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Abstract 

We elucidate the mechanism of the Ampère’s law 
(experimental rule discovered in 1820) in normal metallic 
and superconducting states, on the basis of the theory 
suggested in our previous researches.  The induced 
magnetic field in the Ampère’s law is realized because the 
bosonic electronic state tries not to change the electronic 
structure by inducing the magnetic field.   If an electron 
were not in the bosonic state, any induced magnetic field 
would not be observed.   Furthermore, we discuss how the 
strength of the electric field are closely related to the 
electron–phonon interactions in the normal metallic states 
and the superconducting states.   We formulate the 
electron–phonon coupling constants, which are very 
important physical parameters in the various research 
fields such as the normal metallic states and 
superconducting states, under the external applied electric 
field as well as under no external applied field.    
Keywords: Normal Metal, Superconductor, Electron–
Phonon Interactions, Bose–Einstein Condensation, 
Ampère’s Law, A Bosonic Electron.    
 
1. Introduction 

The effect of vibronic interactions and electron–
phonon interactions [1–7] in molecules and crystals is an 
important topic of discussion in modern chemistry and 
physics.   The vibronic and electron–phonon interactions 
play an essential role in various research fields such as the 
decision of molecular structures, Jahn–Teller effects, 
Peierls distortions, spectroscopy, electrical conductivity, 
and superconductivity.   We have investigated the 
electron–phonon interactions in various charged 
molecular crystals for more than ten years [1–8].   In 
particular, in 2002, we predicted the occurrence of 
superconductivity as a consequence of vibronic 
interactions in the negatively charged picene, 
phenanthrene, and coronene [8].   Recently, it was 
reported that these trianionic molecular crystals exhibit 
superconductivity [9].   

In general, in the vibronic interactions, we consider the 
first- and second-order processes.   In the first-order 
processes, we must consider one electron systems in 
which a phonon is emitted or absorbed by an electron 
(Fig. 1).   On the other hand, in the second-order 

processes, we must consider two electrons systems in 
which a phonon is exchanged between them (Fig. 2).   
Vibronic and Jahn–Teller stabilization energies for one 
electron have been calculated and discussed for a long 
time [1–8].   However, in these previous calculations and 
discussions, the only total electron–phonon coupling 
constants originating from both the first- and second-
order processes have been well calculated, and the roles 
of the first- and second-order processes have not been 
clearly distinguished.   Furthermore, in these discussions, 
the wave function for a randomly moving electron has 
been ambiguous, and the direction of motion of an 
electron has not been considered.   This is the main reason 
why the roles of the first- and second-order processes 
have been ambiguous.   Furthermore, in the conventional 
two-electrons theory [1–7], only the case where no 
external electric or magnetic field is applied has been 
considered.   That is, the relationships between these 
energies and the strengths of the external applied electric 
field have not been discussed in detail.    

In this article, we discuss how the opened-shell 
independent one electron is really stabilized in energy in 
view of the second-order processes in the vibronic and 
Jahn–Teller stabilization.   In the previous researches, 
electrons and molecular vibrations have mainly been 
treated as particles and waves, respectively.   On the other 
hand, electrons and molecular vibrations are more clearly 
treated as waves and particles, respectively, in this study, 
than those in the previous researches.   By considering the 
wave characteristics of electrons and the direction of 
motion of an electron, we will clearly define the wave 
function for randomly moving one electron (Eq. (1)), 
which has not been clearly defined.   By using this wave 
function, the roles of the first- and second-order processes 
in the vibronic interactions can be clearly distinguished in 
this study.   We also discuss the relationships between the 
vibronic and Jahn–Teller stabilization energies, 
originating from the nondissipative second-order 
processes, and the electrical resistivity and Joule’s heats, 
originating from the dissipative first-order processes in 
the vibronic interactions, as a function of the external 
applied electric field.   Furthermore, in this article, we 
elucidate the mechanism of the Ampère’s law 
(experimental rule  
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Fig. 1. First-order electron–phonon interactions processes 
under external electric field.    
 
discovered in 1820) in normal metallic and 
superconducting states [10], on the basis of the theory 
suggested in our previous researches [1–7].    
 
2. Vibronic Stabilization Energies under the Applied 
External Electric Field in Molecules 

In this section, we will first show how the vibronic 
stabilization energies [1–6] are derived on the basis of our 
new one-electron model as well as the conventional two-
electrons model.    
 
2.1 One-Electron Model in Molecules 

Let us consider an inert Fermi-sea, in which the 
electrons are treated as non-interacting [1–8].   To this  
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the second-order processes in the vibronic and electron–phonon interactions can be applied  
Fig. 2. Second-order electron–phonon interactions 
processes without any external electric field.    
 
Fermi-sea, one electron is added above the Fermi-surface.    

This one added electron does not interact with the inert 
Fermi-sea, as shown in Fig. 3.   

One electron occupies a plane-wave state 
kone,av. c+k ,c– k( ) , in the absence of interactions, as 

shown in Fig. 2 (a),  
 
kone,av. c+k ,c– k( ) = Pkground

T( ) kground c+ k , c–k( )  

                          + Pkexcited
T( ) kexcited c+k ,c–k( ) ,    1( ) 

 
where  
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kground c+ k , c–k( ) = c+ k +k ↓ + c–k –k ↑ ,             2( )  
 
kexcited c+k , c–k( ) = c+k + k ↑ + c–k –k ↓ .             3( ) 

 
kground c+k ,c–k( ) kground c+k ,c–k( )  

= kexcited c+ k , c–k( ) kexcited c+k ,c–k( ) = c+k
2 + c–k

2 = 1,  
                                                                                      4( )  
 

kone, av. c+ k , c–k( ) kone, av. c+ k , c–k( )  

= Pkground
T( ) kground c+k ,c–k( ) kground c+k , c–k( )  

+ Pkexcited
T( ) kexcited c+k , c–k( ) kexcited c+k , c– k( )  

= 1.                                                                                 5( )  
 
Here, the one extra electron in the absence of such a 
peculiar interaction is denoted by kone,av. c+k ,c–k( ) , and 

in the presence of the interaction by Kone,av. c+k ,c–k( ) .   
Denoting the Hamiltonian of the system by 
 
H = H0 + Veff ,                                                              6( )  
 
then 
 
H0 ± k = ε k ±k ,                                                         7( )  
 
where ε k  denotes the single-particle energy of the non-
interacting fermion system.   Adding interactions, the 
exact Schrödinger equation for the one-particle problem 
defined above are given by 
 
H Kone,av. c+k , c–k( )  

= Eone c+k ,c–k( )Kone,av. c+k ,c–k( ) ,                          8( ) 
 
where Eone c+k , c–k( )  denotes the exact one-particle 
energy above the Fermi-surface, in the presence of 
vibronic interactions.   Assuming that the states 
kone,av. c+k ,c–k( )  form a complete set such that the 

exact one-particle eigenstate can be expanded in this basis, 
then 
 
Kone,av. c+k ,c–k( ) = ak kone,av. c+k , c–k( )

k
∑  
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k
∑  

        + Pkexcited
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k
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k ′ V eff k = –Vone

k ′ V eff k = 0

k ′ V eff k = –Vzero = 0

k ′ V eff k = 0

+k ′ , –k ′ V eff + k , –k = 0

+k ′ , –k ′ V eff + k , –k = –V two

ν0

ν0

εF

εF

ν0

εF

+k –k
rapidly converting

+k –k

(a) ground state

(b) one-electron theory

(c) two-electrons BCS theory

Nv acant (= NBCS) orbitals

Noccupied orbitals

 
Fig. 3. Electronic states in the (a) ground state, (b) 
monoanionoic state, and (c) dianionic state. 
 
