3470 -

www.ijseas.com

Regular elements of semigroup $B_x(D)$ defined by x – semilattice which is Union of Two Rhombes and a Chain

Yasha diasamidze and giuli Tavdgiridze

Sh.Rustaveli state university Batumi, GEORGIA

 $T_1 \cup T_2 = T_3$, $T_4 \cup T_1 = T_4 \cup T_3 = T_5$. we will investige the properties of regular elements of the complete semigroup of binary relations $B_X(D)$ satisfying $V(D,\alpha) = Q$. And For the case where X is a finite set we derive formulas by means of which we can calculate the numbers of regular elements of the respective semigroup.

Introduction

1. Let X be an arbitrary nonempty set, D be a X - semilattice of unions, i.e. a nonempty set of subsets of the set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbitrary mapping from X into D. To each such a mapping f there corresponds a binary relation α_f on the set X that satisfies the condition $\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x))$. The set of all such α_f $(f: X \to D)$ is denoted by $B_X(D)$. It is easy to prove that

 $B_X(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by a X – semilattice of unions D (see [2,3 2.1 p. 34]).

By \varnothing we denote an empty binary relation or empty subset of the set X. The condition $(x,y) \in \alpha$ will be written in the form $x\alpha y$. Further let $x,y \in X$, $Y \subseteq X$, $\alpha \in B_X(D)$, $T \in D$, $\varnothing \neq D' \subseteq D$ and $t \in \widetilde{D} = \bigcup_{Y \in D} Y$. Then by symbols we denote the following sets:

$$y\alpha = \left\{x \in X \mid y\alpha x\right\}, \ Y\alpha = \bigcup_{y \in Y} y\alpha, \ V\left(D,\alpha\right) = \left\{Y\alpha \mid Y \in D\right\},$$

$$X^* = \left\{T \mid \emptyset \neq T \subseteq X\right\}, \ D'_t = \left\{Z' \in D' \mid t \in Z'\right\}, \ D'_T = \left\{Z' \in D' \mid T \subseteq Z'\right\}.$$

$$\ddot{D}'_T = \left\{Z' \in D' \mid Z' \subseteq T\right\}, \ l\left(D',T\right) = \bigcup\left(D' \setminus D'_T\right), \ Y''_T = \left\{x \in X \mid x\alpha = T\right\}.$$

Under the symbol $\wedge (D, D_t)$ we mean an exact lower bound of the set D_t in the semilattice D.

Definition 1.1. An element α taken from the semigroup $B_{\chi}(D)$ called a regular element of the semigroup $B_{\chi}(D)$ if in $B_{\chi}(D)$ there exists an element β such that $\alpha \circ \beta \circ \alpha = \alpha$ (see [1,2,3]).

Definition 1.2. We say that a complete X – semilattice of unions D is an XI – semilattice of unions if it satisfies the following two conditions:

- **a**) $\land (D, D_t) \in D$ for any $t \in D$;
- **b**) $Z = \bigcup_{t \in \mathbb{Z}} \wedge (D, D_t)$ for any nonempty element Z of D (see [2,3 definition 1.14.2]).

3470 -

www.ijseas.com

Definition 1.3. Let *D* be an arbitrary complete X – semilattice of unions, $\alpha \in B_X(D)$ and $Y_T^{\alpha} = \{x \in X \mid x\alpha = T\}$. If

$$V[\alpha] = \begin{cases} V(X^*, \alpha), & \text{if } \emptyset \notin D, \\ V(X^*, \alpha), & \text{if } \emptyset \in V(X^*, \alpha), \\ V(X^*, \alpha) \cup \{\emptyset\}, & \text{if } \emptyset \notin V(X^*, \alpha) \text{ and } \emptyset \in D, \end{cases}$$

then it is obvious that any binary relation α of a semigroup $B_X(D)$ can always be written in the form $\alpha = \bigcup_{T \in V[\alpha]} (Y_T^\alpha \times T)$ the sequel, such a representation of a binary relation α will be called quasinormal.

