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Abstract 
Deformable (elastic/non-rigid) image frames from 
sequences of the human thorax acquired for a subject 
during the process of breathing from three APs 
(Anatomical Positions) is registered. The images up 
for registration are modeled after tangible physically 
deformable objects. All the image elements are 
selected as Maxwell’s ‘demons’. The periphery of 
these images is considered to be deforming as an 
effect of the resultant forces of the demon elements. 
The paper presents an iterative non-parametric 
diffeomorphic demon registration process for 
thoracic CT (Computed Tomography) images. An 
alternate optimization approach concerning Thirion’s 
demons algorithm to provide a fast non-linear 
registration algorithm has been proposed. The 
credibility and performance of the above proposed 
method is demonstrated by its exemplary 
experimental results. 
Keywords: deformable image registration, demons, 
diffeomorphism, convergence field, energy 
minimization. 
 
1. Introduction 
 
Deformable images have been a constant focus of 
study and research in the field of image processing. 
There have been extensive intra and inter-patient 
studies resulting in staggering discoveries. In an 
intra-patient study finding correspondences between 
images taken at different timestamps has been a long 
standing issue. 
 
Maxwell’s demons have come a long way from a 
‘thought experiment’ in thermodynamic concepts to 
medical image registration methods. They were 
conceptualized as ‘finite beings’ prejudicially 
mediating the to and fro motion of molecules in a 
bisected, closed and pressurized system. Thirion [1] 
proposed in 1998, an application of Maxwell’s 
demons as image elements, each of which would 
have their own displacement and optical flow which 
would later be translated into image forces. The 

resultant of these forces would determine the 
deformation grid for the moving image and finally 
the deformed image. 
 
The organization of the remainder of this document 
is as follows. Section 2 provides an insight into 
deformable image registration methods 
classifications and the state of the art techniques from 
the field as applied on medical images. Section 3 
describes the proposed methodology with the help of 
appropriate illustrations. Section 4 informs about the 
experimental setup and the results obtained along 
with supportive statistical data. Section 5 concludes 
the article with a brief overview of the proposed. 

2. Background 

Image Registration is the alignment/overlaying of 
two or more images so that the best superimposition 
can be achieved. These images can be of the same 
subject at different points in time, from different 
viewpoints or by different sensors. This way the 
contents from both the images can be integrated to 
provide rich information. It helps in understanding 
and thus reducing the differences occurred due to 
variable imaging conditions. Most common 
applications of Image Registration include remote 
sensing (integrating information for GIS), combining 
data obtained from a variety of imaging modalities 
(combining a CT and an MRI view of the same 
patient) to get more information about the disease at 
once, cartography, image restoration etc. An image 
registration method targets to find the optimal 
transformation that aligns the images in the best way 
possible. If the underlying transformation model 
allows local deformations, i.e. nonlinear fields u(x), 
then it is called deformable image registration (DIR) 
[2]. 
An image registration algorithm can be divided into 
three main components, a deformation model, an 
objective function and an optimization method. A 
registration algorithm’s result naturally depends on 
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the deformation model and the objective function. 
The registration result’s dependency on an 
optimization strategy follows from the fact that 
image registration is inherently an ill-posed problem 
according to Hadamard’s definition of well-posed 
problems [3, 4]. 
 
Image registration has been categorized into two 
kinds based on the type of image it is being applied 
for. The two kinds of images are Rigid Images and 
Deformable Images. Rigid images are those of 
structures with rigid morphological properties e.g. 
bones, buildings, geographical structures etc. 
Deformable images are those of structures shape and 
size of which can be modeled after tangible 
physically deformable models [4]. Rigid image 
registration although is an important aspect of 
registration it is not the topic of discussion in this 
article. Since the discussion is about Medical Image 
Registration and almost all anatomical parts or 
organs of the human body are deformable structures, 
the concentration here is on DIR [5]. Only relevant 
and recent studies (Physical models) and state of the 
art techniques well within the scope are reviewed in 
this section. Currently used physical models can be 
further separated into five categories [6]: 
 
2.1 Elastic Body Models: 
 
These can be further subdivided into Linear and Non-
linear models. 
 