Inserting Eq. (9) into Eq. (8), and then we obtain 
 
H0 + Veff( ) ak

k
∑ kone,av. c+k ,c–k( )  

= Eone c+k ,c–k( ) ak
k

∑ kone,av. c+k ,c–k( ) .              10( )  

 
Considering the above orthogonality relation 

k ′ k = δk ,k ′ , we thus find 
 

bk ′ c+ k ′ +k ′ + c–k ′ –k ′( )H0
k′
∑ c+k +k + c–k –k( ) 

= bkε k ,                                                                         11( )  
 

bk ′ c+ k ′ +k ′ + c–k ′ –k ′( )Eone
k′
∑ c+k +k + c–k –k( ) 
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= bk Eone,                                                                     12( )  
 
and thus  
 
bk ε k – Eone c+k , c–k( )( ) 

= – bk ′ c+k ′ + k′ + c–k ′ –k ′( )
k ′
∑  

                                  × Veff c+k + k + c–k –k( ).     13( )  
 
The quantity k ′ Veff k  denotes a one-electron scattering 
matrix element from a one-particle state k  to a one-
particle state k ′ .    

We now consider that the electronic states k can be 
stabilized by Vone  only when the scattering within the 
same electronic states k occurs.   That is, we have  
 

+ k′ Veff + k = + k′ Veff – k = –k ′ Veff + k  

= –k ′ Veff – k = –Voneδk ,k′ ,                                   14( )  
 

bk ′ c+ k ′ +k ′ + c–k ′ –k ′( )Veff c+k +k + c–k –k( )
k′
∑  

= –Vone bk ′
k ′
∑ c+k ′c+ k + c–k ′c– k + c+k ′c–k + c– k ′c+k( ) 

                  × δk ,k ′  

= –Vone bk ′
k ′
∑ 1+ 2c+k ′c–k( )δk ,k ′  

= –2Vone bk ′
k ′
∑ 1

2
+ c+k ′c–k

 
 
  

 
 δk, k ′  

= –2Vone f Bose c+k ,c–k( ) bk ′
k′
∑ δk ,k ′  

= –2bkVone f Bose c+k , c– k( ),                                       15( )  
 
where  
 

f Bose c+k , c–k( )=
1
2

+ c–kc+k =
1
2

+ c–k 1 – c–k
2 .    16( )  

 
Thus, Eq. (13) takes the form 
 
bk ε k – Eone c+k , c–k( )( )= 2bkVone f Bose c+k ,c–k( ).  17( ) 
 
∆vib ,one c+ k , c–k( )= 2Vone f Bose c+k ,c–k( ).               18( )  
 
The ∆vib ,one c+ k , c–k( ) denotes the stabilization energy of 
independent one electron as a consequence of the second-
order process of the electron–phonon interactions.    
 

2.2 Comparison of the One-Electron Theory with the 
Conventional Two-Electrons BCS Theory under the 
Applied Electric Field in Molecules 

Let us next discuss the vibronic stabilization energy of 
independent two electrons in the one-electron theory 
(∆vib ,pair, one c+k ,c–k( )).    

The ∆vib ,pair, two c+ k , c–k( ) value can be defined as  
 
∆vib ,pair, two c+ k , c–k( )= 2∆vib,one c+k , c– k( ) 

                          = 4Vone − 4Vone 1 − f Bose c+k , c–k( )( ) 
                         = 4Vone f Bose c+ k , c– k( ).                  19( )  
 

The electronic energy level itself for the electronic state 
is stabilized by 4Vone  with the kinetic energy of 
supercurrent 4Vone 1− f Bose c+k , c–k( )( ).    
 
3. Vibronic Stabilization Energies under the External 
Applied Electric Field in Solids 

In this section, we will first show how the vibronic 
stabilization energies [1–6] are derived on the basis of our 
new one-electron model as well as the conventional two-
electrons model under the external applied electric field in 
solids.    
 
3.1 One-Electron Model in Solids 

Let us consider an inert Fermi-sea, in which the 
electrons are treated as non-interacting.   To this Fermi-
sea, one electron is added above the Fermi-surface.   This 
one added electron does not interact with the inert Fermi-
sea, as shown in Fig. 3.   One electron occupies a plane-
wave state kone,av. c+k ,c–k( ) , in the absence of 
interactions, as shown in Figs. 1 (a) and 2 (a),  
 
kone,av. c+k ,c– k( ) = Pkground

T( ) kground c+ k , c–k( )  

                          + Pkexcited
T( ) kexcited c+k ,c– k( ) ,  20( )  

 
where  
 
kground c+ k , c–k( ) = c+ k +k ↓ + c–k –k ↑ ,           21( )  

 
kexcited c+k , c–k( ) = c+k + k ↑ + c–k –k ↓ .           22( )  

 
kground c+k ,c–k( ) kground c+k ,c–k( )  

= kexcited c+ k , c– k( ) kexcited c+k ,c–k( )  

= c+k
2 + c–k

2 = 1,                                                           23( ) 
 

kone, av. c+ k , c– k( ) kone, av. c+ k , c– k( )  
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= Pkground
T( ) kground c+k ,c–k( ) kground c+k , c–k( )  

+ Pkexcited
T( ) kexcited c+k , c–k( ) kexcited c+k , c–k( )  

= 1.                                                                              24( )  
 
Here, the one extra electron in the absence of such a 
peculiar interaction is denoted by kone,av. c+k ,c–k( ) , and 

in the presence of the interaction by Kone,av. c+k ,c–k( ) .   
Denoting the Hamiltonian of the system by 
 
H = H0 + Veff ,                                                           25( )  
 
then 
 
H0 ± k = ε k ±k ,                                                       26( )  
 
where ε k  denotes the single-particle energy of the non-
interacting fermion system.   Adding interactions, the 
exact Schrödinger equation for the one-particle problem 
defined above are given by 
 
H Kone,av. c+k , c–k( )  

= Eone c+k ,c–k( )Kone,av. c+k ,c–k( ) ,                        27( )  
 
where Eone c+k , c–k( )  denotes the exact one-particle 
energy above the Fermi-surface, in the presence of 
vibronic interactions.   Assuming that the states 
kone,av. c+k ,c–k( )  form a complete set such that the 

exact one-particle eigenstate can be expanded in this basis, 
then 
 
Kone,av. c+k ,c–k( ) = ak kone,av. c+k , c–k( )

k
∑  

= ak Pkground
T( ) kground c+k , c–k( ){

k
∑  

        + Pkexcited
T( ) kexcited c+k ,c–k( ) } 

= ak Pkground
T( ) c+k + k ↓ + c– k –k ↑( ){

k
∑  

        + ak Pkexcited
T( ) c+k + k ↑ + c– k –k ↓( )} 

= bk c+k +k + c–k –k( )
k
∑ .                                     28( )  

 
Inserting Eq. (28) into Eq. (27), and then we obtain 
 

H0 + Veff( ) ak
k
∑ kone,av. c+k ,c–k( )  

= Eone c+k ,c–k( ) ak
k
∑ kone,av. c+k ,c–k( ) .               29( ) 

Considering the above orthogonality relation 
k ′ k = δk ,k ′ , we thus find 

 
bk ′ c+ k ′ +k ′ + c–k ′ –k ′( )H0

k′
∑ c+k +k + c–k –k( ) 

= bkε k ,                                                                        30( )  
 

bk ′ c+ k ′ +k ′ + c–k ′ –k ′( )Eone
k′
∑ c+k +k + c–k –k( ) 

= bk Eone,                                                                    31( )  
 
and thus  
 
bk ε k – Eone c+k , c–k( )( ) 

= – bk ′ c+k ′ + k′ + c–k ′ –k ′( )
k ′
∑  

                                    × Veff c+k + k + c– k –k( ).  32( )  
 
The quantity k ′ Veff k  denotes a one-electron scattering 
matrix element from a one-particle state k  to a one-
particle state k ′ .    

