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Abstract: CS is an emerging theory which permits 

radically new sensing devices that simultaneously 

acquire and compress certain signals using very 

efficient randomized sensing protocols. The 

implications of the CS theory are very far-

reaching and will likely impact analog-to-digital 

conversion, data compression, medical imaging, 

sensor networks, digital communication, statistical 

model selection, and more. Yet some important 

theoretical questions remain open, and seemingly 

obvious applications keep escaping the grip of 

compressive sensing. In this paper1 we discuss some of 

the recent progresses in compressed sensing and point 

out key challenges and opportunities as the area of 

compressed sensing and sparse representations keeps 

evolving. We also attempt to assess the long term impact 

of compressive sensing. 
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1. Inroduction: Compressed Sensing is a novel

research area which was introduced in 2006, and 

since then has already become a key concept in 

various areas of applied Mathematics, Computer 

science, and Electrical engineering. It surprisingly 

predicts that high-dimensional signals, which allow a 

sparse representation by a suitable basis or, more 

generally, a frame, can be recovered from what was 

previously considered highly incomplete linear 

measurements by using efficient algorithms. 

     Compressed sensing or compressive sampling 

(CS) is a simple and efficient signal acquisition 

technique that collects a few measurements about the 

signal of interest and later uses optimization 

techniques for reconstructing the original signal from 

what appears to be an incomplete set of 

measurements. It surprisingly predicts that high-

dimensional signals, which allow a sparse 

representation by a suitable basis or, more generally, 

a frame, can be recovered from what was previously 

considered highly incomplete linear measurements by 

using efficient algorithms. 

2.Fundamentals of Compressed Sensing: 

Sensing of the time domain signal y(t) is defined as 

the process of collecting some measurements 

about y(t) by correlating y(t) with some sensing 

waveforms { Φj(t)}, i.e.,

xj =<y,Φj>,  j = 1, 2, . . . ,m.                     (2.1) 

Based on the sensing waveforms, the entries of the 

vector x have different interpretations. For example, 

if the sensing waveforms are sinusoids, then x is a 

vector of Fourier coefficients, and if the sensing 

waveforms are Dirac delta functions, then x is 

a vector of sampled values of y(t).To simplify the 

presentation of the CS technique we will restrict our 

attention to discrete signals y Є R
n
. Accordingly, 

equation 1.1[1] can be rewritten in matrix form 

as     

 x=Φy  (2.2) 

where the jth row of the sensing matrix 

  ΦЄR
m*n  is the discrete representationof the 

jth sensing function Φj(t), and yЄR
n
 is the

discrete representation of y(t).  

        Based on this model, compressed sensing is 

defined as the sensing process for which the number 

m of available measurements is much smaller than 

the dimension n of the signal y. The problem 

associated with compressed sensing is that we have 

to solve an under–determined system of equations to 

recover the original signal y from the measurement 

vector x. However, since the number of equations is 

less than the number of unknowns, it is known that 

this system has infinitely many  solutions , and 

thus it is necessary to impose constraints on the 

candidate solution to identify which of these 

candidate solutions is the desired one. 

2.1Sparsity 

Before explaining the importance of the sparsity 

constraint in solving under-determined systems of 

equations, we present the following definitions:[2] 

i) Sparsity = |{s[i] = 0}| = number of zero 

entries in s, where | · | denotes 

cardinality of a set. 

ii) Diversity = |{s[i] ≠ 0}| = number of 

nonzero entries in s. 
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iii) k–sparse vector: a k–sparse vector is

defined as the vector that has at most k non-zero 

 entries. 

      An underdetermined system of linear 

equations has infinite candidate solutions of the form 

y = y0 + N where y0 is any vector that satisfies x = 

Φy0  and  N := N(Φ) is the null space of Φ. If the 

candidate solution vector is known to be k–sparse, 

and under some conditions on the sensing matrix Φ 

the solution vector can be uniquely determined using 

an optimization technique. Fortunately, this also 

applies to non sparse vectors that can be sparsely 

represented in a suitably selected basis Ψ i.e.,[3] 

y= Ψs                                                      (2.3) 

where  the coefficient vector s is sparse. 