(a) Linear Models: 
In the case of linear models, images under 
deformation are modeled as an elastic body. The 
image grid was modeled after an elastic membrane 
that is deformed under the influence of internal and 
external competing forces until a state of equilibrium 
is reached. The external force influences deformation 
in the image to achieve matching and the internal 
force exercises the elastic properties of the material 
[7]. This approach was extended in a hierarchical 
fashion by Bajcsy and Kovacic where the coarsest 
scale solution was up-sampled and was used to 
initialize the finer one when linear registration was 
used at lowest resolution [8]. Linear elastic models 
have also been found useful when registering brain 
images based on sparse correspondences. They were 
used for the first time by Davatzikos based on 
geometric characteristics to establish mapping 

between the cortical surfaces. Modeling the images 
as inhomogeneous elastic objects led to the 
estimation of a global transformation function. 
Spatially-varying elasticity parameters were used to 
emulate the fact that certain structures tend to deform 
more than others [9]. An important drawback of 
image registration in general is that if deformed 
image is used as input to an inverse process of the 
previously used transformation (forward), the output 
obtained will not be the same as original input image 
for the forward transformation. The idea of parallel 
estimation of both forward and backward 
transformations, while compensating for inconsistent 
transformations by adding a constraint to the 
objective function was introduced later. Linear 
elasticity was used as a regularization constraint and 
Fourier series’ were used to parameterize the 
transformation [10]. A unidirectional approach was 
also introduced by Leow et al. that coupled the 
forward and backward transformations and provided 
an inverse consistent transformation by construction, 
thus diminishing the idea of a constraint addition to 
penalize the inconsistency error [11]. 
 
(b) Non-linear Models: 
An important drawback of linear elastic models is 
their inability to cope with larger deformations. 
Nonlinear elastic models were proposed so as to 
account for large deformations. These models ensure 
the preservation of topology of deformable images 
emulating hyper-elastic materials and their properties. 
The use of the Finite Element method provided a 
solution for the nonlinear equations and local 
linearization [12]. Two of the modeling processes for 
deformation were proposed, they were based on the 
concept of St. Venant-Kirchhoff elasticity energy [13, 
14]. 
 
2.2 Viscous Fluid flow models: 
 
Image under deformation is modeled as a viscous 
fluid, these models do not assume small deformations 
hence can cope with the larger ones [15]. Christensen 
et al. extended their earlier work to recover 
transformations for brain anatomy; fluid 
transformation preceded by elastic registration step 
was used to refine the result obtained [16]. The 
processes in use till then had an important drawback 
in the form of computational inefficiency. To 
circumvent this shortcoming a new fast algorithm 
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based on a convolution filter in scale space was 
proposed [17]. Fluid deformation models were used 
in an atlas-enhanced registration setting [18] while 
same models were used to tackle multi-modal 
registration [19]. More recently, an inverse consistent 
variant of fluid registration to register Diffusion 
Tensor images was proposed [20]. 
 
2.3 Diffusion models: 
 
Thirion, inspired by Maxwell’s Demons [21], 
proposed to perform image matching as a diffusion 
process, his work in turn inspired most of the work 
done in image registration using diffusion models [1]. 
The most suitable version for medical image analysis 
involved selecting all image elements as demons, 
calculating demon forces by considering the optical 
flow constraint, assuming a nonparametric 
deformation model that was regularized by applying 
a Gaussian filter after each iteration, and a tri-linear 
interpolation scheme. The use of Demons, was able 
to provide dense correspondences but lacked sound 
theoretical justification [4]. However, this did not 
stop it from being an immediate success and soon 
enough a fast algorithm based on demons [1] for 
image registration was proposed by Fischer and 
Modersitzki [22] which provided theoretical insights 
into its workings. Vercauteren et al. [23] adopted the 
alternate optimization framework that Cachier et al. 
proposed [24], to relate symmetric Demons forces 
with the efficient second-order minimization (ESM) 
[25]. In this methodology, an auxiliary variable was 
used to separate the matching and regularization 
terms. ESM optimization was used to perform 
matching by minimizing the data term whereas 
regularization was achieved by Gaussian smoothing. 
 
