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Abstract 

Similarity solution is investigated for a free 
convective boundary layer flow of electrically 
conducting Non-Newtonian fluids over a vertical 
porous-elastic surface. The similarity equation is 
derived using one parameter linear group of 
transformation. Finally, this similarity equation 
which is highly non-linear ordinary differential 
equation is solved numerically for particular 
Non-Newtonian fluid so-called Powell-Eyring 
fluid. 

 
Keywords: Similarity solution, Powell- Eyring fluid, 
Non-Newtonian Fluid, boundary layer flow. 
 
1. Introduction 
Most of the researchers in the field of fluid 
mechanics try to obtain the similarity solutions by 
introducing a general similarity transformation with 
unknown parameters into the differential equation 
obtaining in this way an algebraic system. The 
symmetries of a differential equation are those 
continuous group of transformations under which the 
differential equation remains invariant, that is, a 
symmetry group maps any solution to another 
solution. The interesting point is that, having 
obtained the symmetries of a specific problem, one 
can proceed further to find out the group  
 
 

 
 
invariant solutions, which are nothing but the well-
known similarity solutions. The similarity solutions  
are quite popular because the result in the reduction 
of the independent variables of the problem. In our 
case, the problem under investigation is two-
dimensional. Hence, any similarity solution will 
transform the system of partial differential equations 
into a system of ordinary differential equations. 
To obtain symmetry of a differential equation is 
equivalent to the determination of the transformation 
group associated with this symmetry. In Olver [1]; 
Bluman and Kumei [2]; Ibragimov [3, 4], one can 
find the general theory if Lie groups as well as the 
implied methods for determining transformation 
group via the infinitesimal generator components. An 
alternative way being based on exterior calculus for 
determining the transformation group so-called 
deductive group can be found in Moran and Gaggioli 
[5]. It is worth nothing that there is an extensive 
literature where the methods arising from exterior 
calculus are used to attack symmetry problems of 
continuum mechanics (Suhubi [6, 7], Pakdemirli and 
Suhubi [8], Kalpakides [9, 10], Koureas [11, 12]). 
This procedure is applied to a boundary layer 
problem which arises from the motion of an elastic 
surface into an electrically conducting, 
incompressible, viscous non-Newtonian fluid. We 
mention here the some work of Sakiadis [13]; 
Erickson [14]; Tsou [15]; Gupta and Gupta [16]. It is 
remarkable that all of them have used the above 
described heuristic method to obtain the similarity 
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transformations and the associated similarity 
solutions of the problem. That is, assuming particular 
boundary conditions and considering a particular 
form of the magnetic field, they try to fit a similarity 
solution in these data. 
We consider the most general form for the boundary 
conditions and the magnetic field function involved 
in the system. Both the specific form of the functions 
on the boundaries and the form of magnetic field 
arise as a consequence of the requirement to respect 
the obtained symmetries. The similarity equations 
obtained are more general and systematic along with 
auxiliary conditions. Recently this method has been 
successfully applied to various non-linear problems 
(see Malek [17]; Darji and Timol [18, 19]; Adnan 
[20]). 
The boundary layer flow of Newtonian fluids past 
stretching sheet was first discussed by 
Crane[21].Later on same problem was extended by 
several authors, few of these Soundalgekar and 
Ramana Murthy[22]; Grubka[23]; Dutta [24]; 
Jeng[25]; Dutta[26];Chen and Char[27] for different 
physical situations, due to its important applications 
to polymer industry. These studies restrict their 
analyses to Newtonian fluids. Flow due to a 
stretching sheet also occurs in thermal and moisture 
treatment of materials, particularly in processes 
involving continuous pulling of a sheet through a 
reaction zone, as in metallurgy, textile and paper 
industries, in the manufacture of polymeric sheets, 
sheet glass and crystalline materials. It is well known 
that a number of industrial fluids such as molten 
plastics, polymeric liquids, food stuffs or slurries 
exhibit non-Newtonian character. Therefore a study 
of flow and heat transfer in non-Newtonian fluids is 
of practical importance. 
In recent years several industries deal with the non-
Newtonian fluids under the influence of magnetic 
field. In view of this, some researchers 
Sarpakaya[28]; Saponkov[29];Martinson and 
Pavlov[30]; 
Samokhen[31];Andersson[32];Cortell[33]; Liao[34] 
have presented works on MHD flow and heat 

transfer in an electrically conducting power law fluid 
over a stretching sheet. However, in the literature 
rare work has been found regarding other non-
Newtonian fluids. This may due to mathematical 
complication of its strain-stress relationship. 
In the present paper, Similarity solution is 
investigated for a free convective boundary layer 
flow of electrically conducting Non-Newtonian 
fluids over a vertical porous and elastic surface. The 
class of all non-Newtonian fluids is characterized by 
the property that its stress tensor component 𝜏𝑖𝑗 can 
be related to the strain rate component 𝑒𝑖𝑗  by the 
arbitrary continuous functional relation  
τij, = G�eij�                                                              (1) 

