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Abstract: In this paper we study the asymptotic behaviour of a subharmonic
functions of order less than half which are extremely to well known inequality usually
refered to as the “cos πρ Theorem” due to Winman [1] and Valiron [2] and describe the
regularity of related quantities. If U = log|f |, where f is entire functions, the extremal
problem for the cosπρ theorem has been studied by Drasin and D.F Shea [3]. The
purpose of this paper is to obatain similar results for arbitrary subharmonic function
extremal to the cosπρ theorem.
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1. Introduction

Let U be a subharmonic function in the complex plane and

N(r, u) = 1
2π

2π∫
0

u(reiθ)dθ, B(r, u) = sup
|z|=r

u(z) and A(r, u) = inf
|z|=r

u(z).

The Nevanlinna characteristic T (r, u) of u is defined by

T (r, u) = N(r, u)

and the order ρ of u by

ρ = lim
r→∞

sup
logT (r, u)

logr
.

if ρ is finite, T(r,u) has sequence of Pòlya Peaks {rn} of order ρ, that is,

T (r, u) ≤ (1 + εn)

(
r
rn

)ρ
T (r, u), (εnrn ≤ r ≤ rn

εn
)

for some sequence εn → 0 and εnrn → ∞ as n → ∞ (for the proof see Edrei [1], W.
Hayman [2]).

Let {rn} be a sequence of Pòlya peaks for T (r, u) of order ρ, and set
β = 1

2
m{θ ∈ (−π, π]U(reiθ) > 0}, n = 1, 2, 3...

where m is the Lebesgue measure on the real line. Put β0 = lim infβn, 0 ≤ βn ≤ π,
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then we have a subsequence {rnk} of {rn} such that βnk → βn as k → ∞. Since a
subsequence of {rn} is also a sequence is also a sequence of Pòlya peaks for T (r, u), we
assume that βn → β0 as n→∞.
We note that by A. Baernstein [3] (spread theorem)

β0 = π for 0 < ρ ≤ 1

2
(1)

Let u be a subharmonic function of order ρ, 0 < ρ < 1. Winman [4] and Valiron [5]
proved that

lim
r→∞

sup
A(r, u)

B(r, u)
≥ cosπρ, (2)

is sharp, this result is usually referred as the “cosπρ-Theorem”.
If u = log|f | is extremal, that is, if equality holds in (2) Drasin and D.F. Shea[6]
have studied the asymptotic behaviour of the function f. In this paper we use con-
volution inequality due to M. Essèn, J. Rossi and D.F. Shea[7] via normal family of
subharmonic functions extremal to (2) near Pòlya peaks. We will also see that the
extremal functions are in some sense extremal to the well known sharp inequalities due
to Paley[8], Ostroviski[9] and Edei[10]. The method employed here indicates how con-
volution inequalities are powerful tools in extremal problems. We state our main result.

Theorem 1.1 Suppose u is a sub-harmonic function of order ρ, 0 ≤ ρ < 1
2
and

{rn} a sequence of Pòlya peaks of order ρ. If u is extremal for (2) that is

limsupA(rn,u)
B(rn,u)

= cos(πρ), then

(a) lim
n→∞

B(rrn,u)
T (rn,u)

= πρrρ

sinπρ
, (0 < r <∞)

(b) lim
n→∞

T (rrn,u)
B(rn,u)

= rρ = lim
n→∞

N(rrn,u)
T (rn,u)

, and

(c) there is a subsequence I of the positive integers such that
u(rrne

iθ) = (I + o(I))T (rn, u) πρr
ρ

sinπρ
cos(ρ(θ − α)) as n → ∞, n ∈ I for almost all

θ, |θ − α| ≤ π and for some α ∈ (−π, π].