Up to now, we consider quite general case, we now 
specialize to the case where this scattering matrix element 
is one of the somewhat peculiar nature described above, 
that is, stabilized by Vone  in a thin shell within the energy 
of ν0  from the Fermi-surface, and zero elsewhere, as 
shown in Fig. 3.   That is, we have  
 

+ k′ Veff + k = + k′ Veff – k = –k ′ Veff + k  

                   = –k ′ Veff – k = –Vone ,  εk – ε F < ν0( ) 
                                            = 0,  εk – ε F > ν0( ).    33( ) 
 

bk ′ c+ k ′ +k ′ + c–k ′ –k ′( )Veff c+k +k + c–k –k( )
k′
∑  

= –Vone bk ′
k ′
∑ c+k ′c+ k + c–k ′c–k + c+k ′c–k + c–k ′c+k( ) 

                                        × Θ εk – εF( )Θ ν0 – εk – ε F( ) 

= –Vone bk ′
k ′
∑ 1+ 2c+k ′c– k( ) 

                                       × Θ εk – ε F( )Θ ν0 – εk – εF( ) 

= –2Vone bk ′
k ′
∑ 1

2
+ c+k ′c–k

 
 
  

 
  

                                       × Θ εk – ε F( )Θ ν0 – εk – εF( ) 

= –2Vone f Bose c+k ,c–k( ) bk ′
k′
∑ Θ εk – εF( ) 

                                         × Θ ν0 – ε k – εF( ),          34( ) 
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where  
 

f Bose c+k , c–k( )=
1
2

+ c–kc+k =
1
2

+ c–k 1 – c–k
2 .    35( ) 

 
Thus, Eq. (32) takes the form 
 
bk ε k – Eone c+k , c–k( )( )= 2Vone f Bose c+ k , c–k( ) 

                              × bk ′
k ′
∑ Θ εk – εF( )Θ ν0 – ε k – εF( ). 

                                                                                    36( )  
 
It is ensured by the first Θ -function that the single-particle 
energies ε  are above the Fermi-surface, and by the second 
one that the effective stabilization only is operative in a 
thin shell within the energy of ν0  from the Fermi-surface.   
Here, it is more convenient to go over to energy integrals 
instead of k-space integrals, by introducing the density of 
states N ε( ), and viewing the expansion coefficients as a 
function of energy ε .   By using a Dirac delta function 
δ ε – εk( ), the density of states N ε( ) can be defined as 
 
N ε( )≈ δ ε – εk( )

k
∑ = Nelectron ε( ) states / electron[ ] 

= Nspin ε( ) states / spin[ ] = 2Nspin ε( ) states / electron[ ] 
= NBCS ε( ) states / spin[ ]= 2NBCS ε( ) states / electron[ ]. 
                                                                                    37( ) 
 
Since bk  only depends on k via ε k , we may write Eq. 
(36) as follows 
 
b ε k( ) ε k – Eone c+k , c–k( )( ) 
= 2Vone f Bose c+k , c–k( ) 

  × dε
–∞

∞
∫ b ε( )

k ′
∑ δ ε – εk ′( )Θ ε – εF( )Θ ν0 – ε – εF( ) 

= 2Vone f Bose c+k , c–k( ) 

     × dε
–∞

∞
∫ b ε( )N ε( )Θ ε – εF( )Θ ν0 – ε – εF( ).           38( )  

 
We then obtain, upon remaining variables 
 
b ε( ) εk – Eone c+k , c–k( )( ) 

= 2Vone f Bose c+k , c–k( ) dε ′
εF

εF + ν0∫ N ε′( )b ε′( ).          39( )  

 
The right hand side of Eq. (39) is independent of ε , and 
hence b ε( )  must have the form 
 

b ε( ) =
C

ε – Eone c+k ,c–k( ),                                         40( ) 

 
where C  is some normalization constant.   Inserting b ε( )  
in Eq. (40) into Eq. (39), we find  
 

1 = 2Vone f Bose c+k , c–k( ) N ε ′( )dε ′
ε′ –Eone c+k ,c–k( )εF

ε F +ν0∫  

= 2Vone f Bose c+k , c–k( ) Nelectron ε ′( )dε′
ε ′ –Eone c+k , c–k( )εF

εF + ν0∫ .  41( )  

 
Considering the fact that we are looking into a thin shell 
around the Fermi-surface, and assuming that the density of 
states Nelectron ε( )  varies slowly, we may simply replace it 
by its value on the Fermi surface, Nelectron εF( ) .   
Introducing the dimensionless electron–phonon coupling 
constant λ one (≡ 2Vone Nelectron εF( )= 4Vone Nspin εF( ) 
= 4Vone NBCS εF( )), we obtain 
 
1 = 4Vone f Bose c+k , c– k( )NBCS ε F( ) 
     ×

dε ′
ε ′ –Eone c+k , c–k( )εF

εF + ν0∫  

 = λone f Bose c+k ,c–k( )ln ε F + ν0( )– Eone c+k , c– k( )
εF – Eone c+k , c– k( )

 
 
 

 
 
 
. 

                                                                                    42( )  
 
Then the energy difference between the states of one non-
interacting particle on the Fermi-surface ( ε F ), and the 
exact energy eigenvalue ( Eone c+k , c–k( )), is introduced, 
i.e., ∆vib ,one c+ k , c–k( )= εF – Eone c+k ,c–k( ).   In terms 
of this variable, Eq. (42) may be written 
 

1
λ one f Bose c+k ,c–k( ) = ln 1 +

ν0
∆vib,one c+k , c–k( )

 
 
 

 
 
 
,  43( ) 

 
and thus  
 

∆vib ,one c+ k , c–k( )=
ν0

e1/ λ one f Bose c+k ,c–k( ){ }– 1
 

                             ≈ ν0e
–1 / λone fBose c+k ,c–k( ){ },          44( )  

 
where the last approximation follows if λ one << 1 (if the 
effective one electron stabilization is small).   Similar 
discussions can be made in other electrons at the Fermi-
surface.   The ∆vib ,one c+ k , c– k( ) denotes the stabilization 
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energy of independent one electron as a consequence of 
the electron–phonon interactions.    
 
3.2 Comparison of the One-Electron Theory with the 
Conventional Two-Electrons BCS Theory under the 
Applied Electric Field in Solids 

Vibronic stabilization energy of independent two 
electrons in the one-electron theory 
(∆vib ,pair, one c+k ,c–k( )) is denoted as  
 
∆vib ,pair, one c+k ,c–k( )= 2∆vib ,one c+k ,c–k( ) 

= 2ν0e –1/λone – 2ν0 e–1/λone – e
–1/ λone f Bose c+k ,c– k( ){ } 

 
  

 
  

= 2ν0e
–1/ λone fBose c+k ,c– k( ){ }.                                    45( )  

 
The electronic energy level itself for the electronic state 

is stabilized by 2ν0 exp –1/ λone( )  with the kinetic 
energy of supercurrent 
2ν0 exp –1 / λ one( )– exp –1 / λ one f Bose c+k , c– k( ){ }( )( ).    

 
4. The Origin of the Ampère’s Law 
4.1 Theoretical Background 

In this article, we consider the molecular systems for 
mathematical simplicity.   On the other hand, we can 
easily apply this discussion to the case in the solids.    

