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Abstract 

As Shoenfeld and Polya stated, 
heuristics are one of the most important 
part of problem-solving. Therefore 
students should learn some heuristics like 
mathematical induction, pigeonhole 
principle, symmetry and so on.  

Although the infinite descent heuristic 
is not so wildly known, it is very useful to 
solve various mathematical problems 
especially in number theory. 

In this article we provide a framework 
to teach this heuristic to students. Also we 
present some examples to show how this 
method can be useful for solving 
problems.  

1 Introduction 

Heuristic is one of the main categories 
to solve a problem. It is a particular mental 
skill included strategies and techniques for 
problem-solving such as working 
backward, drawing figures, restate a 
problem in another way, symmetry, 
etc.(Polya 2014)(Schoenfeld 1985). The 
method of infinite descent and the method 
of mathematical induction, both came into 
use in the seventeenth century by 
Descartes, Cavalieri, Pascal, Wallis and 
Fermat. The method of infinite descent, 
which was invented by Fermat, is not so 
widely known, but Fermat applied this 
method to solve various problems such as 
the following propositions (Bussey 1918) 

Proposition 1.1 (Bussey 1918) No 
number of the form 3𝑘 + 1 can be of the 
form 𝑥2 + 3𝑦2. 

Proposition 1.2 (Bussey 1918) There is 
no right triangle whose sides are integers 

whose area is equal to the square of an 
integer. 

The idea of this method is to show that 
if there is an integral solution to an 
equation then there is another integral 
solution which is smaller in some way. 
Repeating this process and comparing the 
sizes of the successive solutions leads to 
an infinitely decreasing sequence that is 
impossible in natural numbers. (Conrad 
2012) 

𝑎1 > 𝑎2 > 𝑎3 > ⋯ 
After seventeenth century, although the 

method of infinite descent did not receive 
enough attention, it is one of the most 
efficient methods of mathematics (Bussey 
1918). For example, the proof of 
irrationality of √2 which is one of the 
classical problem of mathematics usually 
done in this way (Rudin 1964). But in the 
study of thirty math teachers it became 
clear that many of them (more than 80 
percent) did not know it. Even those who 
knew the proof did not understand the 
process of infinite descent and 
consequently, they could not apply this 
method to other problems. This means 
they taught that the proof is limited to this 
problem and does not have the ability to 
generalize to other issues. 

Since there are many problems that, 
their solutions are very difficult and time 
consuming without using infinite descent 
we provide an educational framework for 
teaching this method by presenting several 
examples of the application of this method 
in various problems. Although this method 
is used more in number theory, it can be 
used in geometry and algebra, too. 

2 How it can be taught? 
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In this section, we present some 
examples to show the importance and 
beautifulness of this method. We tried to 
teach this method to several students via 
presenting some relevant examples and 
understand that between various examples 
which can be used for teaching this 
method, irrationality of √2 is the most 
understandable. Following we examine the 
process of the method in the proof. 

Example 2.1 (Bilchev and Bilcheva 
n.d.) Proof that √2 is irrational. 

Proof. Let  √2 be a rational number, 
i.e. √2 = 𝑚

𝑛
 where m and n are natural 

numbers. Since 𝑚2 = 2𝑛2 we have 
𝑚 = 2𝑚1 where 𝑚1is a natural number. 
Substituting 𝑚1 we get 2𝑚1

2 = 𝑛2, so we 
can conclude that 𝑛 is even i.e. 𝑛 = 2𝑛1 
where 𝑛1 is a natural number and 𝑛1 < 𝑛 
and 𝑚1 < 𝑚. Continuing the same manner 
we will get decreasing sequences  

𝑚 > 𝑚1 > 𝑚2 > ⋯ 
and 

𝑛 > 𝑛1 > 𝑛2 > ⋯. 
But it is impossible in natural number 
because of well-ordering principle of 
natural numbers and this is a contradiction. 
In such situation we can say that “it is a 
contradiction by infinite descent”. 

