
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

230

Study on Resource Management and Scheduling in
Computational Grid

V.M.Sivagami , K.S.Easwarakumar
1AssociateProfessor,Department of Information technology Sri Venkateswara College of Engineering

2Professor Department of Computer Science Engineering Anna University

ABSTARCT
Scheduling and Resource Management is an
important issue in Grid Computing. There are many
Scheduling algorithms existing in the literature.
This paper discusses about a detailed study on
different scheduling algorithms in Computational
Grid. Grid scheduling could benefit from several
traditional scheduling Algorithms. These
Algorithms have achieved successful results in a
wide range of scheduling applications. In a
scheduling problem, the goal is to appropriately
assign all the tasks that are requesting service to the
available processors so that the time constraints are
satisfied. The time constraints of a task are the
task’s deadline (which is the time by which it is
desirable for it to complete execution) and the
task’s earliest starting time on each processor.
Success ratio is the common measure for evaluating
the scheduling performance which is , defined as
the ratio of the number of tasks that are feasibly
scheduled (that is, the tasks whose time constraints
are met) over the total number of tasks requesting
service. Effective computation and job scheduling
is rapidly becoming one of the main challenges in
grid computing and is seen as being vital for its
success.

Keywords: Resource Management, Resource
Discovery, Scheduling Algorithms.

 INTRODUCTION
 Efficient use of Grids has become an
important problem. A Grid is a structure with
distributed heterogeneous resources that are
offered to users. Users submit jobs that should
be efficiently processed using resources
available on the Grid .The resources (e.g.,

machines, CPUs, memory, storage space) often
have a limited capacity and their characteristics
change in time (due for example to machine
breakdown or consumption of storage space).
The goal is to find an optimal placement of tasks
with respect to the costs of the resources
assigned. The cost function is often minimized,
for example, a maximal estimated completion
time of all tasks in the scheduling problem. The
grid scheduler must make best effort decisions
and then submit the jobs to the hosts selected,
generally as a user. Furthermore, the grid
scheduler does not have control over the set of
jobs submitted to the grid, or local jobs
submitted to the computing hosts directly. This
lack of ownership and control is the source of
many of the problems yet to be solved in this
area. The grid scheduling is a particular case of
tasks scheduling on machines problem. In the
grid scheduling every machine can execute any
task, but for different time. To make information
available to users quickly and reliably, an
effective and efficient resource scheduling
mechanism is crucial. Generally grid resources
are potentially very large in number with various
individual resources that are not centrally
controlled. These resources can enter as well as
leave the grid systems at any time. For these
reasons resource scheduling in large-scale grids
can be very challenging.

 The scheduler is responsible for selecting
resources and scheduling jobs in such a way that
throughput and cost of the resources utilized. It
allows the user to specify the required resources
and environment for job execution. A Grid

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

231

scheduler decides to which local resource
manger(s) the job should be submitted[1,4].

 General definition and terminology
Grid Scheduler: definition of a Grid

scheduler will much depend on the way the
scheduler is organized (whether it is a super-
scheduler, meta-scheduler, decentralized
scheduler or a local scheduler) and the
characteristics of the environment such as
dynamics of the system. In a general setting,
however, a Grid scheduler will be permanently
running as follows: receive new incoming jobs,
check for available resources, select the
appropriate resources according to feasibility
(job requirements to resources) and performance
criteria and produce a planning of jobs (making
decision about job ordering and priorities) to
selected resources. Usually the following
terminology is employed for scheduling in Grids
as cited in [7,8,12,13,34].
Scheduling Problem: A scheduling problem is
specified by a set of machines, a set of tasks, an
optimality criterion, environmental
specifications, and by other constraints. The
environment defines relations and connections
between the machines and other used structures.
A goal of the scheduling problem is to find an
optimal schedule in the environment and to
satisfy all constraints. [8].
Schedulable unit:Tasks could be independent
(or loosely coupled) among them or there could
have dependencies, as it is the case of Grid
workflows. Job: A job is a computational
activity made up of several tasks that could
require different processing capabilities and
could have different resource requirements
(CPU, number of nodes, memory, software
libraries, etc.) and constraints, usually expressed
within job description. In the simplest case, a job
could have just one task.
A machine (computing unit) is a set of
cumulative resources (CPUs, memory, storage

space, list of specializations) with limited
capacities. A machine is described by a name, a
set of resources, a list of specializations (e.g.,
architecture, accelerator), and by its capacity,
load, speed and location. All these
characteristics are called descriptors of the
machine. [8]

 A job (task, activity) is a basic entity which is
scheduled over the resources. A job has specific
requirements on the amounts and types of
resources (including machines), or required time
intervals on these resources, where the job can
be scheduled.
Task: represents a computational unit (typically
a program and possibly associated data) to run
on a Grid node. Although in the literature there
is no unique definition of task concept, usually a
task is considered as an indivisible

The job j has the following variables
(properties):
• The processing time is estimated as the due
date of a chosen time queue (often too big), or
by using statistics based on recent runs of the
chosen program (e.g., Gaussian1, Amber2). Also
the processing time is estimated according to the
length of the input data or by other advanced
techniques (e.g., fuzzy estimate) and it is
denoted as Pj.
• A release date (rj) is the time when a job is
available to start processing including i/o
operations. The release date could be explicitly
set (a static plan, an allocation in future) or
unknown.
• A due date (dj) is implicitly set by the chosen
time queue or explicitly by the user. Both cases
are hard due dates.

• A weight (wj) signifies the importance of a
job j, e.g., it may be set according to the user’s
group (project). It should reflect natural
preferences, e.g., a local job has a greater weight
than a global one.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

232

• A setup time (sj) may be used to designate the
time required for retrieving (copying) input data
or the time for linking to a needed library. This
may be dependent on the sequence of jobs.

• The start time (Sj) is a time when the job
actually begins its processing . The completion
time (Cj) is the time when a job completes its
processing if preemptions are not allowed).
• Planning: A planning is the mapping of tasks,
jobs and applications to computational resources.
Application: An application is a software for
solving a (large) problem in a computational
infrastructure; it may require splitting the
computation into many jobs or it could be a
“monolithic” application. In the later case, the
whole application is allocated in a computational
node and is usually referred to as application
deployment. As in the case of jobs, applications
could have different resource requirements
(CPU, number of nodes, memory, software
libraries, etc.) and constraints, usually expressed
within application description.
Resource: A resource is a basic computational
entity (computational device or service) where
tasks, jobs and applications are scheduled,
allocated and processed accordingly. Resources
have their own characteristics such as CPU
characteristics, memory, software, etc. Several
parameters are usually associated with a
resource, among them, the processing speed and
workload, which change over time. As in the
case of jobs and applications, resource
characteristics are usually given by the resource
description. It should be noted that in a Grid
computing environment resources are
geographically distributed and may belong to
different administrative domains implying
different usage policies and access rights.
Specifications: Task, job and application
requirements are usually specified using high
level specification languages (meta-languages).
Similarly, the resource characteristics are

expressed using specification languages. One
such language is the ClassAds language [56].
Resource pre-reservation: The pre-reservation
is needed either when tasks, jobs or applications
have requirements on the finishing time or when
there are dependencies/precedence constraints
that require advance resource reservation to
assure the correct execution of the workflow.
The advance reservation goes through
negotiation and agreement protocols between
resource providers and consumers provides
details of the processing characteristics and the
constraints. The field contains the objective to
be minimized.

Machine Environment ()
The basic notations of machine environments
are single machine , identical machines in
parallel (Pm), machines in parallel with different
speeds (Qm), unrelated machines in parallel
(Rm), and (flow|open|job) shop(Fm,Om, Jm).[8]

When 1 is in the field, it indicates that we are
working with only one machine where jobs can
be scheduled. A single machine can be seen as a
disjunctive resource and other environments as
cumulative resources. We could schedule the
jobs on m identical machines in a parallel
environment be unavailable due to maintenance
or a breakdown. There are three different cases
of working with unavailable machines
Resumable: The machine is resumable if the
unfinished job can continue after the end of the
unavailable interval without any penalty.
Non-resumable: The machine is non-resumable
if the job must be fully restarted after the
unavailable interval.
Semi-resumable: The machine is semi-
resumable if the job must be partially restarted
after the unavailable interval.
Online Scheduling :Online scheduling supposes
that jobs arrive over time or one by one. Jobs are

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

233

scheduled without any knowledge of the future,
and often without knowledge of the processing

Objective Function ()
Here we consider the objective functions that
evaluate the quality of solutions. There are two
groups of scheduling objective functions.

In the first group there are basic functions.

• A makespan defined as max (C1, . . . ,Cn), the
completion time of the last job. This objective
function formalizes the viewpoint of the owner
of the machines. If the makespan is small, the
utilization of the machines is high.

• A total weighted completion time or the total
unweighted completion time defined as PCj This
objective is more suitable for the user, the time it
takes to finish individual jobs may be more
important.

• A maximum lateness defined as max(L1, . . .
,Ln), where Lj = Cj − dj (the difference between
the completion time and the due date).

 A Traditional Scheduling View of Grid
Scheduling

In traditional scheduling, scheduling is
defined as the allocation of operations to
resources over time, taking into account some
performance measure criteria subject to the
satisfaction of constraints [Pinedo, 1995]. So, is
Grid scheduling a new problem which differs
from the traditional scheduling? There is no
clear evidence that it differs in any fundamental
way from the traditional scheduling problems.
The fundamental difference may be the dynamic
nature of resources and constraints in the Grid
environment, but this point is not clear at
present.
Grid scheduling: Grid scheduling is the
mapping of individual tasks to computer
resources, while respecting service level
agreements (SLAs), etc.

Constraints: scheduling constraints can be hard
or soft. Hard constraints are rigidly enforced.
Soft constraints are those that are desirable but
not absolutely essential. Soft constraints are
usually combined into an objective function. So,
what are the hard and soft constraints in Grid
scheduling?
Optimization Criteria: a variety of
optimization criteria are of interest for Grid
scheduling: minimization of the maximum
lateness, minimization of the cost to he user
,maximization of the profit, maximization of
personal or general utility, maximization of
resource utilization, fairness, minimization of
variance, maximization of robustness and
predictability, minimization of broken SLAs,
etc.
Scheduling data: a variety of data are necessary
for a scheduler to describe the jobs and the
resources: job length, resource requirements
estimates, time profiles, uncertain estimate, etc.
Methodologies: the meeting agreed that there is
no clear choice of method which will be the best
for Grid scheduling.

Different Types of Schedulers

• Grid Scheduler: Software components in
charge of computing a mapping of tasks,
jobs or applications to Grid resources under
multiple criteria and Grid environment
configurations. Different levels within a
Grid scheduler have been identified in the
Grid computing literature comprising: super
schedulers, meta-scheduler, local/cluster
scheduler and enterprise scheduler. As a
main component of any Grid system, Grid
scheduler interacts with other components
of the Grid system: Grid information
system, local resource management systems
and network management systems. It should
be noted that in Grid environments, all these
kinds of schedulers must coexists, and they
could in general pursue conflicting goals,

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

234

thus, there is need for interaction between
the different schedulers in order to execute
the tasks as cited in [13,34].

• Super-scheduler: This kind of schedulers
corresponds to a centralized scheduling
approach in which local schedulers are used
to reserve and allocate resources in the
Grid. The local schedulers manage their job
queue processing. The super-scheduler is in
charge of managing the advance
reservation, negotiation and service level
agreement. Notice that tasks, jobs or
applications are entirely completed in
unique resource.

• Meta-scheduler: This kind of schedulers
(also known as Meta-broker in the
literature) arise when a single job or
application is allocated in more than one
resource across different systems. As in the
case of super-schedulers, a meta-scheduler
uses local schedulers of the particular
systems. Thus, meta schedulers coordinate
local schedulers to compute an overall
schedule. Performing load balancing across
multiple systems is a main objective of such
schedulers.

• Local/Cluster Scheduler: This kind of
scheduler is in charge of assigning tasks,
jobs or applications to resources in the same
local area network. The scheduler manages
the local resources and the local job queuing
system and is this a “close to resource”
scheduler type.

