
Comparative Study on Different Lossless Data Compression
Methods

K.A. Ramya1, M.Pushpa2

1 M.Phil Student,
Quaid-E-Millath College for women (Autonomous), Anna Salai, Chennai-02.

ramyanndr@gmail.com

2 Assistant Professor,
Quaid-E-Millath College for women (Autonomous), Anna Salai, Chennai-02.

push_surya@yahoo.co.in

Abstract
Compression is useful because it is reduce the
number of bits needed to represent to data.
Compressing can save storage capacity, speed
file transfer, and decrease costs for storage
hardware and network bandwidth.
Compression is performed by a program that
uses a formula or algorithm to determine how
to shrink the size of data. There are number of
data compression techniques used and they can
be categorized as Lossy and Lossless
Compression methods. In this paper, we
discussed about some of the Lossless data
compression methods and compare their
performance.

Key-words: Data compression, Lossless
compression, Lossy compression, LZW,
Shannon-Fano coding and Huffman coding.

1.Introduction

Most of the real world data’s are very
redundant. Data Compression is basically
defined as a technique that reduces the size of
data by applying different methods that can
either be Lossy or Lossless [1]. Data
compression is a process that reduces the data
size by removing the excessive information
and redundant[2]. This is a common
requirement for most of the computerized
application[3]. Compression is a process by
which the text, audio, video files may be
transformed to another compressed file, such
that the original file may be fully recovered
from the original file without any loss of actual
information[4].

There are two types of data compression
namely lossy and lossless. In this paper we
would like to discuss about LZW,Shannon-

Fano coding and Huffman coding. Lossless
data Compression with appropriate example
and compare their performance with
Compression Ratio, Compression Factor and
Saving percentage.

2.Compression Techniques

Compression is built into a wide range of
technologies like storage system, operating
system, database and software applications. It
is useful to reduce the redundancy in data
representation thus increasing effective data
density. The two basic classes of data
compression are applied in different areas.
One of these is lossy data compression, which
is widely used to compress image data files for
communication or archives purposes. The
other is lossless data compression that is
commonly used to transmit or archive text or
binary files required to keep their information
intact at any time [4]. The main purpose of this
paper to shows the lossless compression
techniques and their comparative study.

 Input Output
 Data Data

Fig.1 Data Compression and Decompression

2.1 Lossless Compression

Lossless data compression is a technique that
allows the use of data compression algorithm
to compress the data and also allows the exact
the original data to be reconstructed from the

Data
Compression /

Data
Decompression

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
ISSN: 2395-3470
www.ijseas.com

compressed data [5]. It is used to reduce the
amount of source information to be transmitted
in such a way that when compressed
information is decompressed, there won’t be
any loss of information [6]. It is mainly used for
text data compression and decompression. It
can also be applied to image compression[7].
Some of the popular algorithms are the Run
length, Huffman coding, Shannon-Fano coding
and LZW.

2.2 Lossy Compression

In lossy data compression original data is not
exactly restored after decompression and
accuracy of reconstruction is traded with
efficiency of compression. This type of
compression used for image data compression.
The decompression ratio is high compare to
lossless data compression technique[7].
Sometimes some loss of quality is acceptable.
For example the human ear cannot hear all
frequencies, people can’t hear may end up
with a smaller file, but it is not possible to get
back to how exactly the original music
sounded[8]. In such cases, we can use a lossy
data compression methods. These methods are
cheaper, they take less time and space when it
comes to sending millions of bits per second
for images and video.

3. Lossless Compression Techniques

3.1 Lempel-Ziv-Welch

The Lempel-Ziv-Welch(LZW) algorithm was
created in 1984 by Terry Welch. It removes
redundant characters in the output and includes
every character in the dictionary before
starting compression and employs other
techniques to improve compression[5]. The
LZW algorithm stores strings in a “dictionary”
with entries for 4,096 variable length strings.
The 255 entries are used to contain the values
for individual bytes, so the actual first string
index is 256[9].