The wave function for an electron occupying the 
highest occupied crystal orbital (HOCO) in a material 
under the external applied field ( xin = Bin  or Ein ) can be 
expressed as  
 
kHOCO T( ) Bout, Bin( ); Eout, E in( ); Bk HOCO

; IkHOCO( )  

= Pground T( ) kHOCO,ground,0 xin( )  

+ Pexcited T( ) kHOCO,excited,0 xin( ) ,                          46( )  
 
where 
 
kHOCO,excited,0 xin( )  

= c+k HOCO ↑,0 xin( )+kHOCO ↑  

+c–kHOCO ↓,0 xin( ) –kHOCO ↓ ,                                    47( )  

 
kHOCO,ground,0 xin( )  

= c–kHOCO ↑,0 xin( ) –kHOCO ↑  

+c+k HOCO ↓,0 xin( )+kHOCO ↓ ,                                    48( ) 

 
Pground T( )+ Pexcited T( )= 1,                                       49( ) 

c+kHOCO ↓,0
2 xin( )+ c–kHOCO ↑, 0

2 xin( )= 1,                      50( )
 

 
c–kHOCO ↓,0

2 xin( )+ c+ kHOCO ↑, 0
2 xin( )= 1.                      51( )  

 
The magnetic field ( Bk HOCO

xout , xin( ) = Bin( ) ) at the 
condition of the external applied field xout  and the field 
felt by an electron xin  can be expressed as  
 
Bk HOCO

xout , xin( ) 
= BkHOCO ↑ xout , xin( )– BkHOCO ↓ xout , xin( ),                52( )  

 
where  
 
Bk HOCO ↑ xout , xin( ) 
= Pexcited T( )c+kHOCO ↑ ,xin

2 xout – xin( ) 
+ Pground T( )c–k HOCO ↑,xin

2 xout – xin( ),                        53( )  

 
Bk HOCO ↓ xout , xin( ) 
= Pexcited T( )c–kHOCO ↓,xin

2 xout – xin( ) 
+ Pground T( )c+k HOCO ↓,xin

2 xout – xin( ).                        54( )  

 
The electric field ( Ik HOCO

xout , xin( ) = Ein( ) ) at the 
condition of the external applied field xout  and the field 
felt by an electron xin  can be expressed as  
 
Ik HOCO

xout , xin( ) 
= I+kHOCO

xout , xin( )– I–kHOCO
xout , xin( ),                  55( ) 

 
I+ kHOCO

xout , xin( ) 
= Pexcited T( )c+kHOCO ↑ ,xin

2 xout – xin( ) 
+ Pground T( )c+k HOCO ↓,xin

2 xout – xin( ),                         56( )  

 
I–k HOCO

xout , xin( ) 

= Pexcited T( )c– kHOCO ↓, xin

2 xout – xin( ) 
+ Pground T( )c– k HOCO ↑, xin

2 xout – xin( ).                         57( )  

 
Let us look into the energy levels for various electronic 

states when the applied field increases from 0 to xout  at 0 
K in superconductor, in which the HOCO is partially 
occupied by an electron.   The stabilization energy as a 
consequence of the electron–phonon interactions can be 
expressed as 
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ESC,electronic xout, xin( )– ENM,electronic 0 ,0( )  
= –2Vone f Bose,0 xin( ),                                                 58( )  
 
where the –2Vone  denotes the stabilization energy for the 
electron–phonon interactions between an electron 
occupying the HOCO and the vibronically active modes 
(Fig. 4).    

ENM 0,0( )
ESC 0,0( )

2V onef Bose,0 x in( )

ESC x in, x in( )

εF

interactions

electron–
phonon

Fig. 4. Stabilization energy as a consequence of the 
electron–phonon interactions as a function of the 
external applied field.  

 
The f Bose,Ein

0( )(= f Bose ,0 Ein( )) denotes the ratio of 
the bosonic property under the internal field xin  
( c+kHOCO ↓,0 xin( )= c+kHOCO ↑ ,0 xin( )= c+ kHOCO ,0 xin( )  
and 
c–kHOCO ↑,0 xin( )= c–k HOCO ↓, 0 xin( )= c–kHOCO ,0 xin( ) ), 

and can be estimated as  
 
f Bose,0 xin( )= f Bose ,xin

0( )  

=
1
2

+ c–kHOCO ,0 xin( ) 1– c–kHOCO ,0
2 xin( ).                  59( )  

 
The f Bose,Bin

0( )(= f Bose ,0 Bin( )) denotes the ratio of the 
bosonic property under the internal field xin  
( c+kHOCO ↑,0 xin( )= c–kHOCO ↑, 0 xin( )= ck HOCO ↑,0 xin( ) and 

c+kHOCO ↓,0 xin( )= c–kHOCO ↓, 0 xin( )= ck HOCO ↓,0 xin( ) ), 

and can be estimated as  
 
f Bose,0 xin( )= f Bose ,xin

0( )  

=
1
2

+ ckHOCO ↓ ,0 xin( ) 1– ckHOCO ↓,0
2 xin( ).                 60( )  

 
4.2 New Interpretation of the Ampère’s Law in the 
Normal Metallic States 

Let us next apply the Higgs mechanism to the 
Ampère’s law in the normal metallic states.   Let us next 
consider the superconductor, the critical electric field of 
which is Ec .   Below Tc, the bosonic Cooper pairs are in 
the superconducting states.   We consider the case where 

the HOCO is partially occupied by an electron.   We 
consider that the electric field is quantized by 
∆Eunit = Ec / nc( ).   The nc  value is very large and the 
quantization value of Ec / nc  is very small ( Ec / nc ≈ 0 ).   
That is, the jth quantized electric field Ej  with respect to 
the zero electric field can be defined as  
 
Ej = j∆Eunit .                                                                61( )  
 

The ratio of the bosonic property under the internal 
electric field Ein  with respect to the ground state for the 
zero electric field can be denoted as f Bose,0 Ein( ).   We 
define the electronic 
kHOCO T( ) Bout, Bin( ); Eout, E in( ); Bk HOCO

; IkHOCO( )   

state, where the Eout  denotes the induced electric field 
applied to the specimen, the Ein  the induced electric field 
felt by the electron, the Bk HOCO

 the induced magnetic 
moment from the electron (the induced magnetic field 
Binduced,kHOCO

 or the change of the spin magnetic 
moment of an electron σ spin ,kHOCO

 from the each ground 
state), and the Ik HOCO

 the induced electric moment of an 
electron (canonical electric momentum pcanonical,kHOCO

 or 
the electric momentum of an electron vem,k HOCO

).    
Without any external applied electric field ( j = 0 ; 

Eout = Ein = 0 ), the ratio of the bosonic property under 
the internal electric field 0 can be estimated to be 
f Bose,0 0( ) = 1.   Therefore, the electronic state pairing of 

an electron behaves as a boson,  
 
f Bose,0 0( ) = 1.                                                              62( )  

 
In such a case 
( c+kHOCO ↑,0 0( )= c– kHOCO ↑,0 0( ) = c+k HOCO ↓,0 0( )

= c–kHOCO ↓,0 0( )= 1/ 2 ), there is no induced current 

and the magnetic fields, as expected,  
 
Bk HOCO

0, 0( ) = BkHOCO ↑ 0,0( )– BkHOCO ↓ 0, 0( ) 

= Pexcited T( )c+kHOCO ↑,0
2 0( )+ Pground T( )c–k HOCO ↑,0

2 0( ){ } 

– Pexcited T( )c– kHOCO ↓,0
2 0( )+ Pground T( )c+kHOCO ↓,0

2 0( ){ } 

= 0,                                                                               63( )  
 