• Enterprise Scheduler: This type of
scheduler arises in large enterprises having
computational resources distributed in many
enterprise departments. The enterprise
scheduler uses the different local schedulers
belonging to the same enterprise.

• High-throughput schedulers: The
objective of this kind of scheduler is to
maximize the throughput (average number

of tasks or jobs processed per unit of time)
in the system. These schedulers are thus
task-oriented schedulers, that is, the focus is
in task performance criteria.

• Resource-oriented schedulers: The
objective of this kind of scheduler is to
maximize resource utilization. These
schedulers are thus resource-oriented
schedulers, that is, the focus is in resource
performance criteria.

• Application-oriented schedulers: This
kind of schedulers are concerned with
scheduling applications in order to meet
user’s performance criteria. To this end, the
scheduler have to take into account the
application specific as well as system
information to achieve the best performance
of the application. The interaction with the
user could also be considered.

 User-centric scheduler:
 AppLeS is a User-centric Scheduler.

• The User-centric Performance goals can be
defined as follows:

• Minimize execution time

• Minimize the waiting time in the ready-to-
process queue

• Maximize speed-up on the user’s own
platform i.e. minimize the turn-around time

• Minimize process slow-down, defined as
the ratio of turn-around time to the actual
execution time.

 Service-provider centric scheduler: A
service-provider centric scheduler does not try to
obtain detailed information about the
characteristics of the application and it tries to
optimally use the computing power of the grid.
Condor [2] is an example of a service-provider
centric scheduler. The Service-centric
Performance goals can be defined as follows:

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

235

• Maximize throughput. (Throughput is the
number of jobs processed per unit of time.)

• Maximize utilization. (Utilization is the
percentage of time a resource is busy)

• Minimize flow time. (Flow time or session
time is the sum of completion time of all
jobs.)

Economy based scheduler: A third case of
scheduling is called Economy-based. The
scheduler mimics the market place where the
user’s application is to execute at a particular
total maximum cost or it is required to meet
certain deadlines. The user is interested in
satisfying the requirements of the application at
the minimum possible cost. The goal of the
service-provider is to obtain the highest price for
its services. Thus each resource is characterized
by its cost and its computational capacity
characteristics. The scheduler tries to provide the
service to the user at the lowest cost while
providing maximum returns to the service
provider. Nimrod-G is a scheduling system
based on such market-like considerations.

General Classification of Scheduling
1. Centralized Scheduling

2. Decentralized Scheduling

3. Hierarchical Scheduling

Centralized Scheduling
In a centralized scheduling scheme, a central
machine acts as a resource manager which is
responsible to schedule jobs to all the nearby
nodes which belongs to the group. This scheme
is often used in situations like a computing
center where resources have similar
characteristics and usage policies. [1]

Benefits and Limitations of a Centralized
Scheduling System
• The scheduler may produce better

scheduling decisions because it has all

necessary, and up-to-date, information
about the available resources.

• But, it does not scale well with the
increasing size of the environment that it
manages. The scheduler itself may well
become a bottleneck, and it presents a
single point of failure in the environment.
Centralized scheduling structures are
difficult to maintain and reconfigure,
inefficient to satisfy real-world needs, and
costly in the presence of failures. Also, the
amount of knowledge to manage is very
large.[1]

Decentralized Scheduling

 In Decentralized scheme, scheduling of jobs
is done in a distributed manner, and the jobs are
distributed to multiple localized schedulers,
which interact with each other in order to
dispatch jobs to the participating nodes. The
scheduler communicates with other schedulers
in two different ways either through direct or
indirect communication.

 Benefits and Limitations of a Distributed
Scheduling System

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

236

• It overcomes scalability problems

• It can offer better fault tolerance and
reliability.

• However, the lack of a global scheduler,
which has all the necessary information on
available resource, usually leads to sub-
optimal scheduling decisions.[1]

 Distributed Scheduling-Direct communication
 In Direct Communication, each local
scheduler directly communicates with other
schedulers for job dispatching. Each scheduler
has a list of remote schedulers that they can
interact with, or there may exist a central
directory that maintains all the information
related to each scheduler. If a job cannot be
dispatched to its local resources, its scheduler
will communicate with other remote schedulers
to find resources.[1]

 Communication via a central job pool
 In this scheme, jobs that cannot be executed
immediately are sent to a central job pool.
Compared with direct communication, the local
schedulers can potentially choose suitable jobs
to schedule on their resources. Policies are
required so that all the jobs in the pool are
executed at some time.

Hierarchical scheduling
 In hierarchical scheduling, a centralized
scheduler interacts with local schedulers for job
submission. The centralized scheduler is a kind
of a meta-scheduler that dispatches submitted
jobs to local schedulers. The disadvantage of
hierarchical scheduling is it has scalability and
communication problem similar to centralized

scheduling. But, compared with centralized
scheduling, one benefit in hierarchical
scheduling is that the global scheduler and local
scheduler can have different policies in
scheduling jobs.[1]

Existing Schedulers
AppLeS

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

237

 The AppLeS project was based at UC San
Diego and was focused on development of
scheduling agents for applications running in
Grids. The AppLeS system collects resource
information from the Network Weather Service
(NWS) running at each computing node, and
dispatches tasks to lighter loaded nodes; while
scheduling actual execution of applications is
local. AppLeS uses other RMSs, e.g. Globus,
Legion, or NetSolve, to execute actual jobs (i.e.
it can be viewed as a meta-middleware placed
above the standard Grid middleware). Each
application has embedded AppLeS agents that
perform resource scheduling. [14,18]

Nimrod/G
 Nimrod/G is a Grid resource broker based
on an economy-driven approach to manage
resources and schedule jobs. It utilizes services
provided by other Grid middleware (e.g. Globus,
Legion, Condor), and the GRACE trading
mechanisms. Note that, while at the Nimrod/G
site there are references to work completed in
2007, the latest version of this middleware
v3.0.1 was released in October, 2005. Thus, to
the best of our knowledge, today this project is
no longer active.

OpenPBS
OpenPBS is a simple workload management
solution intended for small clusters of dedicated
homogeneous nodes. Here, computers are
federated into a virtual pool of resources.
Workload is scheduled to run within this virtual

pool, based on simple scheduling algorithms.
OpenPBS is one of workload managers
accessible from the CSF meta-scheduler.
However, the last release of the OpenPBS as an
independent project happened in 2001. At the
same time, the PBS Professional, is the
commercial product developed and sold by the
Altair corporation.

NetSolve
The NetSolve project was focused on execution
of scientific applications in heterogeneous
environments, while utilizing different
scheduling algorithms for different applications.
Job completion time estimation was based on
performance and load models, while a dynamic
job queue was used for job ordering. Length of
this queue was adaptively adjusted based on
historical performance data (an example of a
system-level scheduling. In addition,
mechanisms for scheduling multi-step, data-
dependent jobs have been implemented.
Recently, the NetSolve project has been
extended to Grids through the GridSolve
infrastructure. Both projects are active; for
instance, a new release of GridSolve software
appeared on 2008.

Condor
Condor is a high-throughput computing
environment that manages large collections of
diversely owned machines. It utilizes a
centralized scheduler based on the ClassAd
matchmaker. To overcome the disadvantages of
centralized scheduling, Condor allows the
matchmaker (and/or the user) to forward
requests to another matchmaker through the
gateway flocking mechanism. The Condor
project is still under development and has a large
community of users.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

238

Community Scheduler Framework
The Community Scheduler Framework (CSF) is
an open source Web Services Resource
Framework compliant metascheduler built for
the Globus Toolkit. The CSF provides interface
and tools for Globus users to create reservations,
define scheduling policies and submit jobs to the
Grid. CSF functionalities can be extended to
utilize other schedulers and support different
Grid deployment models. For instance, using
CSF allows a single interface access to (i) Load
Sharing Facility (LSF) (ii) OpenPBS, (iii)
Condor, and (iv) Sun Grid Engine (SGE). The
CSF is the default metascheduler for the Globus
Toolkit 4. This indicates that the CSF is not only
active, but likely to be developed further (with
the development of Globus).
GraDS: Grid Application Development
Software (GRaDS) Project with support from
NSF Next Generation Software Program has
been developing tools for construction of
applications on the grid easier. This led to the
development of a prototype software
infrastructure called GrADSoft that runs on top
of Globus and facilitates scheduling, launching
and performance monitoring of tightly coupled
Grid applications. In GrADS, the end user just
submits their parallel application to the
framework for execution. The framework
schedules the application to appropriate set of
resources, launching and monitoring the

execution and also rescheduling the applications
on different set of resources if necessary.
Anirban Mandal et al has launched and executed
EMAN, a Bio imaging workflow application
onto the grid . F.Berman et al in has presented
an extension to GrADS software framework for
scheduling workflow computations that has been
applied to a 3-D image reconstruction
application etc. [18].
Legion: Legion is an object based, meta systems
software project at the University of Virginia
that began in late 1993. It has been created to
address key issues such as scalability,
programming ease, fault tolerance, site
autonomy, security etc. It was also designed to
support large degrees of parallelism in
application code and manage the complexities of
the physical system for the user. It also allows
applications developers to select and define
system-level responsibility. Anand Natrajan et al
in [8] has presented a grid resource management
of legion for scheduling all compute objects as
well as data objects on machines whose
capabilities match the requirements, while
preserving site autonomy as well as recognizing

usage policies.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

239

NetSolve
 The NetSolve system from the University of
Tennessee’s Innovative Computing Laboratory
was to address the ease of use, portability and
availability of optimized software libraries for
high performance computing. It enables users to
solve complex scientific problems remotely, by
managing networked computational resources
and using scheduling heuristics to allocate
resources to satisfy the requests . The Primary
goal of NetSolve was to make an easy access to
grid resources. NetSolve, which is a client-agent
server system provides remote access to
hardware as well as software resources. The
agent maintains a list of all available severs and
performs resource selection for client requests
and also ensures load balancing of the servers.
Even though locating appropriate resources to
the request is a challenge in grid computing, the
NetSolve agent uses knowledge of the requested
service, information about the parameters of the
service request from the client, and the current
state of the resources to get possible servers and
return the servers in sorted order .
Sun Grid Engine :Sun Grid Engine (SGE) is
the foundation of Sun Grid Utility Computing
system, made available over Internet in the
United States in 2006, later available in many
other countries. It is used on high performance
computing cluster is used for accepting,
scheduling, dispatching and managing remote
and distributed execution of large numbers of
standalone or parallel user jobs. It also schedules
the allocation of distributed resources such as
processors, memory, disk space etc. Some of the
features of SGE include advance reservation of
resources, multi clustering, job submission
verifier on both client and server sides, topology
aware scheduling, job and scheduler fault
tolerance etc. Goncalo Borges et al in has
presented a work developed to integrate SGE
with the EGEE (Enabling Grids for E-Science)
middleware. EGEE is the world’s largest

operating grid infrastructure serving thousands
of multi science users with robust, reliable and
secure grid services worldwide.

Types of Scheduling in Grids
 Scheduling is a family of problems: on the
one hand, different applications could have
different scheduling needs such as batch or
immediate mode, task independent or
dependent; on the other hand, the Grid
environment characteristics itself imposes
restrictions such as dynamics, use of local
schedulers, centralized or decentralized view of
the system, etc. It is clear that in order to achieve
a good performance of the scheduler, both
problem specifics and Grid environment
information should be “embedded” in the
scheduler. In the following, main types of
scheduling arising in Grid environments is
described.

Independent Scheduling
 Computational Grids are parallel in nature.
The potential of a massive capacity of parallel
computation is one of the most attractive
characteristics of the computational grids. Aside
from the purely scientific needs, the
computational power is causing changes in
important industries such as biomedical one, oil
exploration, digital animation, aviation, in
financial field, and many others. They also
appear in intensive computing applications and
data intensive computing, data mining and
massive processing of data, etc. The common
characteristic in these uses is that the
applications are written to be able to be
partitioned into almost independent parts (or
loosely coupled). For instance, an application of
intensive use of CPUs can be thought of as an
application composed by subtasks (also known
as bags-of-tasks applications in Grid computing
literature), each one capable to be executed in a
different machine of the Computational Grid.
This kind of applications require independent

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

240

scheduling, according to the following scenario:
the tasks being submitted to the grid are
independent.

