Solution of Parabolic Partial Differential Equation of the form $u_{t}=u_{x x}+f(x, t) u$ using Lie Symmetry Analysis

Kevin. O. Wambura ${ }^{1}$ T. J. O. Aminer ${ }^{2}$, N. and M. E. Oduor Okoya ${ }^{3}$
$1^{*}, 2,3$
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology,
P.O. Box 210-40601, Bondo, Kenya
* e-mail: kevinho.junior @yahoo.com

Abstract

The investigation of the exact solutions of nonlinear PDEs plays an important role in the study of nonlinear physical phenomena for instance in shallow water waves, fluid physics, general relativity and many others. Lie Symmetry analysis has played a significant role in the construction of exact solutions to nonlinear partial differential equations (PDEs). The modern approach for finding special solutions of systems of nonlinear PDEs was pioneered by Sophus Lie at the end of the nineteenth century. A variety of methods have been developed in the past few years by Ovsyannikov, Ibragimov and others. In this work, we present a Lie symmetry approach in solving the parabolic partial differential equation $u_{t}=u_{x x}+f(x, t) u$ with $f(x, t)$ set as $x t$ and $\sin x t$. This will be achieved by developing infinitesimal transformations, generators, prolongations and the invariant transformations of the problem.

Key words- Lie symmetries analysis, symmetry reduction, partial differential equations, Infinitesimal transformations, transformation generators, prolongations (extended transformations), invariant transformations

Second Order Parabolic Partial Differential Equation

We consider the second order parabolic partial differential equation:
$u_{t}=u_{x x}+f(x, t) u$
We then attempt to solve a special case of (1) by setting $f(x, t)$ as sinxt and $x t$ using Lie symmetry approach.

Case 1: $f(x, t)=\sin x t$
When $f(x, t)$ is set as sinxt, the (1) becomes

$$
\begin{equation*}
u_{t}=u_{x x}+u \sin x t \tag{1.2}
\end{equation*}
$$

$X=\xi(x, t, u) \frac{\partial}{\partial x}+\tau(x, t, u) \frac{\partial}{\partial t}+\eta(x, t, u) \frac{\partial}{\partial u}$
We determine all the coefficient functions ξ, τ, η so that the corresponding one-parameter Lie group of transformations
$t^{*}=T(x, t, u ; \varepsilon), x^{*}=X(x, t, u ; \varepsilon), u^{*}=U(x, t, u ; \varepsilon)$ for a symmetry group of (1.2).
For the symmetry condition to be satisfied by (1.2), then
$X^{(2)}\left[u_{t}-u_{x x}-u \sin x t\right]=0$
where $X^{(2)}$ is the second prolongation of (1.3) given by
$X^{(2)}=\xi \frac{\partial}{\partial x}+\tau \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial u}+\eta^{x} \frac{\partial}{\partial u_{x}}+\eta^{t} \frac{\partial}{\partial u_{t}}+\eta^{x x} \frac{\partial}{\partial u_{x x}}+\eta^{x t} \frac{\partial}{\partial u_{x t}}+\eta^{t t} \frac{\partial}{\partial u_{t t}}$

Substituting (1.5) into (1.4) we obtain

$$
\left[\xi \frac{\partial}{\partial x}+\tau \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial u}+\eta^{x} \frac{\partial}{\partial u_{x}}+\eta^{t} \frac{\partial}{\partial u_{t}}+\eta^{x x} \frac{\partial}{\partial u_{x x}}+\eta^{x t} \frac{\partial}{\partial u_{x t}}+\eta^{t t} \frac{\partial}{\partial u_{t t}}\right]\left[u_{t}-u_{x x}-u \sin x t\right]=0
$$