1 Some facts we need to prove the theorem 1

a) The star-function. Let u be a subharmonic function in the complex plane. Follow-
ing A. Baerstein[11] we define the star-function of u by:
u∗(reiθ) = sup 1

2π

∫
E

u(reiφdφ, where the supremum is taken over all measurable set E,

with mE = 2θ, where m is the Lebesgue measure on R. It is proved that
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u∗(reiθ) =
1

π

θ∫
0

u (reiφ)dφ

where, φ→ u(reiθ) is the symmetric decreasing rearrangement of u(reiφ) on [−π, π]. A.
Baerstein[11] proved that u∗ is subharmonic in the upper half plane π+ and continous
closure of π+ except possibly at the origin, and that the supremum in (4) is attained
in some set E ⊂ [−π, π] From the definition of T (r, u), we have

T (r, u) = max
θ
u∗(reiθ), (0 ≤ θ ≤ π), N(r, u) = u∗(reiθ) (3)

B(r, u) = sup
|z|=r

u(z) =
∂

∂θ
u∗(reiθ)

∣∣∣∣
θ=0

(4)

A(r, u) = inf
|z|=r

u(z) = π
∂

∂θ
u(reiθ)

∣∣∣∣
θ=π

(5)

b)We also need the following result due to Anderson, J.M and A. Baernetein [12]. Let
u be subharmonic function in the plane of order 0 ≤ ρ < ∞ and {rn} a sequence of
Pòlya peaks for T (r, u) of order ρ.

Set un = u(zrn)
T (rn,u)

, n = 1, 2, 3, ... Here we have T (r, un) = T (rrn,u)
T (rn,u)

, B(r, u) = B(rrn,u)
T (rn,u)

,
and
u∗n(Z) = u∗(rnz)

T (rn,u)
. Anderson J.M and A. Baerstein [12] have proved that there is a sub-

harmonic function v and a subsequence I = {nk} of positive integers such that the
following statements hold as n→∞ in I:

(i) lim
n→∞

π∫
−π
|un(reiθ)−v(reiθ)|dθ = lim

n→∞
N(r, |un−v|) = 0, 0 < r <∞, (6)

(ii) lim
n→∞

T (r, un) = T (r, v) ≤ rρ, (7)

(iii) lim
n→∞

N(r, r(n)) = N(r, v). (8)

Since T (I, un) = 1, it follows from(ii) that T (I, v) = 1. We refer to the subhar-
monic function v as the limit function of u . We remark that if u is subharmonic of
order ρ, 0 ≤ ρ < 1

2
, then by (1), βn → π as n → ∞ and using (6) one can show (for

the proof see Seid[13])
that

u∗n(eiπ)→ v∗(eiπ) = 1as n→∞. (9)

We restate Theorem 1.1 in terms of the limit function v of u.

Theorem 2.1 Let u be a sub-harmonic function of order ρ, 0 ≤ ρ < 1
2
and {rn}

a sequence of Pòlya peaks of order ρ. if u is extremal to (2) and v is a limit function
of u, then
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(a)B(r, v) = πρrρ

sinρπ
,

(b)A(r, v) = πρrρ cosπρ
sinπρ

,

(c)N(r, v) = rρ = T (r, v), (0 < r <∞),

(d) if n(t) is the Reisz mass in the ball B(0, t) then n(t) = ρrρ,

(e) v(reitheta) = πρrρ

sinπρ
cosρ(θ − α)|θ − π| ≤ π, for some α ∈ [−π, π).

Thus, if u is extremal to (2), then the above theorem implies the limit function v
of u satisfies:

(i)B(r,v)
T (r,v)

= πρ
sinπρ

, whic shows that v is extremal to inequality.

lim
r→∞

inf B(r,u)
T (r,u)

≤ πρ
sinπρ

due to Paley [8].

(ii) A(r,u)
T (r,u)

≥ πλ cosπρ
sinpiρ

, that is v is extremal to the inequality lim
r→∞

supA(r,u)
T (r,u)

≥ πρ
cosρ

siniρ
due to Ostrovisklii [9] and Edrie [10],

(iii)A(r,v)
B(r,v)

= cosπρ.... that is extremal to the cosπρ inequality

lim
r→∞

supA(r,u)
B(r,u)

≥ cosπρ. due to Valiron and Wiman.