 
 
Problem Formulation 

  
Figure 1: Boundary layer around the stretching 

surface                              
  
We consider a free convective, laminar boundary 
layer flow of an electrically conducting 
incompressible viscous power law fluid over a 
vertical porous and elastic surface. The surface is 
stretched vertically upward along the positive 𝑥-axis, 
with a prescribed velocity 
 
𝑦 = 0, 𝑢(𝑥, 0) = 𝑢0(𝑥)                                      (2) 
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While the origin (x, y) = (0,0)  is kept fixed. The -
axis is vertical to the surface, as it is depicted in 
Figure 1. Also, due to the fact that the elastic surface 
is porous, there is a component of the velocity of the 
fluid which has vertical direction to the surface given 
by  
   

y = 0, v(x, 0) = v0(x)                                  (3) 

The motion of the surface within the fluid creates a 
boundary layer, which is extended along the -axis. 
The whole system is under the influence of a 
magnetic field B(x) which applies to the -direction. 
We consider that the temperature of the surface 
changes along the -axis and its distribution is 
described by a given function   T0(x) . The stress-
strain relation, under the boundary layer assumption 
can be found in the form of arbitrary function with 
only non-vanishing component. Then the relation 
(20) can be given by  τyx. Then equation (1) can be 
given by  
 

τyx = 𝐺 �
∂u
∂y
�                                           (4) 

 
Under the assumption that the viscous dissipation 
term in the energy equation and the induced 
magnetic field can be neglected, the basic boundary 
layer equations of the mass, momentum and energy 
for the steady flow of Boussinesq type are 
respectively as follows, with the stress-strain 
relationship given by (4) 
 
Continuity 

∂u
∂x

+
∂v
∂y

= 0                                        (5) 

Momentum 

u
∂u
∂x

+ v
∂u
∂y

=
1
ρ
∂
∂y
�τyx� −

σB2

ρ
u +  gβ(T − T∞)  (6) 

 
 
 

Energy 

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

                     (7) 

 
 
Where -electric conductivity, -volumetric 
coefficient of thermal expansion, -mass density and 

-thermal diffusivity, which are assumed to be 
constants. Also,  -gravity field assumed to be 
parallel to the -axis, T = T(y, x) - temperature field 
and T∞ - temperature at infinity. Therefore the 
boundary conditions of the problem of the form 
 
y = 0, u(x, 0) = u0  , v(x, 0) = v0, θ = θ0   (8) 

 
y = ∞, u(x, y) = 0 , θ = 0                                          (9) 
 
Where  θ = T − T∞ , θ0 = T0 − T∞  is a prescribed 
function along the boundary surface y = 0 
With the stress-strain relationship 

τyx = 𝐺 �
∂u
∂y
�                                  (10) 

The above equation can be made dimenstionless 
using following quantities, 

x∗ =
Gr

L
x  , y∗ =

y
L

(Rex . Grx)
1
2  , u∗ =

u
U0

  , Rxe =
U0L

v
      

v∗ =
v

U0
(
Rex
Grx

)
1
2 , τyx∗ =

τyx
ρU0

2 (
Rex
Grx

)−
1
2 , 

 θ∗ =
θ

(T0 − T∞)                                         

θ0
∗ =

θ
(T0 − T∞)  , Pr =

v
α

  , Gr =
L3

v2
gβ(T0 − T∞)    (11) 

Introducing above non-dimensional quantities in 
equations (5) to (7), 

We get 
Continuity 

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0                                       (12) 
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Momentum 

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
=

∂
∂y∗

�τ∗y∗x∗� − M∗u∗ + λθ∗    (13) 

 
 
Energy 

u∗
∂θ∗

∂x∗
+ v∗

∂θ∗

∂y∗
=

1
Pr
∂2θ∗

∂y∗2
                         (14) 

 
With the stress-strain relationship 

τ∗yx = 𝐺 �
∂u∗

∂y∗
�                     (15) 

With the boundary conditions 

y = 0, u∗(x, 0) = u0∗ , v∗(x, 0) = v0∗ , θ∗ = θ0
∗         (16) 

y = ∞, u∗(x, y) = 0  , θ∗ = 0                           (17) 

Introducing stream function  such that, 

 u∗ =
∂ψ∗

∂y∗
         , v∗ = −

∂ψ∗

∂x∗
                                  (18) 

Equation of continuity (12) gets satisfied identically, 
equation (13)-(17) become 