Grid workflows
Solving many complex problems in Grids
require the combination and orchestration of
several processes (actors, services, etc.). This
arises due to the dependencies in the solution
flow (determined by control and data
dependencies). This class of applications are
know as Grid workflows, which can take
advantage of the power of Grid computing.The
scheduling terminology used by the Grid
community seems quite different from the one
used by the traditional scheduling community.
Some basic definitions are listed out,which may
clarify or expand the Grid scheduling
terminology:
Immediate mode scheduling: In the immediate
mode scheduling, tasks, jobs or applications are
scheduled as soon as they enter the system.
Batch model scheduling: In the batch mode
scheduling, tasks, jobs or applications are
grouped into batches which are allocated to the
resources by the scheduler. The results of
processing are usually obtained at a later time.
Non-preemptive/Preemptive scheduling: This
classification of scheduling establishes whether
a task, job or application can be interrupted or
not, once allocated to the resource. In the non-
preemptive mode, a task, job or application
should entirely be completed in the resource (the
resource cannot be taken away from the task, job
or application). In the preemptive mode, the
preemption is allowed, that is, the current
execution of the job can be interrupted and the
job is migrated to another resource. Preemption
can be useful if job priority is to be considered
as one of the constraints.
Real Time Scheduling: Real-Time scheduling
problems are usually physically or functionally

distributed (air traffic control, manufacturing
systems, health care, etc.).Complex scheduling
systems are beyond direct control. They operate
through the co-operation of many interacting
subsystems, which may have their independent
interest, and modes of operation. The
complexity of practical scheduling problems
dictates a local point of view. When the
problems are too extensive to be analyzed as a
whole, solutions based on local approaches are
more efficient. There is a need for integration of
multiple legacy systems and expertise. Real-
world scheduling problems are heterogeneous.
Heterogeneous environments may use different
data and models, and operate in different modes.

Phases of scheduling in Grids
 In order to perform the scheduling process,
the Grid scheduler has to follow a series of steps
which could be classified into five blocks: (1)
Preparation and information gathering on tasks,
jobs or applications submitted to the Grid; (2)
Resource selection; (3) Computation of the
planning of tasks (jobs or applications) to
selected resources; (4) Task (job or application)
allocation according to the planning (the
mapping of tasks, jobs or applications to
selected resources); and, (5) Monitoring of task,
job or application completion (the user is
referred to [61] for a detailed description).
Preparation and information gathering: The Grid
scheduler will have access to the Grid
information on available resources and tasks,
jobs or applications (usually known as “Grid
Information Service” in the Grid literature).
Moreover, the scheduler will be informed about
updated information (according to the
scheduling mode). This information is crucial
for the scheduler in order to compute the
planning of tasks, jobs or applications to the
resources.
Computation of the planning of tasks: In this
phase the planning is computed.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

241

Task allocation: In this phase the planning is
made effective: tasks (jobs or applications) are
allocated to the selected resources according to
the planning.
Task execution monitoring: Once the
allocation is done, the monitoring will inform
about the execution progress as well as possible
failures of jobs, which depending on the
scheduling policy will be rescheduled again (or
migrated to another resource).
Different stages of Grid Scheduling :Grid
scheduling involves four main stages. They are,

• Resource discovery,

• Resource selection,

• Schedule generation

• and job execution.

Resource discovery
The goal of resource discovery is to identify

a list of authenticated resources that are
available for job submission. Resource
availability is determined in-terms of no of
registers and functional units available, memory
units, cache configuration, available bandwidth
,CPU usage etc..To adapt with the dynamic
nature of the Grid, a scheduler needs to know
some way of incorporating dynamic state
information about the available resources into its
decision-making process. Similarly, a scheduler
should always know what resources it can
access, how busy they are, how long it takes to
communicate with them and how long it takes
for them to communicate with each other. With
this information, the scheduler optimizes the
scheduling of jobs to make more efficient and
effective use of the available resources.

Schedule generation
 The generation of schedules involves two
steps, selecting jobs and producing resource
selection strategies.

 Resource selection
 Resource selection is the second phase of
the scheduling process which selects resources
that best suit the constraints and conditions
imposed by the user, such as CPU usage, RAM
available or disk storage. The result of resource
selection is to identify a resource list which
meets the minimum requirements for a
submitted job or a job list.

The goal of job selection is to select a job from a
job queue for execution. Four strategies that can
be used to select a job are given below.

• First come first serve

• Random selection

• Priority-based selection

• Priority Queuing: Priority Queuing has two
sub types such as Head of Line (HOL) for a
fixed priority and Dynamic Queue (DQ)
where each arriving job is allocated a
priority. Its priority level determines the
position of the job in the queue.

1. Three Issues: While implementing priority
queuing, two issues have to be considered to avoid
pitfalls.

2. Starvation: When high priority processes
continuously enter the queue, lower priority
processes may not be able to get processing time. If
pre-emption is allowed, even if a low priority
process were to start getting processed, it may be
pushed out as soon as a high priority process was to
come in. In such a situation, the lower priority
processes are said to face starvation.
3. Solution: Increase the priority level of a
process depending upon the waiting time in the
queue of the process. Thus over a period of time an
initially low-priority process may be able to beat a
high-priority process, which has just entered the
queue.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

242

4. Deadlocking: A high priority process may
need some resource, which can be created only
when a lower priority process is executed. However
since the high priority process is supposed to be
processed first, a deadlock may occur, in that
neither the high priority nor the low priority
process may be executed.
5. Solution: Priority Inversion: The priority of
the lower-priority process may be temporarily
boosted so that it may be executed, before the high
priority task is processed.

6. Backfilling selection- refers to the case,
where a task at the back in the Wait queue, is
chosen on the basis of some criterion to be
processed before the first task in the Wait queue
is taken up for processing. Sometimes when a
compute node becomes free, it may not be
possible to allocate the first task in the wait
queue due to dependencies among the tasks. In
such a case rather than keeping the node idle, an
out-of-order task may be allocated to the free
node. Two common variants are Easy and
Conservative backfilling. In Conservative
backfilling, the out-of-order task must be chosen
such that the first job in the Wait queue is not
delayed. “The performance of this algorithm
depends upon a sufficiently large backlog.”
7. Gang Scheduling: In this approach the
main concept is to “add a time-sharing
dimension to space sharing using a technique
called gang scheduling or co scheduling. This
technique virtualizes the physical machine by
slicing the time axis into multiple virtual
machines. Tasks of a parallel job are co-
scheduled to run in the same time-slices (same
virtual machines) “
8. Genetic Algorithms (GAs): GAs are useful
for optimization problems, in cases where the
number of parameters, which affect the
performance are large. GAs begins with a
potential set of solutions, called the population
of the search space and a fitness function,

appropriately defined for the problem on hand.
GAs then try to obtain an optimum solution by
using the processes of cross-over and mutation.
“GAs are widely reckoned as effective
techniques in solving numerous optimization
problems because they can potentially locate
better solutions at the expense of longer running
time. Another merit of a genetic search is that
its inherent parallelism can be exploited to
further reduce its running time” [11].
• Directed Acyclic Graphs Scheduling: A
job, which is to be run on a parallel system of
computational nodes, can be represented by a
weighted-node and weighted-edge DAG. The
weight of a node is the time that it would take
to be processed. The directed edges define the
dependencies. The weight of the edges may
represent the communication delays.“The
objective of DAG scheduling is to minimize the
overall program finish-time by proper
allocation of the tasks to the processors and
arrangement of execution sequencing of the
tasks. Scheduling is done in such a manner that
the precedence constraints among the program
tasks are preserved. The overall finish-time of a
parallel program is commonly called the
schedule length or makespan” [11].

Job execution
 Once a job and a resource are selected, the
next step is to submit the job to the resource for
execution. Job execution may be as easy as
running a single command or as complicated as
running a series of scripts that may, or may not,
include set up or staging.

Properties of a Good Scheduling System
A good scheduling system on the Grid should have
the following features as cited in[3] is as follows:

1. Efficiency in generating schedules

2. Adaptability, where resources may join or
leave dynamically

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

243

3. Scalability in managing resources and jobs

Ability to predict and estimate performance

1. Ability to coordinate the competition and
collaboration of different

2. Cluster-level schedulers

3. Ability to reserve resources for scheduling

4. Ability to take the cost of resources into
account when scheduling

5. Ability to take user preferences and site
policies into account.

Activities of a Grid Scheduler

1. Authorization Filtering

3. Min. Requirement Filtering

2. Application Definition

Phase One-Resource Discovery

5. System Selection

4. Information Gathering

Phase Two - System Selection

7. Job Submission

6. Advance Reservation

9. Monitoring Progress

8. Preparation Tasks

11. Clean-up Tasks

10 Job Completion

Phase Three- Job Execution

Step 1: Authorization Filtering
 The first step of resource discovery for Grid
scheduling is to determine the set of authorized
resources that the user submitting the job has
access to: without authorization to run on a
resource, the job will not run cited in [3].

Step 2: Application Requirement Definition
 In this step, the user must be able to specify
some minimal set of job requirements in order to
further filter the set of feasible resources .The set

of possible job requirements can be very broad
and it may include static details like the
operating system or hardware for which a binary
of the code is available, or the specific
architecture for which the code is best suited as
well as dynamic details like, a minimum RAM
requirement, connectivity needed, or /tmp space
needed etc..[3]

Step 3: Minimal Requirement Filtering
 In the Minimal Requirement Filtering
phase, the resources that do not meet the
minimal job requirements are filtered out.

Phase 2: System Selection
 Given a group of possible resources all of
which meet the minimum requirements for the
job, a single resource must be selected on which
to schedule the job. This selection is generally
done in two steps: gathering detailed
information and making a decision.

Step 4: Dynamic Information Gathering
 In order to make the best possible
job/resource match, detailed dynamic
information about the resources is needed. The
dynamic information gathering step has two
components: what information is available and
how the user can get access to it.

Step 5: System Selection
 With the detailed information gathered in
Step 4, the next step is to decide which resource
(or set of resources) to use. Various approaches
are , Condor matchmaking , multi-criteria , and
meta-heuristics.

Phase 3: Job Execution
The third phase of Grid scheduling is running a
job. This involves a number of steps, few of
which have been defined in a uniform way
between resources.

Step 6: Advance Reservation (Optional)

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

244

 In order to make the best use of a given
system, part or all of the resources may have to
be reserved in advance. Depending on the
resource, an advance reservation can be easy or
hard to do and may be done with mechanical
means or human means resources.

Step 7: Job Submission
 Once resources are chosen, the application
can be submitted to the resources. Job
submission may be as easy as running a single
command or as complicated as running a series
of scripts and may or may not include setup or
staging.

Step 8: Preparation Tasks
 The preparation stage may involve setup,
staging, claiming a reservation, or other actions
needed to prepare the resource to run the
application.

Step 9: Monitoring Progress
 Depending on the application and its
running time, users may monitor the progress of
their application and the monitoring is typically
done by repetitively querying the resource for
status information, but this is changing over time
to allow easier access to the data. If a job is not
making sufficient progress, it may be
rescheduled.

Step 10: Job Completion
When the job is finished, the user needs to be
notified. Often, submission scripts for parallel
machines will include an e-mail notification
parameter. For fault-tolerant reasons, however,
such notification can prove surprisingly difficult.
And of course, end-to-end performance
monitoring to ensure job completion is a very
open research question.

Step 11: Cleanup Tasks
After a job is run, the user may need to retrieve
files from that resource in order to do data
analysis on the results, remove temporary

settings, and so forth. Users generally do this by
hand after a job is run, or by including clean-up
information in their job submission scripts.