LZW Encoding Algorithm

Step 1: Initialize dictionary to contain entry
for each byte. Initialize the encoded
string with the first byte of the input
stream.

Step 2: Read the next byte from the input
stream.

Step 3: If the byte is an EOF go to step 6.
Step4: If concatenating the byte to the

encoded string produces a string that
is the dictionary:Concatenate the
byte to the encoded string.

go to step 2
Step 5: If concatenating the byte to the

encoded string produces a string that is
not in the dictionary:

add the new string to the
dictionary.Write the code for
the encoded string to the
output stream.Set the encoded
string equal to the new byte.

go to step 2.
Step 6: Write out code for encoded string and

text.

Example of LZW encoding

Input: LOSSY LOSSLESS = 14 character
Uncompressed bit = 14 X 8 = 112 bits

Table 1. Encoding for the LZW

input next output Index symbol
Nil L
L O L 256 LO
O S O 257 OS
S S S 258 SS
S Y S 259 SY
Y b Y 260 Y b
b L b 261 b L
L O
LO S 256 262 LOS
S S
SS L 258 263 SSL
L E L 264 LE
E S E 265 ES
S S
SS EOF 258

Output =LOSSYbLE
Output = 8 character
Compressed bit = 8 X 8 = 64 bits

3.2 Huffman Coding

The Huffman coding algorithm named after its
inventor, David Huffman, who developed the
method as a student in a class on information
theory at MIT in 1950.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
ISSN: 2395-3470
www.ijseas.com

Huffman code procedure is based on the two
observations. More frequently occurred
symbols will have shorter code words than
symbol that occur less frequently. The two
symbols that occur less frequently will have
the same length. The Huffman code is
designed by merging the lowest probable
symbols and this process is repeated until only
two probabilities of two compound symbols
are left and thus a code tree is generated and
Huffman codes are obtained from labelling of
the code tree[10].

Huffman Encoding Algorithm

Step 1. Initialization: Put all nodes in an sorted
list, keep it sorted at all times

Step 2. Repeat the following steps until the
sorted list has only one node left:

(a) From the list pick two nodes
having the lowest
frequencies/probabilities, create
a parent node of them.

(b) Assign the sum of the children's
frequencies/probabilities to the
parent node and insert it into list
such that the order is maintained.

(c) Delete the children from the sorted
list.

Step 3. Assign code 0, 1 to the two branches
of the tree on the path from the root.

After the Huffman tree, it creates a prefix code
for each node from the alphabet by traversing
the tree from the root to the node. It creates 0
for left node and 1 for a right node.

Example for Huffman coding:

Input: LOSSY LOSSLESS = 14 character
Uncompressed bit = 14 X 8 = 112 bits

Table 2. Frequencies in a character file

 SLOYE b: 14

 1

 LOYE b: 8

 0 1

 0 OYE b: 5

 0 1

 OY: 3 E b: 2

 0 1 0 1

S: 6 L: 3 O: 2 Y: 1 E: 1 b: 1

 0 10 1100 1101 1110 1111

Fig.2 Encoding for the Huffman coding

Compressed bit = 32 bits

3.3 Shannon-Fano Coding

This is one of an earliest technique for data
compression that was invented by Claude
Shannon and Robert Fano in 1949. In this
technique, a binary tree is generated that
represent probabilities of each symbol
occurring. The symbols are ordered in a way
such that the most frequent symbol appear at
the top of the tree and the least likely symbols
appear at the bottom[11].

Shannon-Fano coding algorithm

Step 1: For a given list of symbols, develop a
corresponding list of probabilities or
frequency counts so that each symbols
relative frequency of occurrence is
known.

Step 2: Sort the list of symbols according to
frequency, with the total frequency
with the most frequently occurring
symbols at the left and the least
common at the right.

Step 3: Divide the list into two parts with the
total frequency counts of the left part
being as close to the total of the right
as possible.