A variation of Thirion’s Demon Algorithm was 
proposed by Vercauteren et al. endowed with the 
diffeomorphic property [23]. In this approach, 
opposite to classical Demons approaches, an update 
field is estimated in all the iterations of the algorithm. 
A compositional rule is used between the previous 
estimate and the exponential map of the update field 
to estimate the running transformation. This 
exponential map is calculated by using the 
composition of displacement fields and the ‘scaling 
and squaring’ method [26, 27]. Diffeomorphism of 
the mapping is ensured by exponentiation of the 
displacement field. As an application of the model, 

Stefanescu et al. proposed a way of performing 
adaptive smoothing by taking into account the 
knowledge regarding the elasticity of tissues [28]. 
 
The Demons algorithm has found use not only in 
study of scalar images but its application has been 
extended to multi-channel images [29], diffusion 
tensor ones [30], as well as different geometries [31]. 
Peyrat et al. used multi-channel Demons to register 
time-series of cardiac images by enforcing trajectory 
constraints. Each time instance was considered as a 
different channel while the estimated transformation 
between successive channels was considered as 
constraint [29]. Yeo et al. [31] derived Demons 
forces from the squared difference between each 
element of the Log-Euclidean transformed tensors 
while taking into account the reorientation introduced 
by the transformation. 
 
2.4 Curvature Registration: 
 
These image registration methodologies don’t 
necessarily need an extra affine linear pre-
registration step, since the regularization scheme 
associated with it does not affect the affine linear 
transformations. This constraint has been used by 
Fischer and Modersitzki in [32, 33]. Despite several 
attempts to solve the underlying transformation 
function using the Gâteaux derivatives with 
Neumann boundary conditions, Henn [34] pointed 
out that the resulting underlying function space still 
penalized the affine linear displacements. Henn, 
further proposed including second-order terms as 
boundary conditions in the energy and applying a 
semi-implicit time discretization scheme to solve the 
full curvature registration problem. Beuthien et al. 
[35], proposed another way to solve the curvature 
based registration problem based on the approach 
presented in [36] for the viscous fluid registration 
scenario. Instead of devising a numerical scheme to 
solve the PDE that resulted from the curvature 
registration equilibrium equation, recursive 
convolutions with an appropriate Green’s function 
were used. 
 
2.5 Flows of Diffeomorphisms: 
 
Flows of diffeomorphisms have also been one of the 
propositions for deformation modeling. In this case, 
the deformation is modeled by considering its 
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velocity over time according to the Lagrange 
transport equation [15, 37, 38]. This framework is 
also known as large deformation diffeomorphic 
metric mapping (LDDMM). It allows for the 
definition of a distance between images or sets of 
points [39], [40]. The mathematical rigor of the 
LDDMM framework comes at an important cost. The 
fact that the velocity field has to be integrated over 
time results in high computational and memory 
demands. Moreover, the gradient descent scheme that 
is usually employed to solve the optimization 
problem of the geodesic path estimation converges 
slowly [41]. More efficient optimization techniques 
for the LDDMM have been investigated in [41], [42] 
& [43]. 
 