Functional Requirements for Grid Scheduling

• Cooperation between different Resource
providers

• Interaction with Local Resource
Management systems

• Support for reservations and service level
agreements

• Orchestration of coordinated resources
allocations

• Automatic handling of accounting and
billing

• Distributed Monitoring

• Failure Transparency

• Resource Management in a Multicore Grid

Scheduling algorithms can be distinguished by
their main characteristics, such as:

o Target system: the system for which
the scheduling algorithm was
developed, which can be a
heterogeneous system, a grid, or a
cloud computing system.

o Optimization criterion: Make span
and cost are the main metrics specified
by cloud user and considered by
schedulers in the decision making
process.

o Multi-core awareness: Computer
systems can have multiple cores which
should be considered by scheduling
algorithms in resource selection.

o On-demand resources: Resources can
be leased either on-demand or for long
terms. The on-demand leasing of
resources is treated by the scheduling

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

245

algorithm as a “single expense” during
the execution of the workflow.

Reserved resources: The algorithm should
consider the use of a resource reserved for a
long term.
Levels in service level agreement (SLA): The
scheduling algorithm should consider that
SLAs can be organized hierarchically. SLAs
with a single-level allow clients and providers
to interact directly to negotiate resource
capacities and prices. When multiple levels, the
scheduling algorithm can run in an
intermediate facility between the IaaS cloud
provider and the final client. By doing so, costs
can be decreased.

A review of traditional scheduling
Methodologies
Grid scheduling could benefit from several
traditional scheduling methodologies. These
methodologies have achieved successful results
in a wide range of scheduling applications.
Therefore, it worth to start to investigate their
performance in Grid scheduling. These
methodologies are described below.[5]

Heuristics:
A Heuristic is a technique that seeks good
solutions at a reasonable computational cost
without being able to guarantee either feasibility
or optimality, or even in many cases to state how
close to optimality a particular feasible solution
is [Reeves, 1995]. Dispatching rules are example
of heuristics; they are used to select the next job
to process on the resource whenever the resource
becomes free. Dispatch rules include EDD
(Earliest Due Date) and FCFS (First Come First
Served).[5]

Meta-heuristics: tabu search, simulated
annealing and evolutionary algorithms.Meta-
heuristics are high-level heuristics that guide
local search heuristics to escape from local
optima. Meta-heuristics such as tabu search,

simulated annealing and genetic algorithms
improve the local search algorithms to escape
local optima by either accepting worse solutions,
or by generating good starting solutions for the
local search in a more intelligent way than just
providing random initial solutions [Reeves,
1995, 1997; Reeves and Rowe, 2002; Voss et al.,
1999; Pham and Karaboga, 2000].

Case-based reasoning
Case-Based Reasoning (CBR) is an artificial
intelligence methodology in which a new
problem is solved by reusing knowledge and
experience gained in solving previous problems.
A case contains a description of the problem,
and its solution. Cases are stored in a case base.
The CBR process is divided into four phases:
retrieval of the case most similar to the new
problem, reuse and revision of its solution, and
inclusion of the new case in the case base
[Kolodner, 1993; Aamodt and Plaza, 1994;
Leake, 1996].

Dynamic scheduling
 Dynamic scheduling is the problem of
scheduling in dynamic environments. Grid
scheduling systems operate in dynamic
environments subject to various unforeseen and
unplanned events that can happen at short
notice. Such events include the breakdown of
computers, arrival of new jobs, processing times
are subject to stochastic variations, etc. It turns
out that the performance of a schedule is very
sensitive to these disturbances, and it is difficult
to execute a predictive schedule generated in
advance. These real-time events not only
interrupt system operation but also upset the
predictive schedule that was previously
established. Consequently the resulting schedule
may neither be feasible nor nearly optimal
anymore. Dynamic scheduling is arguably of
practical importance in Grid Scheduling to
generate robust schedules. For extensive surveys
on dynamic scheduling refer to [Cowling and

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

246

Johanson, 2002; Cowling et al., 2003a; Vieira et
al., 2003].

Fuzzy methodologies
Fuzzy systems consist of a variety of concepts
and techniques for representing and inferring
knowledge that is imprecise, uncertain, or
unreliable. fuzzy set is a very general concept
that extends the notion of a standard set defined
by a binary membership to accommodate
gradual transitions through various degrees.
Previous work has investigated the
representation of uncertainty in processing time
and due time by fuzzy numbers, the
representation of flexible constraints by fuzzy
measures, fuzzy job precedence relations or
machine breakdowns, but these have been in
isolation. Even once an SLA has been agreed,
there are many ways in which it might need
renegotiation: (compute and other) resources
may fail unpredictably, sub-jobs may fail due to
user error, more important (high-priority) jobs
may be submitted, user-requirements might
change, etc. In a busy Grid environment, SLAs
would be constantly being added, altered or
withdrawn, and hence scheduling would need to
be a continual, dynamic and uncertain process.

Agents and multi-agent systems
 Recently, multi-agent systems are one of the
most promising approaches to building complex,
robust, and cost-effective next-generation
manufacturing scheduling systems because of
their autonomous, distributed and dynamic
nature, and their robustness against failures. An
agent is a computer system that is situated in
some environment, and that is capable of
flexible and autonomous action in this
environment in order to meet its design
objectives.

A Multi-Agent System is a system composed of
a population of autonomous agents, which
interact with each other to reach common
objectives. Agents provide robustness and

reliability against failures. Distributed systems
allow fast detection and recovery from failures
and the failure of one or several agents does not
necessary make the overall system useless.
Because multi-agent systems are open and
dynamic structures, the system can be adapted to
an increased problem size by adding new agents,
and this does not affect the functionality of the
other agents. Agents can operate asynchronously
and in parallel, which can result in increased
overall speed. Individual agents can be
developed separately and it may be possible to
reuse agents in different application scenarios.
Moreover, the overall system can be tested and
maintained and reconfigured more easily. Agents
may be much more cost-effective than a
centralized system, since it could be composed
of simple subsystems of low unit cost. Multi-
agents have been successfully used to resolve a
wide range of complex distributed scheduling
problems . We believe that Multi-agent systems
provide the foundation for the creation of Grid
scheduling systems that possess capabilities of
autonomy, heterogeneity, reliability,
maintainability, flexibility, and robustness. Some
researchers have already started to investigate
the use of the agent technology in grid
computing, in particular for resource
management in grid environments [Cao et al.,
2002a, 2002b].

Literature Survey of Traditional Scheduling
Algorithms
First come first served scheduling algorithm
(FCFS)
In this algorithm, jobs are executed according to
the order of job arriving time. The next job will
be executed in turn. The FCFS algorithm [1]
may induce a ‘‘convoy effect’’. The convoy
effect happens when there is a job with a large
amount of workload in the job queue. When this
occurs, all the jobs queued behind it must wait a
long time for the long job to finish.[17.22,24]

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

247

 Round Robin scheduling algorithm (RR)
The RR algorithm mainly focuses on the
fairness problem. The RR algorithm [2] defines
a ring as its queue and also defines a fixed time
quantum. Each job can be executed only within
this quantum, and in turn. If the job cannot be
completed in one quantum, it will return to the
queue and wait for the next round. The major
advantage of RR algorithm is that jobs are
executed in turn and do not need to wait for the
previous job completion. Therefore, it does not
suffer from a starvation problem. However, if
the job queue is fully loaded or workload is
heavy, it will take a lot of time to complete all
the jobs. Furthermore, a suitable time quantum
is difficult to decide.[17,22,24]

 Min–min and Max–min algorithm
The Min–min scheduling algorithm [3] sets the
jobs that can be completed earliest with the
highest priority. Each job will always be
assigned to the resource that can complete it
earliest. Similar to Min–min algorithm, Max–
min algorithm [3] sets the highest priority to the
job with the maximum earliest completion time.
The main idea of Max–min algorithm is to
overlap long running tasks with short-running
tasks. Max–min can be used in cases where there
are many shorter tasks than there are longer
tasks. For example, if there is only one long
task, Min–min will first execute many short jobs
concurrently, and then execute the long task.
Max–min will execute short jobs concurrently
with the long job.

Sufferage scheduling algorithm
 The idea behind the sufferage scheduling
algorithm is that better mapping can be
generated by assigning a machine to a task that
would ‘‘suffer’’ most in terms of expected
completion time if that machine is not assigned
to it. In this algorithm, each job is assigned
according to its sufferage value. The sufferage
value is defined as the difference between its

second earliest completion time and its earliest
completion time (two completion times with
different resources). The sufferage algorithm
will pick a job in an arbitrary order and assign it
to the resource that gives the earliest completion
time. If another job has the earliest completion
time with same resource, the scheduler will
compare their sufferage values and choose the
larger one. However, this algorithm may have
the starvation problem.

On-line mode heuristic scheduling algorithm
 Jobs are scheduled when they arrive. Since
the Grid environment is a heterogeneous system
and the speed of each processor varies quickly,
the on-line mode heuristic scheduling algorithms
are more appropriate for the Grid environment.

 Most fit task scheduling algorithm (MFTF)
 The MFTF algorithm [9] mainly attempts to
discover the fitness between tasks and resources
for user. It assigns resources to tasks according
to a fitness value, and the value is calculated as
follows:

fitness (i, j) = 10000

 1+(Wi/Sj-Ei)

where Wi is the workload of the ith task, Sj is
the CPU speed of the jth node, and Ei is the
expected time of the ith task. Wi/Sj is the
expected execution time using this node|Wi/Sj–
Ei| is the difference of the estimated execution
time and the expected task execution time. Ei is
determined by the user or estimated by the
machine. How to set Ei is calculated by, Ei = A
+ n × S, where A is the average response time of
the 100 latest done tasks;n is a non-negative real
number and S is the standard deviation of task
response time for the 100 latest done task. When
the estimated execution time is closer to Ei, it
means that the node is more suitable for the task.
However, the MFTF scheduling algorithm has
some problems for estimating. It does not

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

248

consider the resource utilization, and the
estimated function is an ideal method.
Therefore, incorrect scheduling may occur in the
real environment.

Ant algorithm
The ant algorithm is also based upon heuristic
approach. It is based on the behavior of real ants.
Each ant deposes the chemical pheromone on its
path when it searches for food fromits nest.
When each ant moves in a particular direction,
the strength of chemical pheromone increases.
With this, other ants could also trail along. This
inspired the discovery of ACO algorithm. This
algorithm uses a colony of artificial ants that
behave as cooperative agents in a mathematical
space where they are allowed to search and
reinforce pathways (solutions) in order to find
the optimal ones(i.e) the shortest path. This
approach which is population based has been
successfully applied to many NP-hard
optimization problems [3][4].

 Ant algorithm-based task scheduling in grid
computing
 Ant algorithm is a new heuristic algorithm;
it is based on the behavior of real ants. When the
blind insects, such as ants look for food, every
moving ant lays some pheromone on the path,
then the pheromone on shorter path will be
increased quickly, the quantity of pheromone on
every path will effect the possibility of other
ants to select path. At last all the ants will
choose the shortest path. Ant algorithm has been
successfully used to solve many NT’ problems,
such as TSP, assignment problem, job-shop
scheduling and graph coloring. The algorithm
has inherent parallelism, and we can validate its
scalability. So it’s obvious that ant algorithm is
suitable to be used in Grid computing task
scheduling. And at the same time, all the factors
that affects the state of resources can be
described by one thing, pheromone. Then we

can get the predictive results very simple and
quickly.