Step 4: The left part of the list is assigned the
binary digit 0, and the right part is
assigned the digit 1. This means that
the codes for the symbols in the first
part will all start with 0, and the codes
in the second part will all start with 1.

Symbol S L O Y E b

Frequency 6 3 2 1 1 1

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
ISSN: 2395-3470
www.ijseas.com

 0 1

Step 5: Recursively apply the step 3 and 4 to
each of the two halves, subdividing

 groups and adding bits to the codes
until each symbol has become a
corresponding code leaf on the tree.

Example for Shannon-Fano coding:

Input: LOSSY LOSSLESS = 14 character
Uncompressed bit = 14 X 8 = 112 bits

Table 3. Frequencies in a character file

 0 1

 0 1

 0 1

 0 1

Fig. 3 Encoding for the Shannon-Fano encoding

Table 4. Output of Shannon-Fano Encoding

Symbol Count Log(1/p) Code Subtotal

S 6 1.22 0 6
L 3 2.22 10 6
O 2 2.81 110 4
Y 1 3.81 1110 4
E 1 3.81 11110 5
b 1 3.81 11111 5

 Total # of bits 32

Compressed Bit = 32 bits

4. Measuring Compression Performance

Performance measure is use to find which
technique is good according to some criteria.
Depending on the nature of application there

are various criteria to measure the performance
of compression algorithm. When measuring
the performance one of the main thing’s to be
considered is space efficiency and the time
efficiency. Since the compression behaviours
depends on the redundancy of symbols in the
source file, it is difficult to measure
performance of compression algorithm in
general. The performance of data compression
depends on the type and structure of input
source. The compression behaviour depends
on the category of the compression algorithm:
lossy or lossless. Following are some
measurements use to calculate the
performance of lossless algorithms.

Compression ratio: Compression ratio is
defined as the ratio of size of the compressed
file and the size of the source file.

Compression Factor: Compression factor is
inverse of a compression ratio. The ratio is
between the size of the source file and the size
of the compressed file.

Saving Percentage: It’s calculates the
shrinkage of the source file as a percentage.

Table 5. Comparison between LZW, Huffman Coding
and Shannon-Fano coding

Symbol S L O Y E b

Frequency 6 3 2 1 1 1

Algorithm LZW Huffman
coding

Shannon
-Fano
coding

Input size
(Uncompressed

bit)

112 112 112

Output size
(Compressed bit)

 64 32 32

Compression
Ratio
(In %)

57.14 28.5 28.5

Compression
Factor

1.75 3.5 3.5

Saving
Percentage

(In %)

 75 25 25

 LOYEb: 8

L: 3 OYEb:

O: 2 YEb: 3

Y: 1 Eb: 2

E: 1 b: 1

S:6

SLOYEb:1

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
ISSN: 2395-3470
www.ijseas.com

5. Conclusion

In this paper, we compare LZW, Huffman
coding and Shannon-Fano coding techniques
of data compression on English words in terms
of compression size, compression ratio and
saving percentage. After testing those
algorithms, Huffman coding and Shannon-
Fano coding methodologies are very powerful
over LZW. Huffman coding and Shannon-
Fano coding gives better results and reduces
the size of the text.

6. REFERENCES
[1] K. Rastogi, K. Segar, “Analysis and

performance Comparison of Lossless
Compression Techniques for Text Data”,
International Journal of Engineering and
Computer Research (IJETCR) 2(1)
2014,16-19.

[2] ShruthiPorwal, Yashi Chaudhary, Jitendra
Joshi, Manish Jain “Data Compression
Methodologies for Lossless Data and
Comparison between Algorithms”,
International Journal of Engineering
Science and Innovative Technology,
Volume 2, Issue 2, March 2013.

[3] Introduction to Data Compression, Khalid
Sayood, Ed Fox (Editor), March 2000.

[4] Amandeep Singh Sidhu, Er.
MeenakshiGarg, “Research paper on Text
Data Compression Algorithm using Hybrid
Approach”, International Journal of
Computer Science and Mobile Computing,
Vol. 3, Issue. 12, December 2014,
Pg.01-10.