Clearly y and s are equivalent representations 

of the signal, with y in the time or space domain and 

s in the Ψ domain. In some applications, it may be 

natural to choose   as an  orthonormal basis, while in 

others the signal y may only be sparsely represented 

when Ψ  is a redundant dictionary; i.e., 

it has more columns than rows. Combining equation 

 (1.2) and (1.3) and taking  into consideration the 

case of noisy measurements,the sensing process can 

be written as 

  x = ΦΨs + v = As + v,  (2.4) 

where A = ΦΨЄ R
m*n

 and v Є R
n
  is a noise vector. 

Assuming that the coefficient vector s is k–sparse, 

then s, and hence y = Ψs, can only be estimated from 

x if the matrices Φ,Ψ and A satisfy the properties 

described in the next subsection.[4],[5] 

2.2 Incoherence and Restricted  Isometric 

Properties 

The sparsity of the solution vector, or its 

representation in some basis, is a necessary 

but not sufficient condition for finding a unique 

solution to an underdetermined system of linear 

equations. In addition to the sparsity  principle, CS 

relies on another principle which is the incoherence 

between the sensing matrix Φ and the sparsity basis 

Ψ. The incoherence principle is also related to an 

equivalent property, which is associated with A, 

called restricted isometric property (RIP). 

The restricted isometry  property is a notion 

introduced in [6] and has proved to be very useful in 

studying the general robustness of CS. RIP provides a 

very useful tool for determining sufficient conditions 

that guarantee exact reconstruction of a sparse 

solution vector for different reconstructing 

(decoding) algorithms.  

Consider the following definition. 

For each integer k = 1, 2, . . ., the isometry constant 

δk of a matrix A is defined as the smallest number [7] 

such that  

(1 − δk)||s||ℓ2 
2
≤ ||As||ℓ2

2
≤ (1 + δk)||s|| ℓ2

2
   (1.5)

   holds    all k–sparse vectors s. 

It will be loosely said that a matrix A obeys the RIP 

of order k if δk is not too close to 1. When the RIP 

holds, the Euclidean length of k–sparse signals is 

approximately 

 preserved by A, which in turn implies that k–sparse 

vectors cannot be in the nullspace of A. Clearly this 

is very important as otherwise there would be no 

hope of reconstructing these k–sparse vectors. The 

RIP can also be interpreted as all subsets of k 

 columns  taken from A being nearly orthogonal (the 

columns of A cannot be exactly orthogonal since we 

have more columns than rows).[8],[9] 

3 Progresses and Challenges 

    Compressive sensing took the signal 

processing community by storm. Compressive 

sampling and sensing allow for efficient signal 

acquisition and storage by capitalizing on the fact 

that many real-world signals inherently have far 

fewer degrees of freedom than the signal size might 

indicate. In some cases, for example, the signals of 

interest can be expressed as sparse linear 

combinations of elements from some dictionary, and 

the  sparsity of the representation, in turn, permits 

efficient algorithms for signal processing. In other 

cases, the conciseness of the signal model may 

impose a low-dimensional geometric (often 

manifold-like) structure to the signal class as a subset 

of the high-dimensional ambient signal space. Some 

application areas that capitalize on concise and low-

dimensional geometric models include image 

compression; parameter estimation and image 

registration; imaging and signal reconstruction. 

3.1 Structured Sensing Matrices 

Much of the theory concerning explicit performance 

bounds for compressive sensing revolves around 

Gaussian and other random matrices. These results 

have immense value as they show us, in principle, the 

possibilities of compressive sensing.However, in 

reality we usually do not have the luxury to choose A 

as we please. Instead the sensing matrix is often 

dictated by the physical properties of the sensing 

process (e.g.,the laws of wave propagation) as well as 
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by constraints related to its practical 

implementability. Furthermore, sensing matrices 

with a specific structure can give rise to fast 

algorithms for matrix-vector multiplication, which 

will significantly speed up recovery algorithms. Thus 

the typical sensing matrix in practice is not Gaussian 

or Bernoulli, but one with a very specific structure, 

This includes deterministic sensing matrices as well 

as matrices whose entries are random variables which 

are coupled across rows and columns in a peculiar 

way. This can make it highly nontrivial to apply 

standard proof techniques from the compressive 

sensing literature.[10]-[12] 