Ik HOCO

0, 0( ) = I+kHOCO
0,0( )– I–kHOCO

0, 0( )  

= Pexcited T( )c+kHOCO ↑,0
2 0( )+ Pground T( )c+k HOCO ↓, 0

2 0( ){ } 
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– Pexcited T( )c–kHOCO ↓,0
2 0( )+ Pground T( )c–kHOCO ↑,0

2 0( ){ } 

= 0.                                                                               64( )  
 
This can be in agreement with the fact that charges at rest 
feel no magnetic forces and create no magnetic fields.   
This is the bosonic ground normal metallic state for j = 0  
( kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) ) (Fig. 5 (a)).   It should be 
noted that the electronic states are in the ground normal 
metallic states when all the pcanonical , vem , σ spin , and 
Binduced  values are 0 ( pcanonical = 0, vem = 0 , σ spin = 0 , 
and Binduced = 0), and are in the excited normal metallic 
states when the pcanonical, vem, σ spin , or Binduced  values 
are not 0 ( pcanonical ≠ 0 , vem ≠ 0 , σ spin ≠ 0 , or 
Binduced ≠ 0).    

When the electric field ( Ik HOCO
∆Eunit , 0( )= ∆Eunit ) is 

applied, a Nambu–Goldstone boson formed by the 
fluctuation of the electronic state pairing of an electron 
kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  is absorbed by a photon 

(electric field) (Fig. 5 (b)).   Therefore, a photon (electric 
field) has finite mass as a consequence of interaction with 
the Nambu–Goldstone boson formed by the fluctuation of 
the bosonic electronic state pairing of an electron.   In 
such a case, the Ik HOCO

∆Eunit , 0( ) and Bk HOCO
∆Eunit , 0( ) 

values for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state (Fig. 

5 (b)) can be estimated as  
 
Ik HOCO

∆Eunit , 0( )= Pexcited T( )c+ kHOCO ↑, 0
2 ∆Eunit( ){  

                             + Pground T( )c+kHOCO ↓,0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )},   

                             = 0,                                                65( )  
 
and thus  
 
Bk HOCO

∆Eunit , 0( )= Pexcited T( )c+ kHOCO ↑, 0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                            + Pground T( )c+k HOCO ↓, 0
2 ∆Eunit( )} 

                           = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Eunit( ){  

                                                 – c–k HOCO ↓, 0
2 ∆Eunit( )} 

                = Binduced, kHOCO
∆Eunit , 0( )= ∆Bunit .         66( )  

k HOCO T( ) 0,0( ); ∆Eunit ,0( );Binduced ;0( )

k HOCO T( ) 0,0( ); 0,0( );0;0( )

∆Eunit ∆Eunit

∆Eunit v em

Binduced

∆Eunit pcanonical

σspin
k HOCO T( ) 0,0( ); 0,0( );0;0( )

Binduced

  
k HOCO T( ) 0,0( ); ∆Eunit ,∆Eunit( );σspin;pcanonical( )

  
k HOCO T( ) 0,0( ); ∆Eunit ,∆Eunit( );Binduced ;v em( )

photon

photon

photon

(a)

(b)

(c)

(d)

(e)

Fig. 5. The electronic states between j =0 and j = 1 
in normal metals.  

 
Soon after the external electric field is applied, the 
momentum of the bosonic electronic state pairing of an 
electron cannot be changed but the magnetic field can be 
induced.   It should be noted that the magnetic field 
Binduced, kHOCO

∆Eunit , 0( )  is induced ( Binduced ≠ 0 ) but 
the spin magnetic moment of an electron with opened-
shell electronic structure is not changed ( σ spin = 0 ).   
This is very similar to the diamagnetic currents in the 
superconductivity in that the supercurrents are induced 
( vem ≠ 0 ) but the total canonical momentum is zero 
( pcanonical = 0 ).   The magnetic field is induced not 
because of the change of the each element of the spin 
magnetic moment of an electron (σ spin = 0 ) (similar to 
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the pcanonical  in the superconducting states) but because 
of the change of the total magnetic momentum as a whole 
( Binduced ≠ 0) (similar to the vem in the superconducting 
states).    

On the other hand, such excited bosonic electronic state 
pairing of an electron with the induced magnetic fields 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  can be 

immediately destroyed because the initially applied 
electric field penetrates into the normal metallic specimen, 
and the electronic state becomes another bosonic excited 
normal metallic state for j = 0  
( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( ) ) (Fig. 

5 (c)).   In such a case, the Bk HOCO
∆Eunit , ∆Eunit( ) and 

Ik HOCO
∆Eunit , ∆Eunit( )  values for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  
state can be estimated as  
 
Bk HOCO

∆Eunit , ∆Eunit( )= BkHOCO
∆Eunit , 0( ) 

                            = Pexcited T( )c+kHOCO ↑,0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                            + Pground T( )c+k HOCO ↓, 0
2 ∆Eunit( )} 

                           = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Eunit( ){  

                                                 – c–k HOCO ↓, 0
2 ∆Eunit( )} 

                = Binduced,kHOCO
∆Eunit , 0( )= ∆Bunit ,         67( )  

 
Ik HOCO

∆Eunit , ∆Eunit( ) 
                     = vem, kHOCO

∆Eunit , ∆Eunit( )= ∆Eunit .  68( )  
 
In the kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  
state, an electron receives the applied electric field 
∆Eunit , and thus the superconducting current can be 
induced, and thus there is kinetic energy 
( Ekinetic ∆Eunit , ∆Eunit( )) of the supercurrent.    

That is, the expelling energy of the initially applied 
electric field ∆Eunit  for the 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  state is 

converted to the kinetic energy of the supercurrent for the 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state.   

Both the supercurrent ( vem,k HOCO
∆Eunit , ∆Eunit( ) ) and 

the magnetic field ( Binduced,kHOCO
∆Eunit , 0( ) ) can be 

induced under the condition of the opened-shell electronic 
structure with zero spin magnetic field and zero canonical 
momentum (σ spin = 0 ; pcanonical = 0).   This is the origin 
of the Ampère’s law.    

On the other hand, such excited bosonic normal 
metallic states with supercurrents 
( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( ) ) can 
be immediately destroyed because of the unstable opened-
shell electronic states, and the electronic state becomes 
another excited fermionic normal metallic state for j = 0  

( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( ) ) 

(Fig. 5 (d)).   It should be noted that the electronic 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

is now somewhat fermionic because the pcanonical  value 
is not 0.   In other words, the 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

is closely related to the normal conducting states in that 
the normal metallic current with pcanonical ≠ 0  and 
vem = 0  is induced by the applied electric field.   In such 
a case, the Bk HOCO

∆Eunit , ∆Eunit( )  and 
Ik HOCO

∆Eunit , ∆Eunit( )  values for the 

kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

can be estimated as  
 
Bk HOCO

∆Eunit , ∆Eunit( )= BkHOCO
∆Eunit , 0( ) 

                            = Pexcited T( )c+kHOCO ↑,0
2 ∆Eunit( ){  

                             + Pground T( )c– kHOCO ↑, 0
2 ∆Eunit( )} 

                             – Pexcited T( )c– k HOCO ↓, 0
2 ∆Eunit( ){  

                            + Pground T( )c+k HOCO ↓, 0
2 ∆Eunit( )} 

                           = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Eunit( ){  

                                                 – c–k HOCO ↓, 0
2 ∆Eunit( )} 

                = σ spin ,k HOCO
∆Eunit , ∆Eunit( )= ∆Bunit ,     69( )  

 
Ik HOCO

∆Eunit , ∆Eunit( ) 
           = pcanonical,kHOCO

∆Eunit , ∆Eunit( )= ∆Eunit .  70( )  
 

Such excited fermionic normal metallic states with 
currents and the induced magnetic field 
( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( ) ) 
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can be immediately destroyed because of the unstable 
opened-shell electronic states, and the induced current and 
the magnetic field can be immediately destroyed.   
Therefore, the electronic state tries to go back to the 
original ground bosonic metallic state for j = 0  
( kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) ).   In such a case, the 
Bk HOCO

0, 0( )  and Ik HOCO
0, 0( )  values for the 

kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state can be estimated as 
Eqs. (63) and (64), respectively.    