An Improved Ant Algorithm For Job
Scheduling In Grid Computing
 In this paper, we propose an improved ant
algorithm for job scheduling in grid computing.
The new algorithm is based on the general ant
adaptive scheduling heuristics and an added in
load balancing guide component. The load
balancing factor, related to the job finishing rate,
is introduced to change the pheromone. That
will make the job finishing rate at different
resource being similar and the ability of the
systematic load balancing will be improved. It
has been successfully tested in a simulation grid
environment. The experiments show that the
new ant heuristic method can lead to significant
performance in various applications.[17,22,24]

Ant colony algorithm
The ant colony algorithm for job scheduling in
grid aims at submitted jobs to resources based
on the processing ability of jobs as well as the
characteristics of the jobs. Ant colony algorithm
is the bio-inspired heuristic algorithm, which is
derived from the social behavior of ants. Ants
work together to find the shortest path between
their nest and food source. When the ants move,
each ant will deposit a chemical substance called
pheromone. Using this pheromone, the shortest
path is found. The same concept is used to
assign jobs in grid computing. When a resource
is assigning a job and completes, its pheromone
value will be added each time. If a resource fails
to finish a job, it will be punished by adding less
pheromone value. The issue here is the
stagnation, where there is a possibility of jobs
being submitted to same resources having high
pheromone value.In this ant colony algorithm
[18], the load balancing method is proposed

to solve the issue of stagnation. The algorithm is
as follows

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

249

(i) The user will send request to process a job.

(ii) The grid resource broker will find a resource
for the job.

(iii)The resource broker will select the resource
based on the largest value in the pheromone
value matrix.

(iv)The local pheromone update is done when a
job is assigned to a resource.

(v)The global pheromone update is done when a
resource completes a job.

(vi)The execution result will be sent to the user
when the resource broker select a particular
resourcefor a job j, jthcolumn of the Pheromone
Value matrix will be removed and jobs will be
assigned to other resources. Thus the load
balancing is achieved.

 Ant colony optimization (aco) algorithm in
job scheduling
 ACO has been used to solve scheduling
problems in the Grid environment in recent
years [10]. ACO algorithm is based on Ant
algorithm and modified it to suit the Grid
environment. Like ACO algorithms, they needed
some information such as number of CPUs,
MIPS for each processor, etc. to schedule tasks.
They used a parameter named pheromone to do
the scheduling action. A resource must submit
the information to the resource monitor, and the
pheromone values are initialized at the
beginning of the algorithm [20].

However, the better resources will get more load
capacity than the others, and the performance
will decrease. The load balancing factor means
that the more jobs finished in a resource, the
more its pheromone intensity increases. In
contrast, the more jobs failed, the more
pheromone intensity is decreased. Therefore,
they added the load balancing factor to reduce
the load of the better resources to balance the
utilization of the resources in the grid
environment. However, the definition of the

pheromone has a problem. The value is the sum
of different units. This problem may affect the
result of scheduling algorithm accuracy.

A New Ant Colony Optimization Scheduling
Algorithm : The proposed scheduler proves that
best suitable resource is allocated to each task
with reduced makespan and execution time
when compared with the existing algorithm.
This algorithm gives the efficient resource
allocation to the machines. It is working with
only resource allocation and not on other criteria
such as minimizing completion time, execution
time etc.
Particle Swarm Optimization (PSO) is a
population based search algorithm. The particles
fly through a multidimensional search space in
which the position of each particle is adjusted
according to its own experience and the
experience of its neighbors. In the binary version
of this algorithm was presented by Kennedy and
Eberhart [10] ,In which, each particle is
composed of D elements, which indicate a
potential solution. In order to evaluate the
appropriateness of solutions a fitness function is
always used. Each particle is considered as a
position in a D dimensional space and each
element of a particle position can take the binary
value of 0 or 1 in which 1 means “included” and
0 means “not included”. Each element can
change from 0 to 1 and vice versa. Also each
particle has a D-dimensional velocity vector the
elements of which are in range[-Vmax ,Vmax]
.Velocities are defined in terms of probabilities
that a bit will be in one state or the other. The
velocity vector is updated in each time step
using two best positions, pbest and nbest , and
then the position of the particles is updated using
velocity vectors. Pbest and nbest are D
dimensional, the elements of which are
composed of 0 and 1 the same as particles
position and operate as the memory of the
algorithm. The personal best position, pbest , is
the best position the particle has visited and

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

250

nbest is the best position the particle and its
neighbors have visited since the first time step.
When all of the population size of the swarm is
considered as the neighbor of a particle, nbest is
called global best (star neighborhood topology)
and if the smaller neighborhoods are defined for
each particle (e.g. ring neighborhood topology),
then nbest is called local [9].

 Heuristic min-mean job scheduling page
layout
Online mode and batch mode are the two
classifications of heuristic scheduling algorithms
[9] [10]. In online mode, the jobs are scheduled
to the resources as soon as it arrives. In batch
mode, the jobs are independent, there is no order
of execution and jobs are scheduled as a batch
every time. Here in this paper, batch mode
scheduling is followed. Achieving the minimum
make span is the goal. To evaluate the mapping
heuristic, the expected time to complete
[ETC]model is employed. Before execution, the
expected execution time of the tasks on the
machine should be known, and this is contained
in the ETC matrix. Consider for the task ti and
the arbitrary machine mjETC[ti,mj]. This
represents the expected time of the task i on the
machine j. In this matrix, the row represents the
expected execution time of a task on different
machine and column represents the expected
execution time of different tasks on the same
machine[11][12][13]. Based on these
characteristics, the benchmark of instances for
distributed heterogeneous computing system is
generated.

(i) Machine heterogeneity (low/high)

(ii) Task heterogeneity (low/high)

(iii)Consistency(Consistent/Inconsistent/Partiall
y Consistent)

Combining these 3 bench marks, 12
combinations of ETC matrices are used to
evaluate the heuristic min mean scheduling

algorithm. There are 2 phases in this algorithm
[14]. In the first phase, all jobs are assigned to
the resources. In the second phase, mean
completion time of all jobs is calculated and the
jobs are allocated to the machines whose
completion time is less than the mean
completion time. Machine who has maximum
completion time is selected as make span.

Firefly algorithm
The firefly algorithm is based on swarm
intelligence behavior of firefly. It is a meta
heuristic algorithm inspired by the social
behavior of firefly. Firefly algorithm finds the
global optimal solution. The main focus of
firefly algorithm is to complete the task within a
minimum make span and flow time as well to
utilize the grid resource efficiently. Firefly
optimization as mentioned in [15] [16] in can be
described as

• The firefly attracts and is attracted by all
other Fireflies

• The brighter one attracts the less bright one

• The brightness decreases with distance

• The brightest firefly can move randomly

• The firefly particles can move randomly

There are 4 phases in firefly algorithm [17] In
the phase 1, the parameters are set (initial
population, fitness and attractiveness), number
of available resources and list of submitted jobs
are identified. In the phase 2, the brightness of
each firefly is found at the source using fitness
function and distance is calculated. The less
bright fireflies are moved towards the brighter
one. In the phase 3, the new solution is
evaluated and light intensity is updated In the
phase 4, the fireflies are ranked and current
global best is identified. Finally, the iteration
parameters are updated All these are done until
the termination condition is reached. The
termination condition may be number of

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

251

iteration or the fitness value or sometimes the
saturation state.

 Grouping based job scheduling in grid
computing
 The adaptive group based job scheduling
focuses on group based scheduling, and explains
the jobs are grouped based on coarse grained
jobs. The grouping is based on the resources’
processing capability in Million Instructions per
Second (MIPS),bandwidth (Mb/s), and memory
size (In Mb).The characteristics of resources are
the basic for grouping strategy. In grid
computing, 2 approaches can be used for job
execution. In first approach, the user can directly
search the resources for job execution using an
information service. In the second approach, the
user can obtain information about the current
availability and capability of resources using the
resource manager. The Grouping Based Job
Scheduling algorithm has 2 phases [19]. In the
first phase, the scheduler receives information
about the resource status from the Grid
Information Service (GIS), and sorts the jobs in
descending order. In the second phase, the
system selects jobs in First Come First Served
(FCFS) order and forms different job groups.
The scheduler will select resource in FCFS order
after sorting them in descending order of their
MIPS. The jobs are put into the job groups until
the sum of resource requirement of the jobs in
that group is less than or equal to amount of
resource available at selected site. As soon as the
job group is formed, the jobs are assigned to the
corresponding resource. After execution the job
groups, the result is sent to the corresponding
user and the resources are available to the Grid
System. The .NET framework scheduler uses the
FCFS scheduling technique.[7]

Community – aware scheduling algorithm
(CASA)
CASA is a decentralized dynamic heuristic meta
scheduling algorithm. In CASA, jobs can be

rescheduled. In order to overcome the stagnation
a probabilistic approach has been used to assign
jobs so that the jobs are evenly distributed to all
other resources. CASA is a two phase algorithm
[20]. The first phase is the job submission phase
where each node receives the jobs that are
submitted by local user. Consider a node A, it
receives the job, it acts as a initiator node and
requests all other nodes using the REQUEST
message. The other nodes who are willing to
take the job will reply through ACCEPT
message. The node A will evaluate the other
participating nodes using the historic data and
selects the appropriate node and submits the job
to it. The second phase is the dynamic
rescheduling phase,the node which received the
job will look for the job which has large enough
waiting time and has not been selected recently
in the local job queue. That job will be
rescheduled to the other nodes.5 algorithms are
discussed in CASA. They are:

• Job distribution

• Job delegation request acceptance

• Job assignment

• Job rescheduling

• Job rescheduling request acceptance. [7]
MET (Minimum Execution Time): MET assigns
each task to the resource with the best expected
execution time for that task, no matter whether
this resource is available or not at the present
time. The motivation behind MET is to give
each task its best machine. This can cause a
severe load imbalance among machines. Even
worse, this heuristic is not applicable to
heterogeneous computing environments where
resources and tasks are characterized as
consistent, which means a machine that can run
a task faster will run all the other tasks faster.
MCT (Minimum Completion Time): MCT
assigns each task, in an arbitrary order, the
resource with the minimum expected completion

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

252

time for that task. This causes some tasks to be
assigned to machines that do not have the
minimum execution time for them.The intuition
behind MCT is to combine the benefits of
opportunistic load balancing (OLB) and MET,
while avoiding the circumstances in which OLB
and MET perform poorly.
Min-min: The Min-min heuristic begins with
the set U of all unmapped tasks. Then, the set of
minimum completion time M for each task in U
is found. Next, the task with the overall
minimum completion time from M is selected
and assigned to the corresponding machine
(hence the name Min-min). Last, the newly
mapped task is removed from U, and the process
repeats until all tasks are mapped (i.e., U is
empty). Min-min is based on the minimum
completion time, as is MCT. However, Min-min
considers all unmapped tasks during each
mapping decision and MCT only considers one
task at a time. Min-min maps the tasks in the
order that changes the machine availability
status by the least amount that any assignment
could. Therefore, the percentage of tasks
assigned to their first choice (on the basis of
execution time) is likely to be higher for Min-
min than for Max-min. The expectation is that a
smaller makespan can be obtained if more tasks
are assigned to the machines that complete them
the earliest and also execute them the fastest.
Max-min: The Max-min heuristic is very
similar to Min-min. It also begins with the set U
of all unmapped tasks. Then, the set of minimum
completion time M, is found. Next, the task with
the overall maximum from M is selected and
assigned to the corresponding machine (hence
the name Max-min). Last, the newly mapped
task is removed from U, and the process repeats
until all tasks are mapped (i.e., U is empty).
Intuitively, Max-min attempts to minimize the
penalties incurred from performing tasks with
longer execution times. Assume, for example,
that the job being mapped has many tasks with

very short execution times and one task with a
very long execution time. Mapping the task with
the longer execution time to its best machine
first allows this task to be executed concurrently
with the remaining tasks (with shorter execution
times). For this case, this would be a better
mapping than a Min-min mapping, where all of
the shorter tasks would execute first, and then
the longer running task would be executed while
several machines sit idle. Thus, in cases similar
to this example, the Max-min heuristic may give
a mapping with a more balanced load across
machines and a better makespan.
XSuffrage: Another popular heuristic for
independent scheduling is called Suffrage [76].
The rationale behind Suffrage is that a task
should be assigned to a certain host and if it does
not go to that host, it will suffer the most. For
each task, its suffrage value is defined as the
difference between its best MCT and its second-
best MCT. Tasks with high suffrage value take
precedence. But when there is input and output
data for the tasks, and resources are clustered,
conventional suffrage algorithms may have
problems. In this case, intuitively, tasks should
be assigned to the resources as near as possible
to the data source to reduce the makespan. But if
the resources are clustered, and nodes in the
same cluster are with near identical
performance, then the best and second best
MCTs are also nearly identical which makes the
suffrage close to zero and gives the tasks low
priority. Other tasks might be assigned on these
nodes so that the task might be pushed away
from its data source. To fix this problem,
Casanova et al gave an improvement called
XSuffrage in [23] which gives a cluster level
suffrage value to each task. Experiments show
that XSuffrage outperforms the conventional
Suffrage not only in the case where large data
files are needed, but also when the resource
information cannot be predicted very accurately.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

253

Estimation Based Grid Scheduling Approach
(EBGSA),allows for the simultaneous
processing of grid tasks and local tasks. In
EBGSA, expected execution time is treated as a
random variable in stead of a predetermined
constant. By estimating the value of each
random variable, the scheduler can make a better
schedule, which takes into account the actual
resource status in the grid.