Over the last few years researchers have developed a  

fairly good understanding of how to derive 

compressive sensing theory for a variety of structured 

sensing matrices that arise in applications,  

Despite this admirable progress, the derived bounds 

obtained so far are not as strong as those for 

Gaussian-type random matrices. One either needs to 

collect more measurements or enforce more 

restrictive bounds on the signal sparsitycompared to 

Gaussian matrices, or one has to sacrificeuniversality. 

Here, universality means that a fixed (random) 

sensing matrix guarantees recovery of all sufficiently 

sparse signals. In comparison, to obtain competitive 

theoretical bounds using structured sensing matrices 

we may have to assume that the locations and/or the 

signs of the non-zero entries of the signal are 

randomly chosen [13]–[16]. As a consequence the 

performance guarantees obtained are not universal, as 

they only hold for most signals. 

      After careful construction of algebraic 

Structure of matrix for each individual case, 

often provide the  best theoretical performance 

bounds for structured matrices – and yet, as 

mentioned before, these bounds still fall short of 

those for Gaussian matrices. Can we overcome these 

limitations of the existing theory by developing a 

collection of tools that allows us to build a 

compressive sensing theory for structured 

matrices that is (almost) on par with that for random 

matrices?  

    If we have the frredom to design 

 the sensing matrix, then  the only condition we 

impose is that we want deterministic (explicit) 

constructions with the goal to establish performance 

bounds that are comparable to those of random 

matrices, for instance by establishing appropriate RIP 

bounds. Most bounds to date on the RIP for 

deterministic matrix constructions are based on 

the coherence, which in turn causes the number of 

required samples to scale quadratically with the 

signal sparsity. 

      This poses the question, whether we can 

come up with deterministic matrices which satisfy the 

RIP in the optimal range of parameters. It may well 

be that the so constructed matrices will have little use 

in practice. But if we succeed in this enterprise, I 

expect the mathematical techniques developed 

for this purpose to have impact far beyond 

compressivesensing. 

    Structured sparsity is only one of many 

kinds of prior information we may have about the 

signal or image. Besides obvious constraints such as 

non-negativity of the signal coefficients,there is also 

application-specific prior information,such as the 

likelihood of certain molecule configurations or a 

minimum distance between sparse coefficients due to 

some repelling force. In particular in the low SNR 

regime the proper utilization of available prior 

information can have abig impact on the quality of 

the recovered signal. The aim is to develop 

frameworks that can incorporate various kinds of 

prior information both at the theoretical and the 

algorithmic level of compressive sensing. 

3.2 Development of  Appropriate Signal 

         Recovery Algorithm 

        Compressive sampling offers a new paradigm 

for acquiring signals that are compressible with 

respect to an orthonormal basis. The major 

algorithmic challenge in compressive sampling is to 

approximate a compressible signal from noisy 

samples. paper Some new iterative recovery 

algorithms  should be developed based on 

optimization approaches. Moreover, these algorithms 

should offer rigorous bounds on computational cost 

and storage. It is likely to be extremely efficient for 

practical  problems because it requires only matrix–

vector multiplies with the sampling matrix. For 

compressible signals, the running time is just O(N 

log2 N),where N is the length of the signal. 

        Compressive sampling refers to the idea that, for 

certain types of signals, a small number of non 

adaptive samples carries sufficient information to 

approximate the signal well. Research in this area has 

two major components:[17] 

Sampling: How many samples are necessary to 

reconstruct signals to a specified precision?What type 

of samples? How can these sampling schemes be 

implemented in practice? 
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Reconstruction: Given the compressive samples, 

what algorithms can efficiently construct a signal 

approximation? 

The literature already contains a well-developed 

theory of sampling, which we summarize 

below.Although algorithmic work has been 

progressing, the state of knowledge is less than 

complete. We assert that a practical signal 

reconstruction algorithm should have all of the 

following properties. 

i) It should accept samples from a variety of sampling

schemes. 

ii) It should succeed using a minimal number of

samples. 

iii) It should be robust when samples are

contaminated with noise. 

iv) It should provide optimal error guarantees for

every target signal. 

v) It should offer provably efficient resource usage.