Note that for a quasinormal representation of a binary relation α , not all sets Y_T^{α} $(T \in V[\alpha])$ can be different from an empty set. But for this representation the following conditions are always fulfilled:

a)
$$Y_T^{\alpha} \cap Y_{T'}^{\alpha} = \emptyset$$
, for any $T, T' \in D$ and $T \neq T'$;

$$\mathbf{b)} \ \ X = \bigcup_{T \in V[\alpha]} Y_T^{\alpha}$$

(see [2,3 definition 1.11.1]).

Definition 1.4. We say that a nonempty element T is a nonlimiting element of the set D' if $T \setminus l(D',T) \neq \emptyset$ and a nonempty element T is a limiting element of the set D' if $T \setminus l(D',T) = \emptyset$ (see [2,3 definition 1.13.1 and definition 1.13.2]).

Definition 1.5. The one-to-one mapping φ between the complete X – semilattices of unions $\phi(Q,Q)$ and D'' is called a complete isomorphism if the condition

$$\varphi(\cup D_1) = \bigcup_{T' \in D_1} \varphi(T')$$

is fulfilled for each nonempty subset D_1 of the semilattice D' (see [2,3 definition 6.3.2]).

Definition 1.6. Let α be some binary relation of the semigroup $B_{\chi}(D)$. We say that the complete isomorphism φ between the complete semilattices of unions Q and D' is a complete α – isomorphism if

- (a) $Q = V(D, \alpha)$;
- (b) $\varphi(\varnothing) = \varnothing$ for $\varnothing \in V(D,\alpha)$ and $\varphi(T)\alpha = T$ for eny $T \in V(D,\alpha)$ (see [2,3 definition 6.3.3]).

Lemma 1.1. Let $Y = \{y_1, y_2, ..., y_k\}$ and $D_j = \{T_1, ..., T_j\}$ be some sets, where $k \ge 1$ and $j \ge 1$. Then the number S(k, j) of all possible mappings of the set Y on any such subset of the set D'_j that $T_j \in D'_j$ can be calculated by the formula $S(k, j) = j^k - (j-1)^k$ (see [2,3 Corollary 1.18.1]).

lemma1.2. Let $D_j = \left\{T_1, T_2, ... T_j\right\}$, X and Y — be three such sets, that $\varnothing \neq Y \subseteq X$. If f is such mapping of the set X, in the set D_j , for which $f(y) = T_j$ for some $y \in Y$, then the number s of all those mappings f of the set X in the set D_j is equal to $s = j^{|X \setminus Y|} \cdot \left(j^{|Y|} - \left(j - 1\right)^{|Y|}\right)$ (see [2,3 Theorem 1.18.2]).

Theorem 1.1. Let $D = \{ \check{D}, Z_1, Z_2, ..., Z_{n-1} \}$ be some finite X – semilattice of unions and $C(D) = \{ P_0, P_1, P_2, ..., P_{n-1} \}$ be the family of sets of pairwise nonintersecting subsets of the set X. If φ is a mapping of the semilattice D on the family of sets C(D) which satisfies the condition $\varphi(\check{D}) = P_0$ and $\varphi(Z_i) = P_i$ for any i = 1, 2, ..., n-1 and $\hat{D}_Z = D \setminus \{ T \in D \mid Z \subseteq T \}$, then the following equalities are valid:

$$\widetilde{D} = P_0 \cup P_1 \cup P_2 \cup ... \cup P_{n-1}, \ Z_i = P_0 \cup \bigcup_{T \in \widehat{D}_{Z_i}} \varphi(T). \tag{*}$$

In the sequel these equalities will be called formal.

It is proved that if the elements of the semilattice D are represented in the form (*), then among the parameters P_i (i=0,1,2,...,n-1) there exist such parameters that cannot be empty sets for D. Such sets P_i $(0 < i \le n-1)$ are called basis sources, whereas sets P_i $(0 \le j \le n-1)$ which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one. (see [5])

Theorem 1.2. Let $\beta \in B_X(D)$. A binary relation β is a regular element of the semigroup $B_X(D)$ iff the complete X – semilattice of unions $D' = V(D, \beta)$ satisfies the following two conditions:

- a) $V(X^*,\beta)\subseteq D'$;
- **b)** D' is a complete XI semilattice of unions (see [2,3 Theorem 6.3.1]).