3. Materials and Methods 
 
3.1 Preparation 
 
The dataset used comprised of a total (3×2)×10 i.e. 
60 thoracic CT images across 10 subjects. It was 
obtained from the publicly available database, 
http://www.dir-lab.com, with proper downloading 
permissions from the concerned administrator. All 
images were anonymized and all procedures followed 
were in accordance with the ethical standards of the 
responsible committee on human experimentation 
(institutional and national) and with the Declaration 
of Helsinki 1975, as revised in 2008 (5). Informed 
consent was obtained from all patients for being 
included in the study. All patients or legal 
representatives signed informed consent. The image 
dimensions lie between 396×396 to 432×400 pixels. 
There were 6 frames from a temporal thoracic image 
sequence each for every Anatomical Plane (AP)  i.e. 
Axial (supine), Coronal and Sagittal for all the 10 
subjects acquired simultaneously with a gap of 0.1 
second starting from time t= 0.1 to 0.6 seconds. All 
images were identified as ( )tyxI AP

N ,, where 

{ })6.0,1.0(;101|, =≤≤∈ℜ+ tNtN , (x, y) are the x & y 
coordinates in the Cartesian plane and AP signifies 
the three anatomical planes of view i.e. Axial (a), 
Coronal (c) and Sagittal (s). Suppose the 3rd frame 
from coronal AP for subject ‘case 7’, would be 
notified as ( )3.0,,7 yxI C . A view of the image database 
is shown in the table 1 for representational purposes. 
 

Table 1: All three anatomical viewpoints for all the 
10 subjects at time t=0.1 & 0.6 sec 

 ANATOMICAL PLANES (T & M Images) 

 
 Axial Coronal Sagittal 

1 
     

2 
      

3 
      

4 
      

5 
      

6 
      

7 
      

8 
      

9 
      

1
0 

      
 
3.2 Proposed Methodology 
 
We had a temporal thoracic CT image sequence for 
the free-breathing process. First image frame of the 
sequence acquired at time t= 0.1 sec. is the full inhale 
frame. It is considered as the target (fixed) image. 
Similarly the frame acquired at t= 0.6 sec. is the full 
exhale frame and is considered as the moving 
(source/deformed) image. These both image frames 
are diametrically most deformed with respect to each 
other. A method has been proposed to register the 
moving image to the target image i.e. M→T as can 
be seen in figure 1. 
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Figure 1: The proposed model 

 
These images belong to the same domain and are 
related through a transformation TR. The moving 
image M is transformed into M’ such that a 
convergence is achieved between the M’ and T 
image pair which would signify the closest moving 
image M can get to the target image T. 
 

 
Figure 2: Flowchart of the iterative process in the 

registration procedure 
 
A diffeomorphic energy function EDiff(T,M,S,U) is 
minimized with respect to the convergence update 
field ‘U’ in an iterative process over the image 

dimensions (as can be seen in figure 2). During the 
iteration, each time a transformed image M’ is 
obtained, it is compared against the target image T 
using a Convergence() function. This function is 
checked at each step for a previously determined 
threshold. In case of a convergence achieved the 
iteration is stopped and the finally transformed image 
till that stage is considered as the required finally 
registered image R. In case of no progressive 
convergence in the consecutive iterations, the 
iteration is continued until the stopping factor 
eventually comes into play. 
 
3. Results & Conclusion 
 
Iterative diffeomorphic energy minimization using 
convergence factor across the image boundaries yield 
a transformed image (M') which was pitted against 
the actual target image (T) at different stages of the 
iteration to assess the level of transformation. Out of 
the ten subjects’ data at hand, the coronal, sagittal 
and axial APs of subject ‘case 7’ has been chosen to 
elaborate and demonstrate the proposed technique 
with results. For coronal AP, the transformed image 
M’ after the complete registration process showed an 
increase of 28.25% SNR (signal-to-noise ratio) value 
with respect to the target image (T) in comparison to 
the moving image with respect to target image; the 
change in PSNR (peak SNR) value was recorded at 
23.37%  increase in M’-T pair in comparison to M-T 
pair. A new metric called the SSIM (Structural 
Similarity) index has been used [44]. It has been used 
to estimate and measure the similarity between two 
images. It has been used as a deciding metric which 
would give a percentage similarity between the two 
images in question i.e. the fixed and the moving 
image and the fixed-transformed image pair. In case 
of coronal AP, the mean SSIM index for the M-T 
pair was calculated at 0.4371, the same index for the 
M’-T pair came at 0.4956. Along with similarity 
measures such as SNR, PSNR and m-SSIM, NCC 
(normalized cross-correlation) has been used to 
demonstrate as to how close the transformed image 
(M’) has come to the target image (T) as a result of 
the registration process. The NCC value for M-T pair 
was estimated at 0.8282, for the M’-T pair it was 
calculated at a higher value of 0.9297 which further 
helps in establishing the closeness of the transformed 
image to the target source and hence, the proposed 
methodology as an efficient deformable image 
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registration approach. Similarly for Axial AP case 7, 
the SNR increase was 3.39%, PSNR increase 2.36%, 
SSIM went from 0.7568 to 0.7484 and NCC 
increased from 0.955 to 0.959. For Sagittal AP case 7, 
the SNR increase was 35.4%, PSNR increase 27.29%, 
SSIM increased from 0.4677 to 0.5554 and NCC 
increased from 0.8853 to 0.9624. 
 