Efficient Utilization of Computing Resources
Using Highest Response Next Scheduling in
Grid (HRN), provides more responses with
time, memory and CPU requirements. Here, jobs
are allocated to N number of processors based
on jobs priority and processors capability. This
scheme is adaptive for local jobs and remote
jobs without any loss of performance and also
highly adaptive for grid environment. HRN with
priority will effectively utilize the available
resource and complete all the jobs quickly than
FCFS. It corrects some of the weakness of both
Shortest Job First (SJF) and First Come First
Serve (FCFS) are some of the benefits of HRN
but it is not suitable for more number of jobs
allocations because finding priority of job is
tedious one.

Node Allocation in Grid Computing Using
Optimal Resource Constraint (ORC)
Scheduling.
The ORC algorithm allocates the jobs according
to processors capability. It applies best fit
algorithm followed by Round Robin (RR)
scheduling which distributes the jobs among the
available processors. ORC is compared with
different algorithms like FCFS, SJF and RR. The
comparison shows that ORC gives better
performance than other algorithms in terms of
turn around time and average waiting time. It
overcomes the problem of FCFS and HRN
scheduling policy as it is suitable for more
number of jobs. It helps to minimize the
complexity of process allocation, reduces the
turnaround time and average waiting time of

jobs in the queue which in turn avoids starvation
problem. But ,it has High communication
overhead.

Hierarchical Job Scheduling for Clusters of
Workstations (HJS): The scheduling model is
based on a hierarchical approach using two
level scheduling consisting of top level global
scheduling and local level scheduling. The
global scheduler uses single or separate queue
for different type of jobs for scheduling with
FCFS, SJF or First Fit (FF) policy. The local
scheduler uses only one queue for all types of
jobs with any one policy FCFS, SJF or FF. The
function of global scheduler is matching of the
resources requested by a job to those available in
the participating clusters and to obtain the best
utilization of the available clusters. The local
scheduler is responsible for scheduling jobs to a
specific resource. At both levels, the schedulers
strive to maintain a good load balance. It tries to
reduce overall turnaround time and maximize
system utilization for high system loads. For
high system loads it uses multi queue to
maintain the delay of job scheduling at global
level.

Resource Co-allocation for Scheduling Tasks
with Dependencies in grid (RCSTD): The Co-
allocation scheduling algorithm provides a
strategy for scheduling the tasks with
dependencies in grid environment. The
algorithm applies on both inside and across the
clusters. Every step combines or merge the
clusters (tasks inside the cluster or clusters
across the cluster) based on the dependencies
between the combined clusters. Thus these
clusters are combined if any dependencies exist
between current and previous cluster. The main
goal of the algorithm is to improve efficiency in
terms of load balancing and minimum time for
the execution of the task. The Algorithm
Minimizes Execution Time of the Task,it is
dynamic in nature because inside a cluster the
tasks are allocated to the suitable resource on

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

254

which it can be scheduled at the earliest time.
Due to the decentralized strategy that Co-
allocation uses, the method is more reliable than
a centralized one for being less subject to single
point of failure. This scheduling algorithm
obtains good load balancing among all the
resources of the system in terms of number of
tasks scheduled on each resource. But more
communication overhead occurs inside and
across the clusters and no specified requirements
of a task.

Research on Novel Dynamic Resource
Management and Job Scheduling in grid
computing (RNDRM):This scheduling model
is based on Heap Sort Tree (HST)for computing
the available computational power of the nodes
(resource) as well as whole grid system. Here
the resource with largest available computational
ability among the whole grid system is selected
to be the root node of the HST and it is ready for
the scheduler to submit a job. The algorithm
designed for job scheduling is well suitable for
the complex grids environment and it is based
on agents. This algorithm makes the system
more scalable, robust, fault-tolerant and high
performance. This strategy provides dynamic
status information of the resources in an
unpredictable fast changing grid environment.
This algorithm is silent at the condition of job
submission failure. The job scheduling strategy
may not utilize resource sufficiently. Job waiting
time is high and it does not provide real time
dynamic grid environment.

Agent Based Resource Management with
Alternate Solution (ABRMAS).
Agent based Resource Management with
Alternate Solution gives an alternate solution at
the situation when resource discovery fails.
Algorithm identifies an equivalent resource
without affecting the performance and it also
avoids unnecessary resource discovery.
Sometimes resource discovery is done for time
bound task and required resource is unavailable

at that situation. Alternate solution reduces delay
overhead in waiting for the unavailable resource
and enhances the systems efficiency.
Implementation result shows the system success
rate is 30% higher with alternate solution. It
limits and steer the search towards the
anticipated result and provide efficient resource
discovery. Useful in both cases when discovery
fails and more than one solution proposal
offered. For large agent hierarchy proposal„s
invitations may be restricted to sub hierarchy. It
is not explicit.

New Resource Mechanism with Negotiate
Solution based on agent in grid environments
(NRMNS):Agent Based Resource Management
with Negotiate Solution gives an alternate
solution at the situation of resource discovery
failure. Algorithm adds the middleware Grid
Architecture for Computational Economy
(GRACE) with Resource Pricing Fluctuation
Manager (RPFM) into ABRMAS in order to
improve the efficiency of the resource
management scheduling allocation in Grid
Computing. The feedback model plays a very
important role in the agent-based system when
resource discovery failed for cost bound. The
resource provider can get the maximum
investment profit. Feedback capability of RPFM
is used to adapt the highly dynamic grid
environment. Simulation result shows successful
rate of resource discovery increases by about
10%.One of the major drawback is the resource
discovery is aborted when the RPA (Resource
provider agent) refuses to decrease the cost of
the resource.

Improved Resource discovery approach using
P2P model for condor (IRP2P): IRP2P is a
grid middleware. It is a decentralized technique
which opposes traditional client - server model.
Goal of the model is to improve performance of
condor middleware. Proposed hybrid model uses
four axis frameworks in P2P approach. Each
framework overcomes some limitations of

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

255

condor middleware and makes it more reliable,
robust and scalable. By implementing
membership protocol, network communication
is easy and using overlay construction algorithm
inter crosses communication is also allowed
which is restricted in condor. Independence from
central global control. Fast discovery of
resources using DHTs and indexing concept.
Supports Scalability and intermittent resource
participation. Need to have strong self-
organization capabilities in order to be able to
maintain their rigid structure. High maintenance
cost in the presence of high churn.

Virtual Computing Grid using Resource
Pooling (VCGRP): The System is based on
loosely coupled concept. Virtual Computing
Grid means the system can choose a resource
and allocate tasks to it. Here, it is a single point
web based access known as Virtual Computing
Grid Portal and the Virtual Computing Grid
Monitor is a central resource manager for the
System. It is a Cost Effective model. Not much
Reliable because of only one central manager
and single point web access.
Task Grouping: The above algorithms are
usually used to schedule applications that consist
of a set of independent coarse-grained compute-
intensive tasks. This is the ideal case for which
the computational Grid was designed. But there
are some other cases in which applications with
a large number of lightweight jobs. The overall
processing of these applications involves a high
overhead cost in terms of scheduling and
transmission to or from Grid resources.
Muthuvelu et al [79] propose a dynamic task
grouping scheduling algorithm to deal with these
cases. Once a set of fine grained tasks are
received, the scheduler groups them according to
their requirements for computation (measured in
number of instructions) and the processing
capability that a Grid resource can provide in a
certain time period. All tasks in the same group
are submitted to the same resource which can

finish them all in the given time. By this mean,
the overhead for scheduling and job launching is
reduced and resource utilization is increased.

Existing Methods of Task Scheduling
Resource Aware Scheduling Algorithm -
RASA is built through the analysis of two task
scheduling algorithms, Min-min and Max-min
and To achieve the lower make span this
scheduling algorithm is used. RASA uses the
advantages of Max-min and Min-min algorithms
and covers their disadvantages. To minimize the
make span. Applying the RASA algorithm on
actual grid environment for practical evaluation
can be open problem in this area.
Cuckoo Algorithm- A cuckoo optimization
algorithm is proposed for optimal job allocation
of resources on each node. This system will
allocate the job optimally by considering the
requirement of the users and also the minimal
execution time.This system will allocate the job
optimally by considering the requirement of the
users and also the minimal execution time. Once
job is allocated to the resource, it is fixed and no
other way to change.
Load Balanced Min Min Algorithm (LBMM)
algorithm is proposed to reduce the makespan
and increases the resource utilization.LBMM
uses the advantages of Max-min and Minmin
algorithms and covers their disadvantages.To
minimize the make span and increase the
resource utilization.Applying the proposed
algorithm on actual grid environment and
considering the cost factor can be open problem
in this area.

Qos Guided Weighted Mean Time Algorithm
Resource load balancing and minimizing
makespan are the fundamental goals of effective
and efficient task scheduling. It turns out to be
more complicated when various QoS demands
arise from users. To perform the effective and
efficient task scheduling this proposed system is
used.Both heuristics QoS Guided Weighted

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

256

Mean Time min and QoS Guided Weighted
Mean Time Min-Min .Max-Min Selective
provide better makespan, resource utilization
and load balancing than the other heuristics.It is
only based on Quality of Service, the task can be
divided into low and high Qos and schedules the
task by means of high and low Qos.

Firefly Intelligent Swarm Optimization
Technique :The proposed method is to
dynamically create an optimal schedule to
complete the tasks within minimum makespan.
Complete the tasks within a minimum makespan
and flowtime.This method concentrates only on
completing the task within a minimum make
span and not on other process such as resource
allocation etc.
Multiple Ant Colony Optimization: The
improved MACO approach is to find the optimal
solution with a minimum execution time of task.
Makespan is minimized by using the load
balancing.

A Novel Qos Guided Task Scheduling
Algorithm : The goal of grid task scheduling is
to achieve high system throughput and to match
the application needs with the available
computing resources. Achieving high system
throughput

A Probabilistic Task Scheduling Method :
Probabilistic task scheduling method is used to
minimize both the overall mean response time of
the tasks which are submitted to the grid
environments and total makespan of the
environment. The overall mean response time is
the important Quality of service measure in grid
and to achieve this, Discrete Time Markov
Chain is constructed. On absorbing all the
DTMCs the Nonlinear programming problem is
defined and by solving the NLP problem the best
scheduling path and the minimum mean
response time of a particular task can be
obtained. Minimizing the overall mean response
time, Minimizing the makespan of the job.

Issues in Computational grids
Scheduling Problems in Computational Grids
Rather than a problem, scheduling in Grid
systems can be viewed as a whole family of
problems. This is due to the many parameters
that intervene scheduling as well as to the
different needs of Grid-enabled applications. In
the following, we give some basic concepts of
scheduling in Grid systems and identify most
common scheduling types. Needless to say, job
scheduling in its different forms is
computationally hard; it has been shown that the
problem of finding optimum scheduling in
heterogeneous systems is in general NP-hard
[30].

Basic Concepts and Terminology
Although many types of resources can be shared
and used in a Computational Grid, normally they
are accessed through an application running in
the grid. Normally, an application is used to
define the piece of work of higher level in the
Grid. A typical grid scenario is as follows: an
application can generate several jobs, which in
turn can be composed of sub-tasks, in order to
be solved; the grid system is responsible for
sending each sub-task to a resource to be solved.
In a simpler grid scenario, it is the user who
selects the most adequate machine to execute its
sub-tasks. However, in general, grid systems
must dispose of schedulers that automatically
and efficiently find the most appropriate
machines to execute an assembly of tasks.

