
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

83

Relational Keyword Search System Using Fuzzy
Type-Ahead Search

Miss Kate Surekha B.
Department of computer engineering of JSCOE

Handewadi Road, Hadapsar,
Pune-411028, India

Surekha.kate@gmail.com

Prof.Ingle Madhav.D.
Department of computer engineering of JSCOE

Handewadi Road, Hadapsar,
Pune-411028, India

ingle.madhav@gmail.com

Abstract— The search performance is one of major concern in
any of search query method presented by different researchers.
There are many methods already presented and for improving
the search results performances still in this area continue
working is going. One of the most commonly used method is
autocomplete, which predicts a word or phrase that the user
may type in based on the partial string the user has typed in.
There is one limitation of traditional autocomplete method is
that the system treats a query with multiple keywords as a
single string, thus it does not do a full-text search on the data.
In this paper we are using the extension of fuzzy type-ahead
search in XML method which overcome the limitations of
previous methods. We have identified following features of
this method: keywords. It allows users to explore data as they
type, even in the presence of minor errors of their keywords.
We offer effective index structures and to achieve a highly
interactive speed top-k algorithms. We will check ranking
functions and early termination techniques to identify relevant
top-k answers progressively. We've implemented our actual
data set method, and experimental results show that our
method achieves efficiency and high search result quality.

Keywords— keyword search; fuzzy type-ahead search;
optimization.

I. INTRODUCTION
 With the growth of the Web, there has been a rapid
increase in the number of users who need to access
information without having a detailed knowledge of the query
languages; even relatively simple query languages are too
complicated for non-experts that are designed for them. In
this paper, for overcome the limitations of previous methods
we are presenting the extension of fuzzy type-ahead search in
XML method which is recently presented. This method can
find high-quality answers that have keywords matching query
keywords approximately. This method also access information
in XML data in the query keywords searches as user system. It
those types as data users, even the presence of minor errors of
your keywords to find out. Fuzzy search further improves user

search experiences by finding relevant answers with keywords
similar to query keywords.

Our proposed method has the following features:
1) Search as user type: It extends Auto complete method by
supporting queries with multiple keywords in XML data.
2) Fuzzy: Fuzzy method can find high-quality answers that
have keywords matching query keywords approximately.
3) Fuzzy method is efficient in terms of search time. However,
there are chances to further improve this search results by
using the existing forward-index structure method with aim of
improving the search efficiency and result quality.

II. LITERATURE SURVEY
A. Keyword Searching and Browsing in Databases using

BANKS
 Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe,
Soumen Chakrabarti, S. Sudarshan describe BANKS system
which enables keyword-based search on relational databases,
with data and schema browsing. BANKS enables users to
extract information in a simple manner without any
knowledge of the language or any need for writing complex
queries.[2] Simple query languages designed for non-experts
are even too complicated for such users, who don’t have
knowledge of query language. Query languages for semi-
structured/XML data are more complex, increasing the
impedance mismatch further.

B. Keyword Querying and Ranking in Databases

There are two types of challenges, ranking Challenges
and Query Processing Challenges described in this paper in
databases leverage information retrieval, traditional relational
query processing, as well as more recent innovations in
database algorithms[6].

C. An Empirical Performance Evaluation of Relational

Keyword Search Systems
Today all Internet users use a search engine daily,

performing number of searches for accessing information. The
success of keyword search stems from what it does not require
namely, a specialized query language or knowledge of the

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

84

underlying data structure. Internet users increasingly demand
keyword search interfaces for accessing information, so that it
is natural to extend this paradigm to relational data[1].

Overall, existing relational keyword search systems
performance is somewhat disappointing, particularly with
regard to the number of queries completed successfully in our
query workload. In this paper the number of timeout and
memory exceptions are witnessed. Because our larger
execution times might only reflect our choice to use larger
datasets, we focus on two concerns that we have related to
memory utilization.

D. Keyword Search on Structured and Semi-Structured Data
 In this paper, Yi Chen, Wei Wang, Ziyang Liu,
Xuemin Lin given an overview of the state-of-the-art
techniques for supporting keyword search on structured and
semi-structured data, including query result denition, rank- ing
functions, result generation and top-k query processing,
snippet generation, result clustering, query cleaning, perfor-
mance optimization, and search quality evaluation [7]. There
is majority of data on the Web which is still unstructured.

E. Keyword Proximity Search in Complex Data Graphs
 In keyword search over data graphs, an answer is a
nonredundant subtree in which includes the given keywords.
Algorithm for enumerating answers used within an
architecture that has two main components: an engine that
generates a set of candidate answers and a ranker that
evaluates their score. To be effective, the engine must have
three fundamental properties. It should not miss relevant
answers, that has to be efficient and must generate the
answers in an order that is highly correlated with the desired
ranking. But efficiency of keyword search on graphs is very
costly to process [3].