All the above equalities shows that in some sense if u is extremal to Valiron and
Wiman inequality, then it is extremal to Paley inequality, and to the Ostrosvisklii and
Edreii inequality.

Proof of Theorem 2.1:
We shall prove Theorem 2.1, and Theorem 1.1 follows from (6), (7) and (8).
Lemma 1. Let u be a subharmonic function of order 0 < ρ < 1

2
, and {rn} is a sequence

of polya peaks for T (r, u) of order ρ. If v is a limit function of u, then

lim
n→∞

B(r, un) = lim
n→∞

B(rrn, u)

T (rn, u)
= B(r, v) ≤ πρ

sinπρ
(10)

.
Proof. Fix r > 0 and put B(r, un) = un(reiαn), αn ∈ (−π, π], n = 1, 2, 3, ....
Assume αn → α0 as n→∞. The for s > r, we have

B(r, un) ≤ 1
2π

π∫
−π
un(seiθ)Pr(θ − αn)dθ

where, Pr is the Poisson kernal. By (6) and the dominated convergence theorem, we
have
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lim
n→∞

supB(r, un) ≤ 1

2π

π∫
−π

v(seiθ)P r
s
(θ − α)dθ ≤ B(s, v)

Since this holds for any s > r and B(s, v) is a continous function of s, letting s approach
r and by (16), we get

lim
n→∞

B(r, un) ≤ B(r, v), (0 < r <∞) (11)

Now fix r > 0 arbitrary. Put B(r, v) = v(reiθ) for α ∈ (−π, π]. Then for any s > 0, we
have

B(r, θ) ≤ 1

2π

2π∫
0

v(seiθ)P r
s
(θ − α)dθ.

Again using (6), we obatin

1

2π

2π∫
0

v(seiθ)P r
s
(θ−α)dθ <

1

2π

2π∫
0

un(seiθ)P r
s
(θ−α)dθ+o(1) ≤ B(s, un)+o(1) as n→∞

Consequently,

B(r, v) ≤ lim
n→∞

infB(r, un) (12)

The result follows from (11) and (12). To see the remaining inequality, let v∗ be the
star-function of v. then by phragme’n Lindelöt principle, we have

v∗(reiθ) ≤ rρ
sinρθ

sinπρ
, 0 ≤ θ ≤ π (13)

Thus ∂
∂θ
v∗(reiθ)

∣∣∣∣
θ=0

≤ rρρ
sinπρ

and this implies by (4) that

B(r, v) ≤ πρrρ

sinπρ

We need the following convolution inequality due to Esse’n, Rossi and Shea [7]
Let u = u1 − u2 be a δ subharmonic function in the plane , 0 ≤ a < b ≤ π,
γ = b−a

π
, z = reiθ, (0 < θπ.) and 0, r < 1

2
R Then

u∗(zγeiα) ≤
r∫

0

ū(tγeib)K1

(r
t
, θ
) dt
t

+

R∫
0

u∗(tγeiθ)K2

(r
t
, θ
) dt
t

+8
( r
R

) 1
2
T (2Rγ, u)

(
0 < r <

R

2

)
.

For our purpose we consider the case u is subharmonic, a = 0, b = π, so that γ = 1
and the inequality reduces to:

u∗(z) ≤
r∫

0

A((t, u))K1

(r
t
, θ
) dt
t

+ 8
( r
R

) 1
2
T (2R, u),

(
0 < r <

R

2

)
(14)
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where K1(r, θ) is a non-negative function and satisfies

∞∫
0

K1(t, θ)
dt

tρ+1
=

sinρθ

πρcosρπ
, (15)

for 0 < θ ≤ π and |ρ| < 1
2
.

Proof of Theorem 2.1.

Suppose, lim
r→∞

supA(r,u)
B(r,u)

= cosπρ = C(ρ), (0 < ρ < 1
2
). Then, we have

A(r, u) < (C(ρ) + o(1))B(r, u), as r →∞.