New characteristics of Scheduling in Grids
The scheduling problem in distributed systems is
not new at all; as a matter of fact it is one of the
most studied problems in the optimization
research community. However, in the grid
setting there are several characteristics that make
the problem different from its traditional version
of conventional distributed systems. Some of
these characteristics are the following:

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

257

• The dynamic structure of the
Computational Grid. Unlike traditional
distributed systems such as clusters, resources in
a Grid system can join or leave the Grid in an
unpredictable way. It could be simply due to
loosing connection to the system or because
their owners switch off the machine or change
the operating system, etc. Given that the
resources cross different Administrative
domains, there is no control over the resources.

• The high heterogeneity of resources. Grid
systems act as large virtual supercomputers, yet
the computational resources could be very
disparate, ranging from laptops, desktops,
clusters, supercomputers and even small devices
of limited computational resources. Current Grid
infrastructures are not yet much versatile but
heterogeneity is among most important features
to take into account in any Grid system.

• The high heterogeneity of jobs. Jobs
arriving to any Grid system are diverse and
heterogeneous in terms of their computational
needs. For instance, they could be computing
intensive or could be data intensive; some jobs
could be 1 Meta-heuristics for Scheduling in
Grid systems 7 full applications having a whole
range of specifications other could be just
atomic tasks. Importantly, Grid system could not
be aware of the type of tasks, jobs or
applications arriving in the system.

• The high heterogeneity of interconnection
networks. Grid resources will be connected
through Internet using different interconnection
networks. Transmission costs will often be very
important in the overall Grid performance and
hence smart ways to cope with the heterogeneity
of interconnection networks is necessary.

• The existence of local schedulers in
different organizations or resources. Grids are
expected to be constructed by the “contribution”
of computational resources across institutions,
universities, enterprises and individuals. Most of

these resources could eventually be running
local applications and use their local schedulers,
say, a Condor batch system. In such cases, one
possible requirement could be to use the local
scheduler of the domain rather than an external
one.

• The existence of local policies on resources.
Again, due to the different ownership of the
resources, one cannot assume full control over
the Grid resources. Companies might have
unexpected computational needs and may decide
to reduce their contribution to the Grid. Other
policies such as rights access, available storage,
pay-per-use, etc. are also to be taken into
account.

• Job-resource requirements. Current Grid
schedulers assume full availability and
compatibility of resources when scheduling. In
real situations, however, many restrictions
and/or incompatibilities could be derived from
job and resource specifications.

• Large scale of the Grid system. Grid systems
are expected to be large scale, joining hundreds
or thousands of computational nodes world-
wide. Moreover, the jobs, tasks or applications
submitted to the Grid could be large in number
since different independent users and/or
applications will send their jobs to the Grid
without knowing previous workload of the
system. Therefore, the efficient management of
resources and planning of jobs will require the
use of different types of scheduling (super-
schedulers, meta-schedulers, decentralized
schedulers, local schedulers, resource brokers,
etc.) and their possible hierarchical
combinations.
• Security.This characteristic, which is in
existing in classical scheduling, is an important
issue in Grid scheduling. Here the security can
be seen as a two-fold objective: on the one hand,
a task, job or application could have a security
requirement to be allocated in a secure node, that

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

258

is, the node will not “watch” or access the
processing and data used by the task, job or
application. On the other hand, the node could
have a security requirement, that is, the task, job
or application running in the resource will not
“watch” or access other data in the node.

 Grid Application Model
The Grid application model is used to describe
the characteristics of Grid applications. The
model should be able to parameterize a user
application to form a description of the
application as the input to the performance
model. Characteristics of applications can be
viewed from many aspects. In the following,
let’s examine some of them as cited in
[2,16,36].

Application flow
If you want to take advantage of parallel
execution, you must determine whether the
application can be executed in a parallel way. An
application flow reflects the inter-job
precedence.

An application flow is the flow of work among
its constituent jobs. Through determining the
application flow, we can better allocate the
application on a Grid environment for execution.
There are three basic types of application flow
that can be identified.

Parallel flow
In this case, there is an initial job, followed a
number of parallel jobs. And finally an ending
job is responsible for collecting the results of
each job. Each job in the set of parallels jobs
may receive a discrete set of data, and fulfills its
computational task independently and delivers
its output. Parametric study [21] is a case of
parallel flow application. Applications with

parallel flows are well suited for deployment on
a Grid. Data-parallel applications have parallel
flow.

Serial flow
In contrast to the parallel flow, a serial
application flow has a single thread of job
execution where each of the subsequent jobs has
to wait for its predecessor to end and deliver
output data as input to the next job. This means
any job is a consumer of its predecessor, the data
producer. In this case, the advantages of running
in a Grid environment are not based on access to
multiple systems in parallel, but rather on the
ability to use any of several appropriate and
available resources.

Networked flow
The networked flow is the type that we
encounter in really applications. As shown in
Figure 3-3, certain jobs within the application
are executable in parallel, but there are
interdependences between them. In the example,
jobs B and C can be launched simultaneously,
but they heavily exchange data with each other.
Job F cannot be launched before B and C have
completed, whereas job E or D can be launched
upon completion of B or C, respectively.

Finally, job G collects all output from the jobs
D, E, and F, and its termination and results then
represent the completion of the Grid application.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

259

Job flow
As discussed above, a job is the unit of work
that will be allocated to a site. A job may further
have a work flow, called job flow, in which there
exists another level of parallelisms. The job flow
reflects how a single computational site
processes the job. Parallelism in a single job is
much finer grained than that of an application. In
principle, the parallelism in a job should be
utilized by the local computational resources.
For example, an SIMD supercomputer is
suitable to execute jobs with SIMD type of
parallelisms. This will be discussed in more
detail in the following.

Applications Classification
1. Batch vs. Interactive
Applications can be classified into two
categories according to whether the jobs will
require further interaction with users after
submission for execution.

Batch
A batch application is submitted for execution
and is processed without any further interaction
from the User. In general, a batch application is
well suited for deployment in a Grid
environment.

Interactive

An interactive application needs user’s input
after which the application can continue its
execution. There would be many considerations
and issues involved in the development and
deployment of such interactive job within a Grid
environment.

2. Real-time vs. non real-time

Applications are classified into two categories:
Realtime and non real-time, according to
whether the application specifies a deadline by
which the application must complete its
execution.

Real-time
All real-time applications define a deadline by
which they have to complete executing. When
real-time applications are involved in
scheduling, the performance goal is usually the
completion before the predefined deadline. In
some real-time systems, if an application could
not be completed before its deadline, severe
results would follow. This is called a hard real-
time application.

Non Real-time
In general, a non real-time application does not
care the deadline. Users with such applications
usually submit applications to the Grid system,
and get the results back at a later time. They may
more concern other performances, such as cost.

3. Priority
Priority is a common technique in scheduling. A
set of applications assigned with priorities will
be scheduled based on not only the objective
performance but also the relative weighting of
their priorities. In a preemptive system, an
application with a low priority may be
preempted from execution by another
application with a higher priority.

Resource Classification
1. Time-shared vs. non- time-shared

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

260

In a time-shared resource, multiple jobs are
running concurrently, each executing for a time-
slice in turn. A time-shared resource delivers
differing performance with respect to the current
workload on the resource. It is relatively
difficult to make a performance prediction for a
job on such a computational resource. When
time-shared resources are involved, we would
like to determine the capability available to a
given job, such as memory size, percentage of
available CPU, etc.

In a non-time-shared resource, one job is
executed at a time. That means the
computational resource receives one job only at
a time, and processes jobs one by one.
Alternatively the computational resource queues
job locally and executes jobs one by one. It is
relatively easier to make a performance
prediction for a job on such a computational
resource since only one job is running on the
resource at a time. When a non-time-shared
resource is involved, we prefer determining the
time that it will be available to a given job.

2. Dedicated vs. non-dedicated
Depending on the ownership or its purpose, Grid
resources can be divided into two categories:
dedicated and non-dedicated resources. A
dedicated resource is fully deployed for purpose
of use in a specific Grid. A dedicated receives
workloads only from a single Grid.

In contrast, a non-dedicated resource may
participate in multiple Grids at the same time.
Thus a non-dedicated resource will receive
workloads from multiple Grids as well as local
users. Due to the potential contention, the state
information of these resources, such as CPU
workloads, available memory sizes and
bandwidth of network, is varying over time, and
hence accurate performance predicting for non-
dedicated resources is a hard issue. In a Grid
environment,non-dedicated resources are
targeted to leverage the abundant computing

cycles available to provide high computing
power without additional financial investment.
These resources have their own workloads.

3. Preemptive vs. Non-Preemptive:
In a preemptive computational resource, a
running job can be preempted from execution.
Preemption is useful in priority-based or real-
time systems. For example, when a pending
job’s deadline is approaching, it is necessary to
preempt one running job whose deadline is
much looser and assign the resource to that job.
As a result of preemption, the scheduling is
much complicated. A non-preemptive
computational resource does not allow
preemption, i.e., once a job is started on such a
resource, the job cannot be preempted until its
completion.

Scheduling policy
 The scheduling policy determines how an
application should be scheduled and how the
resources should be utilized. Most importantly,
the scheduling policy is responsible for defining
the performance goals for the Grid system.
Based on the performance model, the
performance potential of each candidate
schedule is computed. According to the
performance goal, the schedule which will
produce the best performance potential is
selected. Other responsibility of scheduling
policy may include the constraint that local jobs
should have high priority of using local
resources. The scheduling policy has relatively
direct impact on the design of the performance
model. As for the performance goals, two
different classes are commonly targeted. First,
Grid users concern the performance of
applications. Second, Grid administrator or
resource owner may concentrate on the overall
utilization of the whole system. We’d like to
term these two conflicting classes of
performance goals: application-centric and
system- centric, respectively.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

261

In the following, some common performance
goals in both classes are listed:

1. application-centric
An application-centric scheduling policy seeks
to optimize the performance of each individual
application.

o Execution time: the time duration spent
executing the job.

o Speedup: the ratio of time spent
executing the job on the original
platform to time spent executing the job
on the Grid.

o Turnaround time: also called response
time. It is defined as the sum of waiting
time and execution time.

o Job slowdown: It is defined as the ratio
of the response time of a job to its actual
run time.

o Makespan: The makespan of a set of
jobs is defined as the spanning time
before the completion of the last job.

Flow time: The flow time of a set of jobs is the

sum of completion time of all jobs.

A Common Grid Scheduler Architecture

Rescheduling
After an application was scheduled, the
performance of the application may not
approach the desired performance due to the
dynamic nature of the resources. It may be
profitable to re-schedule the applications during
execution to maintain good performance. At the
minimum, an adequate Grid scheduler should
acknowledge the resource failure and re-send
lost work to a live computational resource. In
summary, rescheduling is done to guarantee the
job’s completion and performance goal’s
achievement. Rescheduling is an important issue
for Grid schedulers, but no current system
implements a complete set of rescheduling
features. A mature scheduler with rescheduling
should be able to adjust current schedules, move
jobs from poorly performing nodes, and recover
from failures.

Job Monitoring, Check pointing and
Migration: To enable the important feature of
rescheduling, three techniques, i.e., job
monitoring, check pointing and migrating, are
highly important.
o Job monitoring is responsible for detecting

alert situations that could trigger a
migration. This information is reported to
the re-scheduler, which evaluates whether a
migration is necessary, and in that case,
decides a new allocation for the job.

o Check pointing is the capability of
capturing periodically a snapshot of the
state of a running job, which enables a job
to be restarted from that state in a later time
in case of migration. Check pointing is
beneficial for enabling us to resume a job
instead of re-running it after its long
execution.

o Migration is the process of transferring
currently running jobs to other VM’s or
nodes in case of VM failures or node
failures. Sometimes, migration is possible if

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

262

the nodes or VM’s are heavily loaded. The
main migration policies considered include
performance slowdown, target system
failure, job cancellation, detection of a
better resource, etc.