III. RELATIONAL KEYWORD SEARCH SYSTEM

 Keyword search (KWS) over relational databases has
recently received significant attention. Many solutions and
many prototypes have been developed in this area for
improving the search results performances. The search textbox
has transformed the way people interact with information.
Despite the wide-ranging success of Internet search engines in
making information accessible. We search query in dataset
and show the result. In our project calculated execution time
for particular Search. Applied existing techniques that given in
paper[1]. We calculate Rank score for particular search and
will Store result in Database. In proposed system we are using
the extension of fuzzy type-ahead search in XML method
which giving high ranking score with easily retrieve of
information. By using fuzzy type-ahead search technique we

calculate rank score for proposed system. Then will compare
existing and proposed system and Show result in graph.

 In existing system dblp dataset is used in XML
format. This dataset is an input of system. The work of
existing system is divided into three parts.

A. Keyword Search
 keyword search module search a keyword in
dblp.xml file . User can enter a keyword through keyword
search method which he wants to search. If keyword is already
exist in system then it sent to keyword matching module and
then return the similar documents that matched with keyword
to the user. If keyword is not existed in system then keyword
is extracted from database and compared this with subset of
relevant keywords in keyword matching component. Finally,
similar documents returned to the user.

B. Approximation Score Calculate
 Aim of this module is to calculate approximate score.
Query processing work with top-k scoring function.
DISCOVER system calculate the score of rank results.

C. Top-k based Return
 Aim of Top-k based Return module is to return top-k
based results which are in specific documents. DISOVER
system using scoring function for the return of approximate
top-k based results.

IV. PROPOSED SYSTEM

A. Problem Definition

 Traditional autocomplete method that is used in
existing system has one limitation that treats a query with
multiple keywords as a single string, so that it does not do
a full-text search on the database. To address this problem,
we are using the extension of fuzzy type-ahead search in
XML method. This method treats the query as a set of
keywords, and search answers by matching keywords in
documents with these keywords.

B. System Architecture

There is an limitation of traditional autocomplete
method that is used in system treats a query with multiple
keywords as a single string, so that it does not do a full-
text search on the database. To address this problem, we
are using the extension of fuzzy type-ahead search in XML
method. This fuzzy type-ahead search method treats the
query as a set of keywords, and search answers by

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

85

matching keywords in documents with these keywords. It
does a full-text search on the underlying data as the user
types in query keywords letter by letter. In this way, this
method will provide better optimized results, also it will
help to the user, in getting instant feedback even typing a
partial query, thus obtain more knowledge about the
underlying data. The work of this system is divided into
following four parts.

Fig. 1. Fuzzy type search architecture

A. Indexer
 It is a process that reads data from specified sources,
tokenizes the data, and creates the following structures:

1. create a radix trie structure.

2. Create a forward index that stores the sorted list of keyword
IDs for each record.

3. Then creates a data itself.

For improving performance of system, we can also maintain a
forward index, which keeps the sorted keyword IDs for each
record.

B. Incremental Fuzzy Prefix Finder
 For each query keyword, the Incremental Fuzzy
Prefix Finder incrementally computes its similar keywords in
the dataset and retrieve their corresponding complete
keywords as the similar keywords. We are using prefix
filtering idea in our method. We use this prefix filtering
property to incrementally compute the similar prefixes of a
new query. For a new query, the fuzzy prefix finder find out
first similar prefixes of previous queries from the server cache,
then computes similar prefixes for the current query, and for
future computation stores the results in the server cache.

C. Multi-keyword Intersection

 Fuzzy prefix finder produce the sets of similar
keywords as an input (for multiple keywords) to the Multi-
keyword Intersection module and computes the relevant
answers, which contain a matched similar keyword from each
set. First construct the union list for every keyword for to
identify the relevant answers and then compute the union lists
intersection. For improving the performance of computing the
intersection we can use forward lists. For checking whether
each candidate record on the shortest union list contains
similar keywords of every other query keyword we use the
forward index. For checking the keyword range of each
similar keyword for other keywords, for example, [s, _], we
check whether the candidate record on the shortest union list
contains keywords in the range. For finding the keyword ID
on the corresponding forward list, first we use a binary-search
method. Then will get the smallest keyword ID on the list that
is larger than or equal to s. After we check whether the
keyword ID is smaller than _. If so, this candidate record
contains a keyword in the range.

D. Ranker
 The Ranker module is used to ranks the answers and
to identify the top-k best answers for a constant k. For to
quantify the similarity between two words wi and wj , that is
denoted by ed(wi, wj) we using edit distance function. If the
edit distance between an input keyword and its similar
prefixes in documents dominates the other parameters, first we
want to compute the answer with the smallest edit distance.. If
there are not enough top answers with edit distance τ , then we
will compute the answers with an edit distance τ + 1, and so
on.