The infinitesimal condition above reduces to

$$
\begin{equation*}
\eta^{t}=\eta^{x x}+\xi t u \cos x t+\tau x u \cos x t+\eta \sin x t \tag{1.6}
\end{equation*}
$$

with $\eta^{t}, \eta^{x x}$ explicitly defined in [1,2]. This must be satisfied whenever $u_{t}=u_{x x}+u \sin x t$. Substituting $\eta^{t}, \eta^{x x}$ into (1.6), we obtain the equation
$\eta_{t}-\xi_{t} u_{x}+\left(\eta_{u}-\tau_{t}\right) u_{t}-\xi_{u} u_{x} u_{t}-\tau_{u} u_{t}^{2}=\eta_{x x}+\left(2 \eta_{x u}-\xi_{x x}\right)-\tau_{x x} u_{t}+\left(\eta_{u u}-2 \xi_{x u}\right) u_{x}^{2}$

$$
\begin{aligned}
& -2 \tau_{x u} u_{x} u_{t}-\xi_{u u} u_{x}^{3}-\tau_{u u} u_{x}^{2} u_{t}+\left(\eta_{u}-2 \xi_{x}\right) u_{x x}-2 \tau_{x} u_{x t}-3 \xi_{u} u_{x} u_{x x} \\
& -\tau_{u} u_{t} u_{x x}-2 \tau_{u} u_{x} u_{x t}+\xi t u \cos x t+(\tau x u x \cos x t+\eta \sin x t
\end{aligned}
$$

On replacing u_{t} by $u_{x x}+u \sin x t$ whenever it occurs and equating the coefficients of various polynomials in the first
and second partial derivatives of u, we obtain the resulting equations for the Lie symmetry group of equation (1.2).

Monomial terms	Equation	
$u_{x} u_{x t}$	$0=-2 \tau_{u}$	(i)
$u_{x t}$	$0=-2 \tau_{x}$	(ii)
$u_{x x}^{2}$	$-\tau_{u}=-\tau_{u}$	(iii)
$u_{x}^{2} u_{x x}$	$0=-\tau_{u u}$	(iv)
$u_{x} u_{x x}$	$-\xi_{u}=-2 \tau_{x u}-3 \xi_{u}$	(v)
$u_{x x}$	$\eta_{u}-\tau_{t}-2 \tau_{u} u \sin x t=-\tau_{x x}+\eta_{u}-2 \xi_{x}-\tau_{u} u \sin x t$	(vi)
u_{x}^{3}	$0=-\xi_{u u}$	(vii)
u_{x}^{2}	$0=\eta_{u u}-2 \xi_{x u}-\tau_{u u} u \sin x t$	(viii)
u_{x}	$-\xi_{t}-\xi_{u} u \sin x t=2 \eta_{x u}-\xi_{x x}-2 \tau_{x u} u \sin x t \quad$ (ix)	
1	$\eta_{t}+\left(\eta_{u}-\tau_{t}\right) u \sin x t-\tau_{u} u^{2} \sin ^{2} x t=\eta_{x x}+\xi t u \cos x t$ $+\tau x u \cos x t+\eta \sin x t$	

The general solution to the above determining equations (i) to (x) becomes
$\xi=0, \tau=0, \eta=c$
Therefore, the symmetry algebra of equation (1.2) is
$X=u \frac{\partial}{\partial u}$
The Lie group admitted by (1.7) is thus given by $G: V(x, t, u ; \varepsilon) \rightarrow V\left(x, t, e^{\varepsilon} u\right)$ which is a trivial solution.

Case 2: $f(x, t)=x t$
If $f(x, t)$ is set as $x t$, then (1.1) becomes
$u_{t}=u_{x x}+x t u$
We let the generator X of (2.1) to be of the form (1.3). We then determine the coefficient functions ξ, τ, η so that the corresponding one-parameter Lie group of transformations $t^{*}=T(t, x, u ; \varepsilon), x^{*}=X(t, x, u ; \varepsilon), u=U(t, x, u ; \varepsilon)$ for a symmetry group of (1.2).
For the symmetry condition to be satisfied by (2.1), then $X^{(2)}\left[u_{t}-u_{x x}-x t u\right]=0$
where $X^{(2)}$ is the second prolongation of (1.3) given by (1.5).

Substituting (1.5) into (2.2), we obtain
$\left[\xi \frac{\partial}{\partial x}+\tau \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial u}+\eta^{x} \frac{\partial}{\partial u_{x}}+\eta^{t} \frac{\partial}{\partial u_{t}}+\eta^{x} \frac{\partial}{\partial u_{x x}}+\eta^{x} \frac{\partial}{\partial u_{x t}}+\eta^{t} \frac{\partial}{\partial u_{t t}}\right]\left[u_{t}-u_{x x}-x t u\right]=0$