[5] Neha Sharma, Jasmet Kaur, Navmeet
Kaur, “ A Review on various Lossless Text
Data Compression Techniques”, An
InternationaJournal Engineering Sciences,
Vol. 2, Issue December 2014.

[6] Rajinder Kaur, Mrs. Monica Goyal, “ A
Survey on the different text data
compression techniques”, International
Journal of Advanced Research in Computer
Engineering & Technology, Volume 2,
Issue 2, February 2013.

[7] www.rfwireless_world.com
[8] http://en.wikibooks.org
[9] Mohammed Al-laham&Ibrahiem,

Proceedings of the world Congress on
Engineering and Computer Science 2007
WCECS 2007, October 24-26, 2007, San
Fancisco, USA

[10] Sahikal, Melvin.Y.,Arunodhayan Sam
Solomon, M.N.Nachappa, “A Survey on
Compression Techniques”, International
Journal of Recent Technology and
Engineering (IJRTE), Volume 2, Issue 1,
March 2013.

[11] Amarjit Kaur, Navdeep Singh Sethi,
Harinderpal Singh, “A Review on Data
Compression Techniques”, International
Journal of Advanced Research in
Computer Science and Software
Engineering, Volume 5, Issue 1, January
2015.

[12] Michael Heggeseth, Compression
Algorithms: Huffman and LZW, CS 372:
Data Structures, December
15,2003http://www.stolaf.edu/people/heg
geset/compression/

[13] Lenat, doug, Lempel-Ziv compression,
1999
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cg
i?Lempel-Ziv+compression

[14] HaroonAltarawneh, Mohammed
altatawneh, “Data compression
Techniques on Text Files: A Comparison
Study”, International Journal of Computer
Applications, Volume 26-No.5, July
2011.

[15] A.D. Suarjaya, “A new algorithm for data
compression Optimization” International
Journal of Advanced Computer science
Applications, Vol.3, No. 8, 2012.

K A Ramya received her MSc. Computer Science in 2011
from Anna University. She is pursuing her M.Phil Computer
Science under the supervision of Ms. M.Pushpa in Quaid-E-
Millath Government College for Women, Affiliated to
University of Madras. She has presented papers in national and
international conferences and published a paper in national level
Journal. Her area of interest is Database Management System

M. Pushpa received her Post Graduation in Computer
Applications from the University of Madras, Chennai and
M.Phil. Degree in Computer Science from Mother Theresa’s
Women’s University, Kodaikannal, Tamilnadu, and she has
more than fifteen years of Teaching experience with both
Undergraduate and Postgraduate Degrees Courses in Computer
Science and Computer Application, with University of Madras.
She had presented more than fifteen papers in national and
international conferences and also published more than ten
papers in National and International level Journal. Her area of
interest is Data Mining and Artificial Intelligence.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
ISSN: 2395-3470
www.ijseas.com

http://www.rfwireless_world.com/
http://en.wikibooks.org/
http://www.stolaf.edu/people/heggeset/compression/
http://www.stolaf.edu/people/heggeset/compression/
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Lempel-Ziv+compression
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Lempel-Ziv+compression

	Abstract
	1.Introduction
	2.Compression Techniques
	Fig.1 Data Compression and Decompression
	2.1 Lossless Compression
	2.2 Lossy Compression
	3. Lossless Compression Techniques
	LZW Encoding Algorithm
	Example of LZW encoding
	Input: LOSSY LOSSLESS = 14 character
	Output =LOSSYSbSLE
	Output = 8 character
	Huffman Encoding Algorithm
	Example for Huffman coding:
	Input: LOSSY LOSSLESS = 14 character
	SLOYE SbS: 14
	LOYE SbS: 8
	Compressed bit = 32 bits
	Shannon-Fano coding algorithm
	Input: LOSSY LOSSLESS = 14 character
	Compressed Bit = 32 bits
	4. Measuring Compression Performance
	5. Conclusion
	6. REFERENCES