The ratio of the bosonic property f Bose,∆Eunit
0( )  under 

the internal magnetic field ∆Eunit  can be estimated as  
 
f Bose,∆Eunit

0( )  

=
1
2

+ c–kHOCO ,0 ∆Eunit( ) 1 – c–k HOCO ,0
2 ∆Eunit( )  

< f Bose,0 0( ) = 1.                                                         71( )  
 
The f Bose,∆Eunit

0( )  value is smaller than the f Bose,0 0( )  
value.   It should be noted that the f Bose,Ein

0( )  value 
decreases with an increase in the Ein  value.   That is, the 
bosonic and fermionic properties decrease and increase 
with an increase in the Ein  value, respectively.    

In summary, because of the very large stabilization 
energy ( Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) for the Bose–
Einstein condensation ( pcanonical = 0 ; 
Vkin ,Bose,kHOCOσ 0( ) = 0 eV ) [1–7], the electric and 
magnetic momentum of a bosonic electronic state pairing 
of an electron cannot be changed but the magnetic field 
can be induced soon after the electric field is induced.   
Therefore, the electronic state becomes 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( ) .   On the other 

hand, such excited bosonic supercurrent states with the 
induced magnetic fields 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  can be 

immediately destroyed because the applied electric field 
penetrates into the normal metallic specimen, and the 
electronic state becomes another bosonic excited 
supercurrent state for j = 0  
( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( ) ).   In 

the kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  
state, the supercurrent can be induced, and thus there is 
kinetic energy ( Ekinetic ∆Eunit , ∆Eunit( ) ).   That is, the 
expelling energy of the initially applied electric field 
∆Eunit  for the kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  
state is converted to the kinetic energy of the supercurrent 

for the kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  
state.   Both the supercurrent 
( vem,k HOCO

∆Eunit , ∆Eunit( )≠ 0 ) and the magnetic field 
( Binduced,kHOCO

∆Eunit , 0( )≠ 0 ) can be induced under the 
condition of the opened-shell electronic structure with 
zero spin magnetic momentum and zero canonical 
momentum in a bosonic electronic state pairing of an 
electron (σ spin = 0 ; pcanonical = 0).   This is the origin of 
the Ampère’s law.   On the other hand, such excited 
bosonic states with supercurrents 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  can be 

immediately destroyed because of the unstable opened-
shell electronic states, and the electronic state becomes 
another excited fermionic normal metallic state for j = 0  

( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( ) ).   

The excited fermionic normal metallic 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

is very unstable and try to go back to the original ground 
bosonic metallic state for j = 0  
( kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) ), and the induced 
electrical current and the induced magnetic field can be 
immediately dissipated.    
 
4.3 Energy Levels for Various Electronic States 

Let us look into the energy levels for various electronic 
states when the applied electric field ( Eout ) increases 
from 0 to ∆Eunit  at 0 K in superconductor, in which the 
HOCO is partially occupied by an electron.   The total 
energy Etotal xout , xin( ) for various electronic states with 
respect to the Fermi level before electron–phonon 
interactions at 0 K and xout = xin = 0  (Fig. 4) can be 
expressed as  
 
Etotal xout , xin( )= ESC xout, xin( )– ENM 0,0( )  
= Eelectronic xout, xin( )+ Emagnetic xout , xin( ).             72( ) 
 
At Eout = Ein = 0 , the electronic state is in the ground 
normal metallic kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state for 
j = 0 .   The electronic and magnetic energies for the 
kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state can be expressed as  

 
Eelectronic 0, 0( )= –2Vone f Bose ,0 0( ) = –2Vone ,          73( )  
 
Emagnetic 0, 0( ) = 0.                                                      74( )  
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The Eelectronic ∆Eunit , 0( )  value for the 

kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  state can be 
estimated as  
 
Eelectronic ∆Eunit , 0( ) 
= –2Vone f Bose,0 0( )+ EIkHOCO

∆Eunit , 0( ) 

= –2Vone f Bose,0 ∆Eunit( ),                                           75( )  
 
where the EIkHOCO

∆Eunit , 0( ) value denotes the expelling 

energy of the applied electric field, and is estimated as 
 
EIkHOCO

∆Eunit , 0( ) 

= 2Vone f Bose,0 0( )– f Bose ,0 ∆Eunit( )( ) 

= 2Vone 1 – f Bose,0 ∆Eunit( )( ).                                     76( )  
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Eunit , 0( ) ) for the induced magnetic field 
∆Bunit  as a consequence of the applied electric field 
∆Eunit ,  
 
Emagnetic ∆Eunit , 0( )= EBinduced

∆Eunit , 0( ),                 77( )  
 
The total energy level for the 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  state can be 

estimated as  
 
Etotal ∆Eunit , 0( ) 
= Eelectronic ∆Eunit ,0( )+ Emagnetic ∆Eunit ,0( ) 
= –2Vone f Bose,0 ∆Eunit( )+ EBinduced

∆Eunit , 0( ).        78( ) 
 
We can consider from Eqs. (75)–(78) that the energy for 
the excited normal metallic 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  state is 

–2Vone  with the expelling energy of the applied electric 
field 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( ) and the energy 
of the induced magnetic field Emagnetic ∆Eunit , 0( ), and 
thus the total energy for the bosonic excited normal 
metallic kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  state 

is –2Vone f Bose ,0 ∆Eunit( )+ EBinduced
∆Eunit , 0( ).   In other 

words, the energy for the initially applied electric field 
∆Eunit  is converted to the expelling energy of the applied 
electric field 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( ) and the 
energy of the induced magnetic field EBinduced

∆Eunit , 0( ) .    

The Eelectronic ∆Eunit , ∆Eunit( )  value for the 

kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state 
can be estimated as  
 
Eelectronic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 0( )+ Evem

∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 ∆Eunit( ),                                           79( ) 
 
where the Evem

∆Eunit , ∆Eunit( ) value denotes the kinetic 
energy of the supercurrent, and is estimated as 
 
Evem

∆Eunit , ∆Eunit( ) 

= 2Vone f Bose,0 0( )– f Bose ,0 ∆Eunit( )( ) 

= 2Vone 1 – f Bose,0 ∆Eunit( )( ).                                     80( ) 
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Eunit , 0( ) = Emagnetic ∆Eunit , ∆Eunit( )( )) for the 
induced magnetic field ∆Bunit  as a consequence of the 
applied electric field ∆Eunit ,  
 
Emagnetic ∆Eunit , ∆Eunit( )= Emagnetic ∆Eunit , ∆Eunit( ) 
                                        = EBinduced

∆Eunit , ∆Eunit( ).  
                                                                                  81( )  
 
The total energy level for the 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state 

can be estimated as  
 
Etotal ∆Eunit , ∆Eunit( ) 
= Eelectronic ∆Eunit , ∆Eunit( )+ Emagnetic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 ∆Eunit( )+ EBinduced

∆Eunit , ∆Eunit( ).  
                                                                                  82( )  
 