This reduces to
$\eta^{t}=\eta^{x x}+\xi t u+\tau x u+\eta x t$
Substituting $\eta^{t}, \eta^{x x}$ into (2.3), we obtain the equation
$\eta_{t}-\xi_{t} u_{x}+\left(\eta_{u}-\tau_{t}\right) u_{t}-\xi_{u} u_{x} u_{t}-\tau_{u} u_{t}^{2}=\eta_{x x}+\left(2 \eta_{x u}-\xi_{x x}\right)-\tau_{x x} u_{t}$
$+\left(\eta_{u u}-2 \xi_{x u}\right) u_{x}^{2}-2 \tau_{x u} u_{x} u_{t}-\xi_{u u} u_{x}^{3}+\tau_{u u} u_{x}^{2} u_{t}\left(\eta_{u}-2 \xi_{x}\right) u_{x x}-2 \tau_{x} u_{x t}$
$-3 \xi_{u} u_{x} u_{x x}-\tau_{u} u_{t} u_{x x}-2 \tau_{u} u_{x} u_{x t}+\tau x u+\eta x t$

On replacing u_{t} by $u_{x x}+x t u$ whenever it occurs and equating the coefficients of various polynomials in the first and second partial derivatives of u, we obtain the resulting equations for the Lie symmetry group of equation (2.1)

Monomial terms	Equation
$u_{x} u_{x t}$	$0=-2 \tau_{u}$
$u_{x t}$	$0=-2 \tau_{x} \quad$ (b)
$\overline{u_{x x}^{2}}$	$-\tau_{u}=-\tau_{u}$
$u_{x}^{2} u_{x x}$	$0=-\tau_{u u} \quad$ (d)
$u_{x} u_{x x}$	$\left.-\xi_{u}=-2 \Phi_{x} 7\right)^{\prime}-3 \xi_{u}$
$u_{x x}$	$\eta_{u}-\tau_{t}-2 x t u \tau_{t}=-\tau_{x x}+\eta_{u}-2 \xi_{x}-\tau_{u} x t u$
u_{x}^{3}	$0=-\xi_{u u} \quad$ (g)
u_{x}^{2}	$0=\eta_{u u}-2 \xi_{x u}-\tau_{u u} t u$
u_{x}	$-\xi_{t}-\xi_{u} x t u=2 \eta_{x u}-\xi_{x x}-2 \tau_{x u} x t u$
1	$\begin{equation*} \eta_{t}+\left(\eta_{u}-\tau_{t}\right) x t u-\tau_{u} x^{\frac{1}{2} t^{2}} u^{2}=\eta_{x x}+\xi t u+\tau x u+\eta x t \tag{j} \end{equation*}$

The general solution to the above determining equations (a) to (j) becomes

$$
\begin{align*}
& \tau=\frac{1}{2} a_{1} t^{2}+a_{2} t+a_{3} \tag{2.4}\\
& \xi=\frac{1}{2} a_{1} x t+\frac{1}{2} a_{2} x-\frac{1}{3} a_{1} t^{4}-\frac{5}{6} a_{2} t^{3}-a_{3} t^{2}+a_{4} t+a_{5} \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
& \left.\left.\eta=-\frac{1}{8} a_{1} x^{2} u+\frac{2}{3} a_{1} t^{3} x u+\frac{5}{4} a_{2} t^{3} x u+a_{3} t x u-\frac{1}{2} K x(u)^{2}\right) \frac{1}{4} G_{\xi}(t) x, t, u\right) \frac{\partial J}{\partial x}+\tau(x, t, u) \frac{\partial J}{\partial t}+\eta(x, t, u) \frac{\partial J}{\partial u} \\
& -\frac{1}{18} a_{1} t^{6} u-\frac{1}{6} a_{2} t^{5} u-\frac{1}{4} a_{3} t^{4} u+\frac{1}{3} a_{4} t^{3} u+\frac{1}{2} a_{5} t^{2} u+\underset{(2.7)}{a_{4}}+\beta(x, t) \tag{2.6}
\end{align*}
$$