 
Figure 3: (in clockwise dir.) For case7 Axial, the 
Target-Moving image pair, Transformed moving 
image, the Transformation Grid and the Difference 
Image 
 

 
Figure 4: (in clockwise dir.) For case7 Coronal, the 
Target-Moving image pair, Transformed moving 
image, the Transformation Grid and the Difference 
Image 
 

 
Figure 5: (in clockwise dir.) For case7 Sagittal, the 
Target-Moving image pair, Transformed moving 
image, the Transformation Grid and the Difference 
Image 
 
The target-moving image pairs, the transformed 
moving image, transformation grid and the difference 
image have been shown for subject ‘case 7’ axial, 
coronal & sagittal APs in the figures 3, 4 and 5 
respectively. These were results of the iterative 
process of diffeomorphic energy minimization of 
subject ‘case 7’ moving image frames from all APs. 
 

 
Figure 6: Energy minimization vs. Iterations for ‘case 
7’ axial AP 
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Figure 7: Energy minimization vs. Iterations for ‘case 
7’ coronal AP 
 

 
Figure 8: Energy minimization vs. Iterations for ‘case 
7’ sagittal AP 
 
The axial moving image frame took 48 iterations; the 
coronal image frame took 13 iterations and the 
sagittal image frame took 33 iterations for 
convergence of the update field. The proposed 
technique was practically implemented on all the 
subject data at hand i.e. three anatomical positions 
across ten subjects. After obtaining the finally 
registered images for complete dataset, they were 
pitted against the fixed images of their own 
sequence’s respective sub-datasets. Similarity metrics 
such as SNR, pSNR, mean-SMIM index and NCC 
were calculated and compared for each M-T and M’-
T pairs for improvements (if any) which might 
suggest closeness of the registered image towards the 
fixed image. All similarity metrics clearly seem to 
improve from S-T to M’-T image pair for all 

subjects. Where there are significant changes in the 
case of coronal and sagittal APs, respective changes 
are not as notable in axial AP’s data, this can be 
explained by usually comparatively smaller 
deformations in the ‘anterior-posterior’ direction. 
 
4. Future Direction 
 

A novel, practically more feasible and accurate 
deformable image registration methodology for 
thoracic image sequences has been proposed. It could 
be a boon for real-life applications such as image 
acquisition for radiotherapy planning of thoracic 
lesions, dosimetric evaluation, tumour growth 
progression (with time) and determination of subject-
specific deformable motion models. 

 This work can be looked upon as an 
automatic way of deformable image registration for 
high contrast medical images using demons as image 
elements. One way to improve this method is by 
improving and enhancing the quality as well as the 
quantity of the database used. Also, the 
aforementioned procedure can provide better results 
if applied for a different human anatomy altogether. 
 However diligently and accurately it may 
have been done, there might still be some scope of 
improvement and betterment in the methodology and 
also in its presentation. The search and pursuit of 
better methods for deformable medical image 
registration is still on. 
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