We can consider from Eqs. (79)–(82) that the energy level 
for the excited normal metallic 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state is 

–2Vone  with the kinetic energy of the supercurrent 
2Vone f Bose ,0 0( )– f Bose, 0 ∆Eunit( )( )  and the energy of 
the induced magnetic field EBkHOCO

∆Eunit , ∆Eunit( ), and 

thus the total energy for the bosonic excited normal 
metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is 
–2Vone f Bose ,0 ∆Eunit( )+ EBkHOCO

∆Eunit , ∆Eunit( ) .   In 



International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-8,November  2015 
                              ISSN: 2395-3470 

www.ijseas.com 
 

13 
 

other words, the energy for the initially applied electric 
field ∆Eunit  is converted to the kinetic energy of the 
supercurrent 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( ) and the 
energy of the induced magnetic field EBinduced

∆Eunit , 0( ) .    
The Eelectronic ∆Eunit , ∆Eunit( )  value for the 

kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

can be estimated as  
 
Eelectronic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 0( )+ Epcanonical

∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 ∆Eunit( ),                                           83( )  
 
where the Ep canonical

∆Eunit , ∆Eunit( )  value denotes the 
kinetic energy of the normal current, and is estimated as 
 
Ep canonical

∆Eunit , ∆Eunit( ) 

= 2Vone f Bose,0 0( )– f Bose ,0 ∆Eunit( )( ) 

= 2Vone 1 – f Bose,0 ∆Eunit( )( ).                                     84( ) 
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Eunit , ∆Eunit( ) ) as a consequence of the 
induced spin magnetic energy 
Eσspin,HOMO

∆Eunit , ∆Eunit( ),  
 
Emagnetic ∆Eunit , ∆Eunit( ) 
= Eσspin,HOCO

∆Eunit , ∆Eunit( ).                                     85( ) 
 
The total energy level for the 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

can be estimated as  
 
Etotal ∆Eunit , ∆Eunit( ) 
= Eelectronic ∆Eunit , ∆Eunit( )+ Emagnetic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 ∆Eunit( )+ Eσspin ,HOCO

∆Eunit , ∆Eunit( ).  
                                                                                  86( )  
 
We can consider from Eqs. (83)–(86) that the energy level 
for the excited normal metallic 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );σ spin ; pcanonical( )  state 

is –2Vone  with the kinetic energy of the normal current 
2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( )  and the energy of 
the induced magnetic field EBkHOCO

∆Eunit , ∆Eunit( ), and 

thus the total energy for the bosonic excited normal 
metallic 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )
 state is 
–2Vone f Bose ,0 ∆Eunit( )+ Eσspin,HOCO

∆Eunit , ∆Eunit( ).   In 
other words, the energy for the initially applied electric 
field ∆Eunit  is converted to the kinetic energy of the 
normal current 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( )  and 
the energy of the induced spin magnetic moment 
Eσspin,HOCO

∆Eunit , 0( ) .    
On the other hand, such excited states with currents can 

be immediately destroyed because of the unstable opened-
shell electronic states, and the induced current and 
magnetic field can be immediately destroyed, and the 
electronic state goes back to the original ground bosonic 
metallic state for j = 0 .   Therefore, we can consider that 
the energy for the initially applied electric field ∆Eunit  is 
converted to photon emission energy and the Joule’s 
heats.    
 
4.4 Ampère’s Law in the Two-Electrons Systems in 
Superconductivity 

Similar discussions can be made in the two-electrons 
systems in superconductivity (Fig. 6).   Because of the 
very large stabilization energy 
( 2Vkin ,Fermi,k HOCOσ 0( ) ≈ 70 eV ) for the Bose–Einstein 
condensation ( pcanonical = 0 ; 
Vkin , Bose,kHOCOσ 0( ) = 0 eV ), the electric and magnetic 
momentum of a bosonic Cooper pair cannot be changed 
but the magnetic field can be induced soon after the 
electric field is applied.   Therefore, the electronic state 
becomes kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  (Fig. 
6 (b)).   On the other hand, such excited bosonic 
supercurrent states with the induced magnetic fields 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  can be 

immediately destroyed because the applied electric field 
penetrates into the superconducting specimen, and the 
electronic state becomes another bosonic excited 
supercurrent state for j = 0  
( kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( ) ) (Fig. 
6 (c)).   In the 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state, 

the supercurrent can be induced, and thus there is kinetic 
energy ( Ekinetic ∆Eunit , ∆Eunit( )).   That is, the expelling 
energy of the initially applied electric field ∆Eunit  for the 
kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( )  state is 

converted to the kinetic energy of the supercurrent for the 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state.   



International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-8,November  2015 
                              ISSN: 2395-3470 

www.ijseas.com 
 

14 
 

Both the supercurrent ( vem,k HOCO
∆Eunit , ∆Eunit( )≠ 0 ) 

and the magnetic field ( Binduced,kHOCO
∆Eunit , 0( )≠ 0 ) can 

be induced under the condition of the closed-shell 
electronic structure with zero spin magnetic field and zero 
canonical momentum in a bosonic Cooper pair 
(σ spin = 0 ; pcanonical = 0).   Such excited bosonic states 
with supercurrents 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  cannot 

be destroyed because of the stable closed-shell electronic 
states, and thus the induced supercurrent and magnetic 
field cannot be dissipated.   That is, the excited bosonic 
superconducting 
kHOCO T( ) 0, 0( ); ∆Eunit , ∆Eunit( );Binduced ;vem( )  state is 

very stable and do not try to go back to the original 
ground bosonic superconducting state for j = 0 , and the 
induced electrical current and the induced magnetic field 
cannot be dissipated.   This is the origin of the Ampère’s 
law observed in the superconductivity.    

k HOCO T( ) 0,0( ); ∆Eunit ,0( );Binduced ;0( )

k HOCO T( ) 0,0( ); 0,0( );0;0( )

∆Eunit ∆Eunit

∆Eunit

v em

Binduced

Binduced

  
k HOCO T( ) 0,0( ); ∆Eunit ,∆Eunit( );Binduced ;v em( )

photon

photon

Fig. 6. The electronic states between j =0 and j = 1 
in superconductivity.

(a)

(b)

(c)

 

 
4.5 Ampère’s Law in an Electron Traveling in Vacuum 

Let us next consider the Ampère’s law in vacuum (Fig. 
7).   We consider that there is a reference electron in 
metal.   If very strong electric field is applied to a 
reference electron, this electron behaves according to the 
Ampère’s law in metal (Fig. 7 (a), (b)), as discussed in the 
previous section.   On the other hand, once the electron 
moves away from the metal, and goes into the vacuum, 
there is no reason (electrical resistivity and Stern–Gerlach 

effect, etc.) that the electron moving is dissipated.   
Therefore, the electron moves in vacuum with electrical 
momentum ( vem ≠ 0 ) and the induced magnetic field 
( Binduced ≠ 0) (Fig. 7 (c), (d)).   This is the Ampère’s law 
observed in the traveling charged particles such as 
electrons in vacuum.    

kHOCO T( ) 0,0( ); ∆Eunit, 0( );B induced;0( )

kHOCO T( ) 0,0( ); 0,0( );0; 0( )

∆ Eunit ∆ Eunit

B induced

B induced

  
kHOCO T( ) 0,0( ); ∆Eunit,∆Eunit( );Binduced;vem( )

∆ Eunit

v em

B induced

∆ Eunit

v em

  
kHOCO T( ) 0,0( ); ∆Eunit,∆Eunit( );Binduced;vem( )

photon

photon

photon

in vacuum

in metal

Fig. 7. The electronic states between j =0 and j = 1 
from normal metal to vacuum.