or its system of characteristics
The Lie algebra of the point symmetries are therefore given by
$X_{1}=\left(\frac{1}{2} x t-\frac{1}{3} t^{4}\right) \frac{\partial}{\partial x}+\frac{1}{2} t^{2} \frac{\partial}{\partial t}+\left(-\frac{1}{8} x^{2} u+\frac{2}{3} t^{3} x u-\frac{1}{4} t u \overline{\xi \xi^{1} x} t^{t} t^{\mu}\right) \frac{\bar{\partial}}{\partial u} \overline{\tau(x, t, u)}=\frac{(x, t, u)}{\eta(x)}$
$X_{2}=\left(\frac{1}{2} x-\frac{5}{6} t^{3}\right) \frac{\partial}{\partial x}+t \frac{\partial}{\partial t}+\left(\frac{5}{4} t^{3} x u-\frac{1}{6} t^{5} u\right) \frac{\partial}{\partial u}$
We then designate one of the invariants as a function of the other e.g
$X_{3}=-t^{2} \frac{\partial}{\partial x}+\frac{\partial}{\partial t}+\left(t x u-\frac{1}{4} t^{4} u\right) \frac{\partial}{\partial u}$
$X_{4}=t \frac{\partial}{\partial x}+\left(-\frac{1}{2} x u+\frac{1}{3} t^{3} u\right) \frac{\partial}{\partial u}$
$X_{5}=\frac{\partial}{\partial x}+\frac{1}{2} t^{2} u \frac{\partial}{\partial u}$
$X_{6}=u \frac{\partial}{\partial u}$

Lie groups admitted by equation (2.1)

The one parameter groups G_{i} admitted by equation (2.1) are determined by solving corresponding Lie equations below
$X_{4}: \frac{d x^{*}}{d \varepsilon}=t^{*}, \quad \frac{d t^{*}}{d \varepsilon}=0, \quad \frac{d u^{*}}{d \varepsilon}=-\frac{1}{2} x^{*} u^{*}+\frac{1}{3} t^{* 3} u^{*}$
$X_{5}: \frac{d x^{*}}{d \varepsilon}=1, \quad \frac{d t^{*}}{d \varepsilon}=0, \quad \frac{d u^{*}}{d \varepsilon}=\frac{1}{2} t^{* 2} u^{*}$

$$
\begin{equation*}
\mu=\phi(k) \tag{2.9}
\end{equation*}
$$

Finally we substitute expression for μ,in equation (2.9) and obtain ordinary
differential equation for the unknown function $\phi(k)$ of one variable. This procedure reduces the number of independent variables by one.

Below is a list of Generators (X_{i}) and their corresponding Invariant Solutions (u)

$$
\begin{equation*}
X_{3}: u=e^{\frac{1}{2} t^{2}-\frac{1}{20^{5}} 5^{5}}\left[c_{1} \cos \left(\frac{1}{\sqrt{2}} x t^{2}+\frac{1}{3 \sqrt{2}} t^{5}\right)+c_{2} \sin \left(\frac{1}{\sqrt{2}} x t^{2}+\frac{1}{3 \sqrt{2}} t^{5}\right)\right] \tag{3.0}
\end{equation*}
$$

$X_{4}: u=c_{3} e^{\frac{2}{9} t^{3}+\frac{1}{2} t^{2} x-\frac{x^{2}}{4 t}}$

$$
\begin{equation*}
X_{5}: u=c_{4} e^{\frac{1}{20} t^{5}+\frac{1}{2} t^{2} x} \tag{3.1}
\end{equation*}
$$

Symmetry solutions of equation (2.1)

Consider the equation (2.1).
According to Olver P.J [9], a symmetry group of (2.1) is a local group of transformation G with the property that whenever $u=\phi(x)$ is a solution of (2.1) and whenever $g . u$ is defined for $g \in G$, then $u^{*}=g . u$ is also a solution of (2.1).
(a) Given the generator

$$
X_{4}=t \frac{\partial}{\partial x}+\left(-\frac{1}{2} x u-\frac{1}{3} t^{3} u\right) \frac{\partial}{\partial u} \text { of equation }
$$

(2.1) for the symmetry group

$$
G_{4}\left(x^{*}, t^{*}, u^{*}\right):\left(x+\varepsilon t, t, e^{-\frac{1}{2} t \varepsilon^{2}-\frac{1}{2} \varepsilon x+\frac{1}{3} \varepsilon t^{2}} u\right) .
$$

This yields the groups $x^{*}=x+\varepsilon t$,
$t^{*}=t, u^{*}=e^{-\frac{1}{2} t \varepsilon^{2}-\frac{1}{2} \varepsilon x+\frac{1}{3} \varepsilon t^{2}} u$ and applying the inverse mapping, we obtain the symmetry solution

$$
\begin{equation*}
u^{*}=e^{-\frac{1}{2} \varepsilon x^{*}+\frac{1}{3} \varepsilon t^{* 2}} u(x, t) \tag{3.3}
\end{equation*}
$$

where $u(x, t)$ is a known invariant solution of (2.1).