Let {rn} be a sequence of Pòlya peaks for T (r, u) of order ρ. We apply (14) with

R = Rn =
1

2

rn
εn
, ρn = εnrn and z = reiθ and letting n→∞ to get

u∗(z) ≤ (C(ρ)+o(1))

R∫
ρn

B(t, u)K1

(rn
t
, π
) dt
t

+

ρn∫
0

A(t, u)K1

(rn
t
, π
) dt
t

+8
(rn
R

) 1
2
T (2R, u)

Setting t = srn, we get

u∗(z) ≤ (C(ρ)+o(1))

εn∫
1
εn

B(srn, u)K1

(r
s
, π
) ds
s

+

∞∫
1
εn

A(srn, u)K1

(
1

s
, π

)
ds

s
+8
(rn
R

) 1
2
T (2R, u)

(16)
as n→∞.

Since A(r, u) < (C(ρ) + o(1))B(srn, u) as → ∞; and 8
(rn
R

) 1
2
T (2R, u) ≤ 82

1
2 ε

1
2 (1 +

εn)
(
d 1
εn

)ρ
T (r, u),. Dividing throughout the above inequality (16) by T (r, u), using

(9), Lemma I and letting n→∞ , we obatain by Lebesgue’s dominating convergence
theorem

1 ≤ C(ρ)

∞∫
0

B(s, v)K1

(
1

s
, π

)
ds

s
≤ C(ρ)

∞∫
0

sρ
πρ

sinπρ
K1

(
1

s
, π

)
ds

s
= 1.

Thus equality holds throughout. As B(s, v) ≤ sρ πρ
sinπρ

(by Lemma 1), we have

B(s, v) = sρ
πρ

sinπρ
holds for almost all s ≥ 0. Since B(s, v) is a continous function of

s, we conclude

B(s, v) = sρ
πρ

sinπρ
(0 ≤ s <∞)

6
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Now we apply the convolution inequality due to Petrenko [13] (1969) with γ =
α

π
, (0 <

α < π) and (13) to the limit function v to obtain

B(r, v) = rρ
πρ

sinπρ
≤

∞∫
0

v∗(teiα)K
(r
t
, γ
) dt
t
≤ sinρα

sinπρ

∞∫
0

tλk
(r
t
, γ
) dt
t

= rλ
πρ

sinπρ
.

Thus the equality holds throughout. Using (13), the continuity of v∗, and basic fact in
Lebesgue integral we conclude that

v∗(teiα) = tρ
sinρα

sinπρ
.

Hence from (12)and the maximum principle for subharmonic function, we have

v∗(re
iθ) = rρ

sinρα

sinπρ
, (0 ≤ θ ≤ π, 0 < r <∞) (17)

Thus from (3),(4) and (5), we have

B(r, v) =
πρrρ

sinρπ
,A(r, v) = πρrρ

cosπρ

sinπρ
and N(r, v) = rρ = T (r, v), (0 < r <∞).

Let v̄ be the symmetric decreasing arrangement of v, so that

v∗(reiθ) =
1

π

θ∫
0

P (reiα)dα, (0 ≤ θ ≤ π)

Thus using (17), we have

v̄(reiθ) = λπrρ
cosλθ

sinπλ
, (|θ| ≤ π) (18)

and v̄ is harmonic in {Z : −π < arg(Z) < π}. A well known result of Esse’n and Shea
[15](1978/79) shows that
v(zeiα) = v̄(Z), (|arg(Z)| ≤ π). for some α ∈ (−π, π].
Thus setting Z = rei(θ−α), where |θ − α| ≤ π and using (16) we get
v(reiθ) = πλrρ

sinπλ
cos(θ − α), (|θ − α| ≤ π).

This proves (f). Assertion (e) follows from (d) and Jensens formula.
A standard result in the theory of Lebesgue integral and (6) shows that there is a
subsequence I of positive integers such that
un(reiθ) = (o(1) + 1)v(reiθ)
as n→∞(n ∈ I) and for almost all θ, (|θ − α| ≤ π)
This completes the proof of Theorem 2.1.
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