3.3 Hardware Design 

      The concept of compressive sensing has inspired 

the development of new data acquisition hardware. 

By now we have seen compressive sensing “in 

action” in a variety of applications, such as MRI, 

astronomy, and analog-to-digital conversion. Yet, the 

construction of compressive sensingbased hardware 

is still a great challenge. But the process of 

developing compressive sensing hardware is not the 

job of the domain scientist alone. The knowledge 

gained during this process feeds back into the 

production cycle of compressive sensing, as 

theoreticians (have to) learn how to adapt their theory 

to more realistic scenarios, and in turn may then be 

able to provide the practitioner with better insight 

into performance bounds and improved design 

guidelines. Noise is a major limiting factor. 

Calibration remains a big problem. An efficient 

feedback loop between the different scientists 

working on theory, algorithms, and hardware 

designwill be key to ensure further breakthroughs in 

this area. 

4. Nonlinear compressed sensing

So far we have assumed that the observations we 

arecollecting can be modeled as linear functionals of 

the form <x, ak>, k = 1, . . . ,m, where ak* is a 

sensing vector representing a row of A. However in 

many applications we can only take nonlinear 

measurements. An important example is the case 

where we observe signal intensities, i.e., the 

measurements are of the form <x, ak>
2
|, the phase

information is missing. The problem is then to 

reconstruct x from intensity measurements only. A 

classical example is the problem of recovering a 

signal or image from the intensity measurements of 

its Fourier transform. Problems of this kind, known 

as phase retrieval arise in numerous applications, 

including X-ray crystallography, diffraction imaging, 

astronomy, and quantum tomography. 

  Concepts from compressive sensing and 

matrix completion have recently inspired a new 

approach to phase retrieval called PhaseLift . It has 

been shown that if the vectors ak are sampled 

independently and uniformly at random on the unit 

sphere, then the signal x can be recovered exactly (up 

to a global phase factor) from quadraticmeasurements 

by solving a trace-norm minimization problem 

provided that m is on the order of n log n 

measurements4. PhaseLift does not assume that the 

signal is sparse. It is natural to ask if we can extend 

the compressive sensing theory to the recovery of 

sparse signals from intensity measurements. Some 

initial results can be found in [18], but it is clear that 

this development is still in its infancy and much more 

remains to be done. For instance, it would be very 

useful for a variety of applications to know how 

many measurements are required to recover an s-

sparse signal x ∈ C
n
 from Fourier-type intensity 

measurements. 

5. Future scope of   Compressed Sensing:

   There is a growing gap between the amount of data 

we generate and the amount of data we are able to 

store, communicate, and process. In the year 2011 we 

produced already twice as many data as could be 

stored . And the gap keeps widening. As long as this 
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development continues there is an urgent need for 

novel data acquisition concepts like compressive 

sensing. 

   There is an obvious intellectual achievement, 

in which compressive sensing and sparse 

representations play a key role :Advanced probability 

theory and (in particular) random matrix theory, 

convex optimization, and applied harmonic analysis 

will become and already have become standard 

ingredients of the toolbox of many engineers. At the 

same time, mathematicians will have gained a much 

deeper understanding of how to confront real-world 

applications. Furthermore, compressive sensing has 

advanced the development of ℓ1-minimization 

algorithms, and more generally of non smooth 

optimization. These algorithms find wide-spread use 

in many disciplines, including physics, biology, and 

economics. 

6. Conclusion

To revolutionize technology we will need to develop 

hardware and algorithms via an integrated, trans 

disciplinary approach. Hence, in the future when we 

design sensors, processors, and other devices, we 

may no longer speak only about hardware and 

software, where each of these two components is 

developed essentially separately. Instead, we may 

have to add a third category, which we could call 

hybrid ware or mathematical sensing, where the 

physical device and the mathematical algorithm are 

completely intertwined and  codesigned right from 

the beginning. 
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