In fact, if we suppose that a natural 
number is a solution of a specific problem, 
and the existence of this solution leads to 
another smaller natural solution, this has a 
contradiction with well-ordering principle 
of natural numbers and we know it as 
“infinite descent”. 

If 𝑝 does not be a perfect square 
number, the proof of irrationality of √𝑝 is 
similar. 

The application of this method in the 
algebraic problem is shown in the 
following example. 

Example 2.2 (Bussey 1918) Show that 
𝑥𝑛 − 𝑦𝑛 is dividable by 𝑥 − 𝑦 for all 
natural number 𝑛. 

Proof. We know the proposition is true 
for 𝑛 = 1,2. If there exists a natural 
number i.e. 𝑛0 such that 𝑥𝑛0 − 𝑦𝑛0 is not 

dividable by 𝑥 − 𝑦 then by some 
calculations we have  
𝑥𝑛0 − 𝑦𝑛0
𝑥 − 𝑦

= 𝑥𝑛0−1 +
𝑥𝑛0−1 − 𝑦𝑛0−1

𝑥 − 𝑦
𝑦 

and it shows that 𝑥𝑛0−1 − 𝑦𝑛0−1 is not 
dividable by 𝑥 − 𝑦 and it is a contradiction 
by infinite descent.  

In the next example, we will show the 
application of the method in a geometric 
problem. 

Example 2.3(Tat-Wing 2005) Let 
∆𝐴𝐵𝐶 be an acute triangle. Draw the 
perpendicular from vertex 𝐴 to side 𝐵𝐶 
such that the perpendicular cut 𝐵𝐶 at point 
𝐻1. From point 𝐻1draw a perpendicular to 
cut 𝐴𝐶 at the point 𝐻2. Again from 𝐻2 
draw a perpendicular to meet 𝐴𝐵 at the 
point 𝐻3. Then draw a perpendicular from 
𝐻3 to meet 𝐵𝐶 at 𝐻4 and so on. Prove that 
all points 𝐻𝑖, 𝑖 ∈ 𝑁 are distinct.  

Fig2.1 All 𝑯𝒊 are distinct. 
Proof. At the first, we should note that 

the points 𝐴𝑖 and 𝐴𝑖+1 never coincide 
because ∆𝐴𝐵𝐶 is an acute triangle. 
Suppose 𝐴𝑖 = 𝐴𝑗 and 𝑖 < 𝑗 so 𝑖 equals to 1 
otherwise 𝐴𝑖−1 coincides with 𝐴𝑗−1 that 
means 𝐴𝑖−1 = 𝐴𝑗−1 and it is a 
contradiction by infinite descent. If 𝐴1 
coincides with 𝐴𝑗 (𝑗 ≥ 3) then the point 
𝐴𝑗−1 must be one of the vertices 𝐴, 𝐵, or C 
and it is impossible. 

Example 2.4 (Bilchev and Bilcheva 
n.d.)(Tat-Wing 2005) 2𝑛 + 1 natural 
number is given such that any of  2𝑛 
numbers of them can be divided into two 
𝑛-member groups such that the summation 
of members of each group is equal to 
another. Prove that all numbers are equal. 
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Solution. It is trivial that all of numbers 
must be even or odd and the summation of 
all 2𝑛 numbers is even. We can sort all of 
numbers as follow: 

𝑎0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎2𝑛−1 ≤ 𝑎2𝑛 
Subtracting 𝑎0 from all numbers we get    

0 ≤ (𝑎1 − 𝑎0) ≤ (𝑎2 − 𝑎0) ≤ ⋯
≤ 𝑎2𝑛 − 𝑎0 

that satisfy the condition of problem.  
Continuing this process, from the infinite 
descent we get a group which all members 
are zero. But it implies that all initial 
numbers are equal. 

 Example 2.5 (Engel 1998) Suppose 
that 𝑥 and 𝑦 are natural numbers such that 
𝑥2 + 𝑦2 + 𝑥𝑦 is dividable by 10. Proof 
that both 𝑥 and 𝑦 are dividable by 10. 