 
∂ψ∗

∂y∗
∂2ψ∗

∂x∗ ∂y∗
−
∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

=
∂
∂y∗

�τyx∗ � − M∗ ∂ψ
∗

∂y∗
+ λθ∗ (19) 

∂ψ∗

∂y∗
∂θ∗

∂x∗
−
∂ψ∗

∂x∗
∂θ∗

∂y∗
=

1
Pr
∂2θ∗

∂y∗2
                             (20) 

τ∗yx = 𝐺�
∂2ψ∗

∂y∗2
�                          (21) 

With boundary conditions 

y = 0,
∂ψ∗

∂y∗
= u0 ,

∂ψ∗

∂x∗
 = v0, θ∗ = θ0

∗        (22) 

y = ∞,
∂ψ∗

∂y∗
= 0 , θ∗ = 0                     (23) 

                                                   

By using linear group transformation 
x�∗ = Dα1x∗  ,              y�∗ = Dα2y∗ , 
 ψ�∗ = Dα3ψ∗,              θ�∗ = Dα4θ∗  ,   
τ̅yx∗ = Dα5τyx∗   ,       M� ∗ = Dα6M∗                           (24) 

Where α1, α2, α3, α4, α5, α6 and P are constants 
For the dependent and independent variables. From 
Eq. (24) one obtains 

 ( 
x�∗

x∗
)
1
α1 = ( 

y�∗

y∗
)
1
α2 = ( 

ψ�∗

ψ∗
)
1
α3 = ( 

θ�∗

θ∗
)
1
α4 = ( 

τ̅yx∗

τyx∗
)
1
α5

= ( 
M� ∗

M∗)
1
α6 = D                           (25) 

Introducing the linear transformation, given by 
equation (25), into the equations (19)-(21) result in  

Dα1+2α2−2α3
∂ψ�∗

∂y�∗
∂2ψ�∗

∂x�∗ ∂y�∗
− Dα1+2α2−2α3

∂ψ�∗

∂x�∗
∂2ψ�∗

∂y�∗2
        

= Dα2−α5
∂
∂y�∗

�τ̅yx∗ � − Dα2−α3−α6M� ∗ ∂ψ�
∗

∂y�∗

+ λD−α4θ�∗                                 (26) 

 

Dα1+α2−α3−α4
∂ψ�∗

∂y�∗
∂θ�∗

∂x�∗
− Dα1+α2−α3−α4

∂ψ�∗

∂x�∗
∂θ�∗

∂y�∗

=
1
Pr

D2α2−α4
∂2θ�∗

∂y�∗2
                       (27) 

And     

D ∝5  τ̅yx   = G�p−α3+2α2   
∂2ψ�
∂y�2

�                              (28) 

The differential equation are completely invariant to 
the proposed linear transformation, the following 
coupled algebraic equations are obtained   
 α1 + 2α2 − 2α3 = −α4                                         (29) 
α2 − α5 = −α4                                                         (30) 
α2 − α3 − α6 = −α4                                               (31) 
α1 + α2 − α3 − α4 = 2α2 − α4                             (32) 
−α3 + 2α2   = 0                                                       (33) 
and                                                        
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α5 = 0                                                                         (34) 
By Solving above equations, we get  

α2 =
1
3
α1 =

1
2
α3 = −

1
2
α6  and   α5 = 0           (35) 

Introducing equation (35)  into equation(25) 
 results in                                                           

η =
y∗

x∗
1
3

  ,                        ψ∗ = f(η)x∗
2
3 , 

 θ∗ = G(η)x∗−
1
3            τyx∗ = H(η)  ,    

M∗ =  x∗−
2
3 m                                                       (36) 

With boundary conditions, equations (22)-(23) 
becomes 
η = 0  , f ′(0) = u0 , f(0) = v0  , G(0) = θ0                    
η → ∞  , f ′(∞) = 0, G(∞) = 0                   (37) 
Introducing equation (36) in equations (19)-(23), we 
get following similarity equation  
f ′
2(η) − 2f(η)f ′′(η) − 3H′(η) + 3m. f ′(η) − 3λG(η)

= 0                                             (38) 

2f(η)G′(η) + f ′(η)G(η) +
1
Pr

G′′(η) = 0          (39) 

H(η) = G�f ′′(η)�                                                   (40) 