(a)

in metal(b)

(c)

(d) in vacuum

 
 
4.6 Reconsideration of the Ampère’s Law 

According to the conventional empirical Ampère’s law, 
it has been considered that any moving charged particle 
itself creates a magnetic field.   On the other hand, 
according to our theory, the magnetic field can be induced 
in order that the photon becomes massive (that is, electric 
field is expelled from the specimen) by absorbing 
Nambu–Goldstone boson formed by the fluctuation of the 
electronic state pairing of an electron, because of the very 
large stabilization energy (Vkin ,Fermi, kLUCOσ 0( ) ≈ 35 eV ) 
for the Bose–Einstein condensation ( pcanonical = 0 ; 
Vkin ,Bose,kLUCOσ 0( )= 0 eV ), and the Stern–Gerlach 
effect.   The initial electronic state tries not to change the 
electronic structure ( pcanonical = 0 ) by induction of the 
magnetic field.   After that, the photon becomes massless 
(electric field can penetrate into the specimen), and thus 
the electrical current can be induced.   Therefore, the 
induced electrical current as well as the magnetic field can 
be observed.   This is the reason why we can observe that 
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any moving charged particle seems to create a magnetic 
field, as explained by the Ampère’s law.   On the other 
hand, such electrical currents as well as the induced 
magnetic fields can be immediately disappeared because 
of the unstable opened-shell electronic states.   And at the 
same time, photon is emitted from an electron and this is 
the origin of the electrical resistivity.   This process can be 
continuously repeated while the external applied electric 
field continues to be applied.   That is, according to our 
theory, the electrical current (i.e., moving charged 
particle) itself is not directly related to the creation of the 
magnetic field.   The induced magnetic field in the 
Ampère’s law is realized because the bosonic electronic 
state tries not to change the electronic structure 
( pcanonical = 0  and vem = 0 ) by inducing the magnetic 
field Binduced .   If an electron were not in the bosonic 
state, the applied electric field would immediately 
penetrate into the specimen as soon as the electric field is 
applied, and any induced magnetic momentum (the 
induced magnetic field) even in the normal metals, 
expected from the Ampère’s law, would not be observed.   
This bosonic electron is closely related to the concepts of 
the Higgs boson.    

 
5. Concluding Remarks 

We discussed the origin of the vibronic and Jahn–
Teller stabilization for the opened-shell randomly moving 
independent one electron in view of the second-order 
processes in the vibronic and electron–phonon 
interactions.   Furthermore, we discussed the relationships 
between the vibronic and Jahn–Teller stabilization 
energies, and the Joule’s heats as a consequence of 
electrical resistivity, as a function of the external applied 
electric field, originating from the nondissipative second- 
and dissipative first-order processes in the vibronic 
interactions, respectively.  

The total energies originating from both the second- 
and first-order processes are constant, and these values 
are the electron–phonon coupling constants calculated in 
the previous calculations and discussions.   However, the 
roles of the first- and second-order processes have not 
been clearly distinguished in the previous researches.    

According to our calculations, a phonon emitted by an 
electron is received by the same electron, and as a 
consequence of this phonon exchange between two 
electronic states with opposite momentum and spins (i.e., 
nondissipative phonon exchange), this randomly moving 
independent one electron is stabilized in energy.   This is 
the vibronic and Jahn–Teller stabilization energies 
originating from the second-order processes.   On the 
other hand, in the first-order processes, a phonon emitted 
by an electron is not absorbed by any electron (i.e., 
dissipative phonon emission).   This is the origin of the 
electrical resistivity and Joule’s heats.   That is, 

momentum of an electron is changed in the first-order 
processes, but not changed in the second-order processes.    

Electrons and molecular vibrations are more clearly 
treated as waves and particles, respectively, in this study, 
than those in the previous researches.   By considering the 
wave characteristics of electrons and the direction of the 
motion of an electron, we clearly defined the wave 
function for randomly moving one electron (Eq. (1)), 
which has not been clearly defined.   By using this wave 
function, the roles of the first- and second-order processes 
in the vibronic interactions can be clearly distinguished in 
this study.   We suggest that an electron behaves as if it 
occupies these two electronic states orbitals with opposite 
momentum and spins, the characteristics of which change 
from the bonding interactions to the nonbonding 
interactions, and even to the antibonding interactions with 
an increase in the external applied electric field.   The 
singlet and doublet electronic states become less and more 
dominant, respectively, with an increase in the external 
applied electric field.   The vibronic stabilization energies 
for the second- and first-order processes decrease and 
increase, respectively, with an increase in the external 
applied electric field.    

We also elucidate the mechanism of the Ampère’s law 
(experimental rule discovered in 1820) in normal metallic 
and superconducting states [10], on the basis of the theory 
suggested in our previous researches [1–7].   Because of 
the very large stabilization energy 
( Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) for the Bose–Einstein 
condensation ( pcanonical = 0; Vkin ,Bose,kHOCOσ 0( ) = 0 eV ) 
[1–7], the electric and magnetic momentum of a bosonic 
electronic state pairing of an electron cannot be changed 
but the magnetic field can be induced soon after the 
electric field is induced.   Therefore, the electronic state 
becomes kHOCO T( ) 0, 0( ); ∆Eunit , 0( );Binduced ;0( ) .   

Both the supercurrent (vem,k HOCO
∆Eunit , ∆Eunit( )≠ 0 ) and 

the magnetic field ( Binduced,kHOCO
∆Eunit , 0( )≠ 0 ) can be 

induced under the condition of the opened-shell electronic 
structure with zero spin magnetic momentum and zero 
canonical momentum in a bosonic electronic state pairing 
of an electron ( σ spin = 0 ; pcanonical = 0 ).   This is the 
origin of the Ampère’s law.    

According to the conventional empirical Ampère’s law, 
it has been considered that any moving charged particle 
itself creates a magnetic field.   On the other hand, 
according to our theory, the magnetic field can be induced 
in order that the photon becomes massive (that is, electric 
field is expelled from the specimen) by absorbing 
Nambu–Goldstone boson formed by the fluctuation of the 
electronic state pairing of an electron, because of the very 
large stabilization energy (Vkin ,Fermi,kLUCOσ 0( ) ≈ 35 eV ) 



International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-8,November  2015 
                              ISSN: 2395-3470 

www.ijseas.com 
 

16 
 

for the Bose–Einstein condensation ( pcanonical = 0 ; 
Vkin ,Bose,kLUCOσ 0( )= 0 eV ), and the Stern–Gerlach 
effect.   The initial electronic state tries not to change the 
electronic structure ( pcanonical = 0 ) by induction of the 
magnetic field.   After that, the photon becomes massless 
(electric field can penetrate into the specimen), and thus 
the electrical current can be induced.   Therefore, the 
induced electrical current as well as the magnetic field can 
be observed.   This is the reason why we can observe that 
any moving charged particle seems to create a magnetic 
field, as explained by the Ampère’s law.   On the other 
hand, according to our theory, the electrical current (i.e., 
moving charged particle) itself is not directly related to 
the creation of the magnetic field.   The induced magnetic 
field in the Ampère’s law is realized because the bosonic 
electronic state tries not to change the electronic structure 
( pcanonical = 0  and vem = 0 ) by inducing the magnetic 
field Binduced .   If an electron were not in the bosonic 
state, the applied electric field would immediately 
penetrate into the specimen as soon as the electric field is 
applied, and any induced magnetic momentum (the 
induced magnetic field) even in the normal metals, 
expected from the Ampère’s law, would not be observed.   
This bosonic electron is closely related to the concepts of 
the Higgs boson.    
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