Proof. Suppose not, so we can consider 
𝑥 and 𝑦 as 

𝑥 = 10𝑡 + 𝑘 
and  

𝑦 = 10𝑚 + 𝑛 
such that k and n are not zero together. We 
have  

𝑥2 + 𝑦2 + 𝑥𝑦 = 100(𝑡2 + 𝑚2 +
𝑡𝑚) + 10(2𝑡𝑘 + 2𝑚𝑛 + 𝑡𝑛 + 𝑚𝑘)+ 

(𝑘2 + 𝑛2 + 𝑘𝑛) 
Since 𝑥2 + 𝑦2 + 𝑥𝑦 is dividable by 10 

then (𝑘2 + 𝑛2 + 𝑘𝑛) is dividable too and 
it is a contradiction by infinite descent. 

2-1- Golden ratio and infinite 
descent! 

One of the most famous mathematical 
constant is golden ratio which is 
represented with 𝜑. Relation between the 
historical number and the historical 
method might be interesting. Since 
𝜑 = 1+√5

2
 and √5 is an irrational number, 

it is trivial that 𝜑 is irrational. Here we 
present another proof based on infinite 
descent.  

The golden equation which is related to 
golden ratio is 

𝑥
1

=
𝑥 + 1
𝑥

 

If 𝜑 is a rational number i.e.  𝑎
𝑏
 then 

substituting in golden equation we get 
𝑎2 − 𝑏2 − 𝑎𝑏 = 0 

or 
𝑎2 = 𝑎𝑏 + 𝑏2 

It can be easily seen that both a and b must 
be even. Consider  

𝑎 = 2𝑎1 
and 

𝑏 = 2𝑏1 
where 𝑎1 < 𝑎 and 𝑏1 < 𝑏. Substituting we 
have 

𝑎12 = 𝑎1𝑏1 + 𝑏12 
which is a same equation and it is a 
contradiction by infinite descent (Engel 
1998).  

3 Is it necessary? 
28TFaced with the28T39T problem-solving 

methods, there is a question we need to ask 
ourselves: is it necessary to learn the 
method? And is the method really useful 
for solving problems? 

39TIn this section, we present some 
evidences39T 39Twhich indicate that knowing this 
heuristic can be effective in solving 
problems simpler. For example, the proof 
of Fermat last theorem for n=3, 4 is based 
on infinite descent (Grant and Perella 
1999)(Barbara 2007)39T. 

To show that infinite descent can solve 
problems simpler, let us to solve example 
2.5 in different way. 

Proof 2.5. It is trivial that both 𝑥 and 𝑦 
are even. So it is sufficient to prove that 
both of them are dividable by 5. Suppose 
not, consider that  

𝑥 = 5𝑡 + 𝑘 
and  

𝑦 = 5𝑚 + 𝑛 
such that k and n are not zero together. We 
have  
𝑥2 + 𝑦2 + 𝑥𝑦 = 25(𝑡2 + 𝑚2 + 𝑡𝑚) + 

5(2𝑡𝑘 + 2𝑚𝑛 + 𝑡𝑛 + 𝑚𝑘) + 
(𝑘2 + 𝑛2 + 𝑘𝑛)          

Since 𝑥2 + 𝑦2 + 𝑥𝑦 is dividable by 5 
then (𝑘2 + 𝑛2 + 𝑘𝑛) must be dividable by 
5. But the following table shows that for 
all possible cases of k and n, 𝑘2 + 𝑛2 + 𝑘𝑛 
is not dividable by 5. 
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k N 𝑘2 + 𝑛2 + 𝑘𝑛 
0 1 1 
0 2 4 
0 3 9 
0 4 16 
1 1 3 
1 2 7 
1 3 13 
1 4 21 
2 2 12 
2 3 19 
2 4 28 
3 3 27 
3 4 37 
4 4 28 

Table3-1. For all possible cases of k and n 
𝒌𝟐 + 𝒏𝟐 + 𝒌𝒏 is not dividable by 5. 

