time-
invariant individual effect if  is multiplied by a time-varying coefficient ty  [4].  

Applying the quasi-differencing transformation used in [3] and [4], we can eliminate the 
time-varying individual effects. 
 

itttittittittitit vdxyxyy +++++= −−−− 2,42,31,21,1 θθθθ   (2) 

 

where tt r+= αθ1 , βθ =t2 , tt rαθ −=3 , tt rβθ −=4 , 1−−= tttt rd δδ  and 1, −−= tititit uruv  

with 1/ −= tttr yy . Lagged values, ]'1 ,,, ,,,[ 12,12, itiitiit xxyyz  −−= , can be used as instrumental 

variables for Eq.(2). Because of the time-varying coefficients, the orthogonality conditions are 
defined separately for each t [4]. For each t,  
 

0     '  → ∞→M
t

QD
t VZ       (3) 

 

where QD
tZ  is a matrix of instrumental variables for the QD and ]',,[ 1 Nttt vvV =  is a vector of 

disturbances in time t. By applying the nonlinear GMM, the lag coefficients ),( βα  are 

estimated, along with the ratios of the time-varying coefficients for the individual effects 
)/( 1−= tttr yy . 

 If ty  is constant over time, then 1=tr  and Eq.(2) becomes the first-differenced 
specification. 
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itttitiit uxyy ∆+∆+∆+∆=∆ −− δβα 1,1,     (4) 

 
where ∆  denotes the difference between time period t and t-1. Because of the time-invariant 
coefficients, the instrumental variables for the FD specification satisfy the orthogonality conditions 
defined for the entire period.  
 

0      '  →∆ →∞MFD UZ       (5) 
 

where FDZ  is a matrix of instrumental variables for the FD and U∆  is a 1)1( ×−TM  vector of 

the differenced-disturbances for the entire period. 
By choosing estimates of the time-varying parameters separately for each period, the QD 

can satisfy the orthogonality conditions more closely than the FD. Therefore, the QD approach is 
expected to produce smaller standard errors than the FD approach because the deviations from 
orthoganality conditions are used for the calculation of the standard errors.  
 
III. Simulated Data and Estimation Results  
 
To evaluate the estimation performance of the QD and the FD approach, data are generated using 
the following specification. 
 

ittitiit

ititttitiit

wxyx
ufxyy

++=

++++=

−−

−−

1,21,1

1,1,

γγ

yδβα
    (6) 

 
After data are generated for t = 1 to 32, the first 20 observations are discarded to minimize any 

effects of the starting values. The values assigned for the parameters are 7.0=α , 3.0=β , 

1.01 =γ , 7.02 =γ , 2.0=yσ , and 1=xσ  Values for the time-specific effects ( tδ ’s) and for the 

individual effects )( if  are independently drawn from uniform distributions 
)5.0 ,5.0( ~ −Uniformtδ  and )2 ,2( ~ −Uniformfi , respectively. The lagged variables on the right-

hand side are correlated with these effects through the dynamic relations in the dynamic model. 
Table 1 shows that the lagged regressors are highly correlated with the individual effects; the 
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correlation coefficients are 0.981 and 0.792. This emphasizes the importance of controlling for the 
individual effects. 
 

Table 1 
Summary statistics and correlation coefficients of the explanatory variables 

Variable mean s.d. min max 
correlation coefficient with 

individual effects ( if ) 

1, −tiy  -0.392 5.829 -12.106 12.528 0.981 

1, −tix  -0.137 2.347 -6.604 5.791 0.792 

Note: The number of cross-sectional units is M=100 and the data period is t =21 ~ 32. The total number 

of observations is 1,200. 

 
Table 2 reports the estimation results for two cases. One is for the time-varying individual 

effects and the other is for the time-invariant ones. 
 
(1) Case 1: time-varying ty , thus time-varying individual effects ( it fy ) 
 Since ty  and 1−ty  are different, the FD specification cannot eliminate the individual 
effects. The resulting component itt f)( 1−−yy  causes a bias even though instrumental variables 

are employed for estimation. Case 1 in table 2 shows that the FD estimates of ),( βα  are (0.383, 

0.073) when their true values are (0.7, 0.3). The true values are not included in the 99% confidence 

intervals, 383.0240.0 <<α  and 073.0064.0 <<− β . In contrast, the QD approach correctly 

and accurately estimates the regression coefficients with small standard errors. Therefore, if the 
individual effects vary over time, the QD approach outperforms the FD. 
 

Table 2 
Estimation results when the coefficient for the individual effect is  

time-varying or time-invariant. 
  Quasi-differencing First-differencing se (FD) – 

se(QD)   estimate se(QD) estimate se(FD) 

 Case 1: when individual effects are time-varying 

α  0.665 0.026 0.383 0.073 0.047 

β  0.306 0.024 0.073 0.070 0.046 
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 Case 2: when individual effects are time-invariant 

α  0.683 0.010 0.172 0.045 0.009 

β  0.303 0.008 -0.088 0.050 0.012 

Note: The number of cross-sectional units is M=100. Time dummies were included in all of the 

regressions in this study, but estimates of their coefficients are not reported in the table. 

 

 (2) Case 2: constant 1=ty  
 We examine whether the QD outperforms the FD even when the individual effects are 
constant over time. Case 2 in table 2 shows that when the number of units is relatively small with 
M=100, the standard errors of QD are smaller than the ones of FD; the differences are 0.009 for 

α  and 0.012 for β . Even when the parameters are constant over time, their estimates in one 

period could be different from those in another period due to sampling errors for small-sized 
samples. If so, QD is expected to produce smaller standard errors than FD because the QD 
instrumental variables has more flexibility in satisfying the orthogonality conditions which are 
defined separately for each time period.  
 
IV. Conclusions 
 
We examined herein whether the consistency and the efficiency in estimating dynamic panel data 
models can be improved when the sample size is realistically finite. It was shown theoretically and 
empirically that the FD approach is not valid when the individual effects are time-varying, and thus, 
its estimator is biased and inconsistent. In contrast, the QD approach, which is designed to account 
for time-varying individual effects, accurately estimates the parameters with small standard errors. 
 Even when the individual effects are constant, the empirical results demonstrate that the 
QD approach produces smaller standard errors than the FD approach for finite-sized samples. This 
is because the orthogonality conditions of QD are defined separately for each time period, and thus, 
its instrumental variables can satisfy the conditions closely. In contrast, since the orthogonality 
conditions of FD are defined for the entire time period, the FD instrumental variables do not have 
so much flexibility as the QD ones in satisfying the conditions.  
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