 V. ANALYSIS AND RESULT

 In this paper comparison between existing system
and proposed system is done. In existing system, evaluation of
different systems is computed. Number of experiments are
performed on different systems and datasets. Number of
search query terms and collection frequency of terms are also
calculated. In keyword search system, we performed number
of searches (see in table I) . We calculated execution time and
ranking score for particular keyword as shown in table I.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

86

Fig. 2. Search keyword details

 In our proposed system we calculating optimization
on evaluation of system performances, so it give better results
than existing system. We calculated execution time and
ranking score for particular keyword as shown in table II. It
reduced execution time at better level than existing system. It
also reduce ranking score than keyword search system.

Fig. 3. Fuzzy search keyword details

 We have done comparison between existing system
and proposed system. Following graph shows comparison
between both systems. For ‘Large’ keyword in keyword
search execution time- 0.056 and rank score- 153.272 is
required. But in Fuzzy search, execution time- 0.027 and rank
score- 135.524 is required.

 In keyword search system, 125th search is done for
‘Large’ keyword. In Fuzzy search system 21th search is done
for same keyword ‘Large’. Here for keywords in proposed
system requires less execution time and rank score. Hence
fuzzy search method provide better optimized results. In this
way, our proposed system easily retrieve data with high
ranking score by using fuzzy technique.

 VI .CONCLUSION

It will conclude from the comparison between existing
methods and our new fuzzy type-ahead search method that
fuzzy method provides better optimized results than existing
system. In fuzzy search system less execution time and
ranking score is required for specific search than keyword
search system. So that fuzzy search method give high ranking
score with easily retrieve data. Fuzzy search technique do full-
text search on the underlying data as the user types in query
keywords letter by letter. Hence, this system helps to user for
getting instant feedback after typing a partial query, thus he
can obtain more knowledge about the underlying data, which
helps the user prepare complete queries.

 ACKNOWLWDGEMENT

I would like thanks to Prof. M. D. Ingle professor of
Computer Engineering at J.S.P.M .Hadapsar ,who guided
through this paper.

 REFERENCES

1. Joel Coffman, Alfred C. Weaver (2014). An Empirical
Performance Evaluation of Relational Keyword Search
Systems. Technical Report, University of Virginia
Charlottesville, VA, USA.

2. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword Searching and Browsing in Databases
using BANKS,” in Proceedings of the 18th International

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-9,December 2015
 ISSN: 2395-3470

www.ijseas.com

87

Conference on Data Engineering, ser. ICDE ’02, February
2002, pp. 431–440.

3. K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword
Proximity Search in Complex Data Graphs,” in Proceedings of
the 2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08, June 2008, pp. 927–
940.

4. Guoliang Li, Shengyue Ji, Chen Li, Jiannan Wang, Jianhua
FengEfficient, “Fuzzy Type-Ahead Search in TASTIER”
Tsinghua University, Beijing 100084, China. UC Irvine, CA
92697-3435, USA.

5. H. Bast and I. Weber, “Type less, find more: fast
autocompletion search with a succinct index,” in SIGIR, 2006,
pp. 364–371.

6. S. Chaudhuri and G. Das, “Keyword Querying and Ranking
in Databases,” Proceedings of the VLDB Endowment, vol. 2,
pp. 1658–1659, August 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1687553. 1687622

7. Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword Search
on Structured and Semi-Structured Data,” in Proceedings of
the 35th SIGMOD International Conference on Management
of Data, ser. SIGMOD ’09, June 2009, pp. 1005–1010.

8. J. Coffman and A. C. Weaver, “A Framework for
Evaluating Database Keyword Search Strategies,” in
Proceedings of the 19th ACM International Conference on
Information and Knowledge Management, ser. CIKM ’10,
October 2010, pp. 729–738.

9. G. Li, S. Ji, C. Li, and J. Feng, “Efficient type-ahead search
on relational data: a tastier approach,” in SIGMOD, 2009, pp.
695–706.

10. S. Ji, G. Li, C. Li, and J. Feng, “Interative fuzzy keyword
search,” in WWW 2009, 2009, pp. 371–380.

11. V. Hristidis, L. Gravano, and Y. Papakonstantinou,
“Efficient IR-style Keyword Search over Relational
Databases,” in Proceedings of the 29th International
Conference on Very Large Data Bases, ser. VLDB ’03,
September 2003, pp. 850–861.

http://dl.acm.org/citation.cfm?id=1687553

	I. INTRODUCTION
	II. Literature Survey
	III. RELATIONAL KEYWORD SEARCH SYSTEM
	A. Keyword Search
	B. Approximation Score Calculate
	C. Top-k based Return