The next problem shows that how this 
method can be useful for solving some 
complicated problems. 

Example 2.6 (Tat-Wing 2005) Find all 
prime numbers 𝑝 such that satisfy the 
equation 

𝑝𝑛 = 𝑥3 + 𝑦3 
(x, y, and n are natural numbers.) 

Proof. It is easily can be seen that 
21 = 13 + 13 and 32 = 13 + 23. If the 
equation has another solution then 𝑝 ≥ 5 
and at least one of x or y must be greater 
than 1. We will prove that if a solution 
satisfy the equation with power n, then 
there is a solution with power 𝑚 < 𝑛. 

We have 
𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2) 

that 
(𝑥 + 𝑦) ≥ 3 

and  
𝑥2 − 𝑥𝑦 + 𝑦2 = (𝑥 − 𝑦)2 + 𝑥𝑦 ≥ 2 

Since  
𝑝𝑛 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2) 

both (𝑥 + 𝑦) and (𝑥2 − 𝑥𝑦 + 𝑦2) must be 
dividable by p otherwise one of them is 
equal to 1 and another is equal to 𝑝𝑛. But 
it is impossible because  

a. If (𝑥2 − 𝑥𝑦 + 𝑦2) = 𝑝𝑛 
then (𝑥 + 𝑦) = 1 and it is a 
contradiction.  

b. If (𝑥 + 𝑦) = 𝑝𝑛 given that  
one of x or y is greater than 1, then 
(𝑥2 − 𝑥𝑦 + 𝑦2) is greater than or 
equal to 3. 

Since 
3𝑥𝑦 = (𝑥 + 𝑦)2 − (𝑥2 − 𝑥𝑦 + 𝑦2) 

and  both 𝑥𝑦 and 𝑥 + 𝑦 are dividable by 𝑝 
then 𝑝|𝑥 and 𝑝|𝑦. 

We have  
𝑝|𝑥,𝑦 ⇒ 𝑝3|𝑥3,𝑦3 ⇒ 

�
𝑥
𝑝�

3
+ �

𝑦
𝑝�

3
=
𝑝𝑛

𝑝3
= 𝑝𝑛−3 

and it is a contradiction by infinite descent.  
 
4 Conclusion 
The method of infinite descent is an 

important heuristic in problem-solving. In 
this article we provide some examples 
such that in their solutions, this method 
was evident and presented examples for 
teaching this heuristic. Also examined 
problems show that using this method can 
simplify and shorten the process of 
obtaining solution. Therefore, to improve 
teachers and student's problem-solving 
skills, it is recommended that this method 
be taught. 
References 

Barbara, Roy. "Fermat last theorem in the 
case n=4." Mathematical Gazette, 2007: 
260-262. 

Bilchev, Svetoslav Jor, and Marina Svet 
Bilcheva. The Method of Infinite Descent 
In Geometry.  

Bussey, WH. "Fermat's Method of Infinite 
Descent." The American Mathematical 
Monthly, 1918: 333-337. 

Conrad, Keith. Proofs By Descent. 2012. 

Engel, Arthur. Problem-solving strategies. 
New York: Springer, 1998. 



International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-8,November  2015 
                              ISSN: 2395-3470 

www.ijseas.com 

367 
 

Grant, Mike, and Malcolm Perella. 
"Descending to the irrational." 
Mathematical Gazette, 1999: 263-267. 

Polya, George. How to solve it: A new 
aspect of mathematical method. Princeton 
university press, 2014. 

Rudin, Walter. Principles of mathematical 
analysis. New York: McGraw-Hill, 1964. 

Schoenfeld, Alan H. Mathematical 
Problem solvingg. Orlando: Academic 
press, 1985. 

Tat-Wing, Leung. The Method of Infinite 
Descent. 2005. 

 