Inserting each of the invariant solutions (3.0), (3.1) and (3.2) into (3.3), we obtain the following symmetry solutions of (2.1)

Conclusion

In this paper, we have looked at methods of group invariant solutions, based on the theory of continuous group of transformations, better known as 'Lie groups', acting on the space of independent and dependent variables of the system. More specifically, we have developed and used the infinitesimal transformations, symmetry generators, prolongations, groups and invariant solutions of the parabolic partial differential equation $u_{t}=u_{x x}+f(x, t)$ to find the symmetry solutions (3.4-4.0)
(i)

$$
u^{*}=e^{-\frac{1}{2} E x^{*}+\frac{1}{3} t t^{2}+\frac{1}{2} t^{2} x-\frac{1}{20^{5}} t^{2}}\left[c_{1} \cos \left(\frac{1}{\sqrt{2}} x t^{2}+\frac{1}{3 \sqrt{2}} t^{5}\right)+c_{2} \sin \left(\frac{1}{\sqrt{2}} x t^{2}+\frac{1}{3 \sqrt{2}} t^{5}\right)\right]
$$

References

$$
\begin{equation*}
u^{*}=C_{1} e^{-\frac{1}{2} \varepsilon x^{*}+\frac{1}{3} \varepsilon t^{* 2}+\frac{2}{9} t^{3}+\frac{1}{2} t^{2} x-\frac{x^{2}}{4 t}} \tag{3.4}
\end{equation*}
$$

[1] Bluman, G.W; Anco, S.C (2002), Symmetry and Integation methods of differential equation; Springer, New York, NY, USA
[2] Bluman, G.W., Kumei, S. (1989). Symmetries and Differential Equations; Springer-Verlag: New York, NY, USA.
[3] Dresner, L. (1999), Applications of Lie's Theory of Ordinary and Partial Differential Equations; London, Institute of Physics.
[4] Hydon, P. T. (2000), Symmetry Methods for Differential Equations: A Beginner’s Guide, Cambridge, Cambridge University Press.
[5] Ibragimov, N. H. (1999). Elementary Lie Group Analysis and Ordinary Differential Equations; John Wiley and Sons Ltd, England.
[6] Mahomed, F. M., and Leach P G L. (1990). Symmetry Lie algebras of nth order ordinary differential equations J. Math. Anal. Appl. 151. 80-107.
[7] M. E. Oduor Okoya, Lie Symmetry Solutions of The Generalized Burgers Equation, PhD Thesis, Maseno University, 2005
[8] Nucci, M. C., Cerquetelli, T. and Ciccoli, N. (2002). Fourth Dimensional Lie Symmetry Algebra and Fourth Order Ordinary Differential Equations, Journal of Nonlinear Mathematical Physics, Volume 9, 24-35.
Inserting each of the invariant solutions (3.0), (3.1) and (3.2) into (3.7), we obtain the following symmetry solutions

$$
\begin{equation*}
u^{*}=e^{\frac{1}{2} t^{2}+\frac{1}{2} \frac{1}{2}^{2} x-\frac{1}{20^{5}}}\left[c_{1} \cos \left(\frac{1}{\sqrt{2}} x t^{2}+\frac{1}{3 \sqrt{2}} t^{5}\right)+c_{2} \sin \left(\frac{1}{\sqrt{2}} x t^{2}+\frac{1}{3 \sqrt{2}} t^{5}\right)\right] \tag{i}
\end{equation*}
$$

[9] Olver, P. J. (1986). Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA.

$$
\begin{equation*}
u^{*}=C_{1} e^{\frac{1}{2} \varepsilon t^{* 2}+\frac{2}{9} t^{3}+\frac{1}{2} t^{2} x-\frac{x^{2}}{4 t}} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
u^{*}=C_{2} e^{\frac{1}{2} \varepsilon t^{* 2}+\frac{1}{20} t^{5}+\frac{1}{2} t^{2} x} \tag{iii}
\end{equation*}
$$