With boundary conditions 
η = 0 , f(0) = c1 , f ′(0) = c2  , G(0) = c3     
η → ∞ , f ′(∞) = 0, G(∞) = 0           (41) 
Result and Discussions 
Many Non-Newtonian fluid models based on 
functional relationship between shear-stress and rate 
of the strain, are available in real world applications 
Bird [35]. Among these models most research work 
is so far carried out on power-law fluid model, this is 
because of its mathematical simplicity. On the other 
hand rest of fluid models is mathematically more 
complex and the natures of partial differential 
equations governing these flows are too non-linear 
boundary value type and hence their analytical or 
numerical solution is bit difficult. For the present 
study the partial differential equation model, 
although mathematically more complex, is chosen 
mainly due to two reasons. Firstly, it can be deduced 
from kinetic theory of liquids rather than the 

empirical relation as in power-law model. Secondly, 
it correctly reduces to Newtonian behavior for both 
low and high shear rate. This reason is somewhat 
opposite to Pseudo plastic system whereas the 
power-law model has infinite effective viscosity for 
low shear rate and thus limiting its range of 
applicability.  
Mathematically, the Powell-Eyring model can be 
written as (Bird [35], Skelland [36])  

τyx=μ
∂u
∂y

+
1
B

sin h−1 �
1
C
∂u
∂y
�                               (42) 

Where B and C are   rheological parameters 
Introducing the dimensionless quantities into 
equation (42) and using similarity variables, we get 

𝐻,(𝜂) = 𝑓 ,,, +
𝜖1𝑓 ,,,

�1 + 𝜖2𝑓 ,,2
                                  (43) 

Where  𝜖1 = 1
𝜇𝐵𝐶

  , 𝜖2 = 𝜌𝑢03𝐺𝑟
𝜇𝐿𝐶2

  are referred as 

rheological flow parameters. 
Substituting the value from (43), the system (38-40) 
reduce to, 
 
𝐹,,,

=
1
3 �𝑓

,2 − 2𝑓𝑓 ,, + 3𝑚𝑓 , − 𝜆𝐺��1 + 𝜖2𝑓 ,,2

𝜖1 + �1 + 𝜖2𝑓 ,,2(𝜂)
     (44) 

  

2f(η)G′(η) + f ′(η)G(η) +
1
Pr

G′′(η) = 0              (45) 

Also the dimensionless local skin-friction confident 
𝐶𝑓𝑥 expression is given by 
1
2
𝐶𝑓𝑥�𝑅𝑒𝑥𝐺𝑟𝑥 ≡ 𝜏𝑤                                                (46) 

Where 𝜏𝑤 is local shear stress. That is 𝜏𝑤 = 𝜏𝑦𝑥|𝑦=0 
In terms of defined rheological flow parameters (46) 
yields, 
1
2
𝐶𝑓𝑥�𝑅𝑒𝑥𝐺𝑟𝑥

= 𝜖2𝑓 ,,(0) +
𝜖1
√𝜖2

sin ℎ−1 ��𝜖1𝑓 ,,(0)�                (47) 

In order to face numerically problem (38)-(41), we 
have used a numerical solver of MATLAB package 
which solves any two-point boundary value problem 
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for ODEs by collocation. To enhance the effect of 
magnetic field, without loss of generality, each 
parameter assumed appropriately in boundary 
conditions (41). The numerical solutions are 
produced graphically in Figures (2)-(4). 
Figure (2) shows that boundary layer decrease as the 
magnetic field increase. 

 
Figure 2: Influence of magnetic field on 
horizontal velocity 
 Figure (3) depicts behavior of 𝑓 ,,(𝜂) throughout the 
domain. In particular it is interesting to observe that, 
as M increases 𝑓 ,,(0) decrease and hence the local 
shear-stress (see Table 1), which decreases local 
skin-friction 𝐶𝑓 . 
 

M 0.01 0.1 0.3 0.8 1 

𝑓 ,,  0.3374 0.2725 0.1385 -0.1477 -0.2473 

𝜏𝑤  0.6687 0.5417 0.2766 -0.2949 -0.4921 

                                            
                  Table 1: Local shear stress 
 

Figure 3: Influence of magnetic field on shear 
stress within boundary layer domain 
 
Influence of magnetic field on thermal boundary 
layers displayed by Figure 4. It shows that increase 
in magnetic field will precisely increase thermal 
boundary layer within the boundary layer domain. 

 
             Figure 4: Thermal boundary layer domain 
under the effect of magnetic field 
 
 Conclusion 
Similarity solution is produced for a free convective 
boundary layer flow of electrically conducting Non-
Newtonian fluids over a vertical porous and elastic 
surface. The governing system of Partial differential 
equations transformed into the system of Ordinary 
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differential equations subject to the similarity 
requirement, by employing the derived 
transformations. Numerical solutions for special 
Non-Newtonian fluid so-called Powell-Eyring fluid 
are produced by MATLAB computational algorithm. 
An interesting effect of magnetic field is observed. 
All the numerical solutions are generated for 
dimensionless quantity and hence it is executed for 
all types of under considered fluids. An interesting 
effect of magnetic field is observed. 
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