Evaluation Criteria for Grid Scheduling
Systems
In fact, it is quite difficult to make a comparison
among different Grid scheduling systems, since
each of them is suitable for different situations.
For different Grid scheduling systems, the class
of targeted applications and Grid resource
configurations may differ significantly. In this
subsection, a number of evaluation criteria for
Grid scheduling systems are proposed.

o Application Performance Promotion
It involves reviewing how well the applications
can benefit from the deployment of the
scheduling system in the Grid environment.

o System Performance Promotion
The criterion of system performance promotion
concerns how well the whole Grid system can
benefit. For example, how much the utilization
of resources is increased by, and how much the
overall throughput gains.

o Scheduling Efficiency
It is desired that the Grid scheduling system can
always produce good schedules. However, it is
also required that the scheduling system should
introduce additional overhead as low as
possible. The overhead introduced by the
scheduling system may exist in the information
collection, the mapping process, and the
resources allocation.

o Reliability
A reliable Grid scheduling system should
provide some level of fault-tolerance. A Grid is
a large collection of loosely-coupled resources,
and therefore it is inevitable that some of the
resources may fail due to diverse reasons. The

scheduler should handle such frequent resource
failures. For example, in case of resource
failure, the scheduler should guarantee an
application’s completion.

o Scalability
Since a Grid environment is in nature
heterogeneous and dynamic, a scalable
scheduling infrastructure should maintain good
performance with not only increasing number
of applications, but also increasing number of
participating resources with diverse
heterogeneity.

o Applicability to applications and Grid
environments

A scalable Grid scheduling system should be
able to accommodate both a wider diversity of
applications and a variety of Grid environments.
When designing the scheduling infrastructure of
a Grid system, these criteria are expected to
receive careful consideration. Emphasis may be
laid on different concerns among these
evaluation criteria according to practical needs
in real situations

 Conclusion and Future Work
In this paper, we have defined the basic terms
and summarized the elements of the Grid
scheduling problem (GSP).Resources and job
properties have been discussed. Various
Scheduling algorithms, Types and
Characteristics of Grid and Resource
management is discussed in this paper.

In the near future, educational institutions and
other organizations may construct its local
computational Grid and utilize the available
CPU power and the idle resources to its
maximum. The local Grid should be based on
high-speed local network, and enough security
need to be provided to the local grid so that
outside world should not have direct access to
the local resources.

 REFERENCES

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

263

[1] Maozchen Li and Mark Baker @2005, The
Grid :core John Wiley & Sons,Ltd.
[2] Fangpeng Dong and Selim G.AKI Jan
2006,Scheduling Algorithms for Grid
computing: state of the Art and Open
problems: Technical report no 2006-504,School
of Computing, Queen's University
Kingston,Ontario.
[3] Jennifer M Schopf,Ten Actions when
Scheduling ,the User as a Grid Scheduler,
Mathematics and Computer Divison, Argonne
National Laboratory.
[4]A Survey on Grid Technologies and
Resource Management Systems,chapter2.
[5] Alain Andrieux Globus Alliance ,Dave
Berry October 21-22nd 2003 Open Issues in
Grid Scheduling, Report of the workshop held
at the e-Science Institute,National e-Science
Centre,Jon Garibaldi University of
Nottingham, Stephen Jarvis, University of
Warwick, Jon MacLaren, University of
Manchester, Djamila Ouelhadj, University of
Nottingham, Dave Snelling, Fujitsu Labs
Europe.
[6]Klaus Krauter, Rajkumar Buyya and
Muthucumaru Maheswaran, 2001,A taxonomy
and survey of grid resource management
systems for distributed computing ,John Wiley
& Sons, Ltd.
[7] Er.Vijay Dhir, Dr. Rattan K Datta,
Dr.Maitreyee Dutta , 2013,Grid Job Scheduling
- A Detailed Study, International Journal of
Innovative Research in Science, Engineering
and Technology,Vol.2,Issue 10,October 2013.
[8] Pavel Fibich and Ludˇek Matyska and Hana
Rudov´a, 2005,Model of Grid Scheduling
Problem, American Association for Artificial
Intelligence.
[9] Raksha Sharma, Vishnu Kant Soni, Manoj
Kumar Mishra, Prachet Bhuyan,2010,A Survey
of Job Scheduling and Resource Management

in Grid Computing, World Academy of Science,
Engineering and Technology,Vol:4 2010-04-22.
[10]R.Venkatesan,J.RajThilak,2012,Perspective
Study on task scheduling in computational grid,
International Journal of Advanced Research in
Computer Engineering & Technology
(IJARCET)Volume 1, Issue 8, October 2012
[11]Jayoti Bansal et al,2012,A Survey and
Taxonomy of scheduling algorithms in Desktop
Gridl, IJCSET |March 2012| Vol 2, Issue 3,963-
967.
[12] Dilpreet Kaur, Balwinder Singh, Talwandi
Sabo, 2012,A Review: Scheduling in Grid
Environment, International Journal of
Engineering and Innovative Technology (IJEIT)
Volume 2, Issue 5, November 2012 .
 [13]F.Xhafa,A. Abraham (Eds.)2008,Meta-
heuristics for Grid Scheduling Problems, Meta.
for Sched. in Distri. Comp. Envi., SCI 146, pp.
1–37, 2008. Springer-Verlag Berlin Heidelberg
2008
[14]M. Senobari, Michal Drozdowicz, Maria
Ganzha, Marcin Paprzycki, Richard Olejnik, et
al. 2009,Resource Management in Grids:
Overview and a discussion of a possible
approach for an Agent-Based Middleware,
Saxe-Coburg Publications, Stirlingshire,UK.
PARALLEL, DISTRIBUTED AND GRID
COMPUTING FOR ENGINEERING,
Stirlingshire,UK, pp 141-164, 2009,
Computational Science, Engineering &
Technology Series, ISSN 1759-3158.
[15] Nabeel Zanoon, Nashat Al Bdour, Evon
,2014, Abu-Taieh ,Survey of Algorithm:
Scheduling Systems and Distributed Resource
Management in Grid, International Journal of
Computer Applications (0975 – 8887) Volume
98– No.1, July 2014.
[16] Yanmin Zhu, Lionel M. Ni, 2013,A Survey
on Grid Scheduling Systems, Technical Report
SJTU_CS_TR_200309001, Department of

mailto:Baker@2005

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

264

Computer Science and Engineering, Shanghai
JiaoTong University, 2013
[17] Patel Sohil K ,Survey Report of Job
Scheduler on Grids, International Journal of
Emerging Research in Management
&Technology ISSN: 2278-9359 (Volume-2,
Issue-4) .
[18] Rajkumar Buyya, David Abramson, and
Jonathan Giddy,Grid Resource Management,
Scheduling and Computational
Economy,2000,In Proceedings of the 2nd
International Workshop on Global and Cluster
Computing (WGCC’2000) Tsukuba/Tokyo,
Japan, March 15 - 17, 2000.
[19] Ye Huanga, Nik Bessis ,Peter Norrington ,
Pierre Kuonen, Beat Hirsbrunner
,2013,Exploring decentralized dynamic
scheduling for grids and clouds using the
community-aware scheduling algorithm,Future
Generation Computer Systems 29 (2013) 402–
415.
[20] Ruay-Shiung Chang, Jih-Sheng Chang, Po-
Sheng Lin ,An ant algorithm for balanced job
scheduling in grids, Department of Computer
Science and Information Engineering, National
Dong Hwa University, Shoufeng Hualien, 974
Taiwan, ROC., Future Generation Computer
Systems 25 (2009) 20–27.
[21] IKatia Leal a,, Eduardo Huedob, Ignacio
M. Llorente, 2009, A decentralized model for
scheduling independent tasks in Federated
Grids,Future Generation Computer Systems 25
(2009) 840-852.
[22] Y.-H. Lee et al(2011) Improving job
scheduling algorithms in a grid environment,
Future Generation Computer Systems 27 (2011)
991–998.
[23]Quezada-Pina et al,2012,Adaptive parallel
job scheduling with resource admissible
allocation on two-level hierarchical grids,Future
Generation Computer Systems 28 (2012) 965–
976.

[24] S. Smanchat et al., 2013,Scheduling
parameter sweep workflow in the Grid based on
resource competition, Future Generation
Computer Systems 29 (2013) 1164–1183.
[25] R.-S. Chang et al, 2012, An Adaptive
Scoring Job Scheduling algorithm for grid
computing, Information Sciences 207 (2012)
79–89.
[26] X. Tang et al, 2012,A hierarchical
reliability-driven scheduling algorithm in grid
systems,J.Parallel Distrib. Comput. 72 (2012)
525–535.
[27] Laizhi Wei et al , 1975,An Improved Ant
Algorithm for Grid Task Scheduling Strategy,
Physics Procedia 24 (2012) 1974 – 1981 1975.
[28] Syed Nasir Mehmood Shah et
al,2011,Dynamic Multilevel Hybrid Scheduling
Algorithms for Grid Computing, Procedia
Computer Science 4 (2011) 402–411.
[29] Sara Kardani-Moghaddam, Farzad
Khodadadi, Reza Entezari-Maleki, Ali
Movaghar,2011,A Hybrid Genetic Algorithm
and Variable Neighborhood Search for Task
Scheduling Problem in Grid Environment,
published by sevier Ltd. Selection and/or peer-
review under responsibility of Harbin
Universityof Science and Technology.
[30] Syed Nasir Mehmood Shaha, M Nordin B
Zakariaa, Nazleeni Harona, AhmadKamil,Bin
Mahmooda, Ken Naonob , 2012,Design and
Evaluation of Agent Based Prioritized Dynamic
Round Robin Scheduling Algorithm on
Computational Grids,AASRI Procedia1(2012)
531 – 543.
[31] Saeed Parsa and Reza Entezari- Maleki
,2009 RASA: A New Task Scheduling
Algorithm in Grid Environment, World Appl.
Sci. J., 7 (Special Issue of Computer & IT):
152-160, 2009
[32] Luiz F. Bittencourt, Edmundo R. M.
Madeira, Nelson S. da Fonseca

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-2, Issue-1,January 2016
 ISSN: 2395-3470

www.ijseas.com

265

,2012,Scheduling in hybrid clouds, , IEEE
Communications Magazine 50(9):42-47 (2012).
[33]Nikolaos D. Doulamis,Anastasios D.
Doulamis, Emmanouel A. Varvarigos, and
Theodora A. Varvarigou,2007,Fair Scheduling
Algorithms in Grids,IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 18, NO. 11, NOVEMBER
2007.
[34] F. Xhafa, A. Abraham
,2010,Computational models and heuristic
methods for Grid scheduling problems, Future
Generation Computer Systems 26 (2010)
608621.
[35] Sanjaya Kumar Panda, Pratik Agrawal,
Pabitra Mohan Khilar and Durga Prasad
Mohapatra,2014 Skewness-Based Min-Min
Max-Min Heuristic for Grid Task Scheduling,
ACCT’14 proceedings of the 2014th Fourth
International Conference on Advanced
Computing & Communication Technologies,
Pages 282-289,2014, ISBN: 978-1-4799-4910-
6.
[36] Michael Walker, 2001,A Framework for
Effective Scheduling of Data-Parallel
Applications in Grid Systems, May 2001.[37]
Gunjan Aggarwal, Meenakshi Kamboj,
Charanjit Singh, Preeti Sharma,2012,A Novel
Resource Scheduling Algorithm for
Computational Grid, ,International Journal of
Applied Information Systems (IJAIS) – ISSN :
2249-0868 Foundation of Computer Science
FCS, New York, USA Volume 4– No.3,
September 2012.

	Scheduling and Resource Management is an important issue in Grid Computing. There are many Scheduling algorithms existing in the literature. This paper discusses about a detailed study on different scheduling algorithms in Computational Grid. Grid sc...
	INTRODUCTION