Theorem 1.3. Let D be a finite X – semilattice of unions and $\alpha \in B_X\left(D\right)$; $D(\alpha)$ be the set of those elements T of the semilattice $Q = V\left(D,\alpha\right) \setminus \{\varnothing\}$ which are nonlimiting elements of the set \ddot{Q}_T . Then a binary relation α having a quasinormal representation of the form $\alpha = \bigcup_{T \in V(D,\alpha)} \left(Y_T^\alpha \times T\right)$ is a regular element of the semigroup $B_X\left(D\right)$

iff $V(D,\alpha)$ is a XI – semilattice of unions and for some α – isomorphism φ from $V(D,\alpha)$ to some X – subsemilattice D' of the semilattice D the following conditions are fulfilled:

- a) $\bigcup_{T' \in \ddot{D}(\alpha)_T} Y_{T'}^{\alpha} \supseteq \varphi(T) \text{ for any } T \in D(\alpha);$
- b) $Y_T^{\alpha} \cap \varphi(T) \neq \emptyset$ for any element T of the set $\ddot{D}(\alpha)_T$ (see [2,3 Theorem 6.3.3]).

Theorem 1.4. Let X be a finite set . if φ is a fixed element of the set $\Phi(Q, D')$ and $\Omega(Q) = m_0$ then

$$|R(D')| = m_0 \cdot q \cdot |R_{\omega}(Q, D')|$$

2.RESULTS

Let X be a finite set, D be a complete X – semilattice of unions, $m \ge 6$ and $Q = \{T_0, T_1, T_2, T_3, T_4, T_5, T_6, ..., T_{m-1}, T_m\}$ $(m \ge 6)$ be a subsemilattice of unions of D satisfies the following conditions

$$T_{0} \subset T_{1} \subset T_{3} \subset T_{5} \subset T_{6} \subset ... \subset T_{m-1} \subset T_{m},$$

$$T_{0} \subset T_{2} \subset T_{3} \subset T_{5} \subset T_{6} \subset ... \subset T_{m-1} \subset T_{m},$$

$$T_{0} \subset T_{2} \subset T_{4} \subset T_{5} \subset T_{6} \subset ... \subset T_{m-1} \subset T_{m},$$

$$T_{1} \setminus T_{2} \neq \emptyset, T_{2} \setminus T_{1} \neq \emptyset, T_{1} \setminus T_{4} \neq \emptyset,$$

$$T_{4} \setminus T_{1} \neq \emptyset, T_{3} \setminus T_{4} \neq \emptyset, T_{4} \setminus T_{3} \neq \emptyset,$$

$$T_{1} \cup T_{2} = T_{3}, T_{4} \cup T_{1} = T_{4} \cup T_{3} = T_{5}.$$

$$(2.1)$$

Note that the diagram of the given X – semilattice of Unions Q is shown fig.2.1 Let $P_0, P_1, ..., P_{m-1}$ and C be the pairwise nonintersecting

Subset of the set X and

$$\varphi = \begin{pmatrix} T_0 & T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & \dots & T_{m-1} & T_m \\ P_0 & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & \dots & P_{m-1} & C \end{pmatrix}$$

3470

www.ijseas.com

is a mapping of the semilattice Q onto the family of sets $\{P_0, P_1, ..., P_{m-1}, C\}$ Then the formal equalities corresponding to the semilattice Q we have a form (see Theorem 1.1)

where $|C| \ge 0$, $|P_0| \ge 0$, $|P_2| \ge 0$ and $|P_1| = 0$, $|P_2| \ge 0$, $|P_3| = 0$, $|P_4| = 0$

lemma 2.1. Let $Q = \{T_0, T_1, T_2, T_3, T_4, T_5, T_6, ..., T_{m-1}, T_m\}$ $(m \ge 6)$ be a subsemilattice of the semilattice D and Q subsemilattice satisfies (2.1) conditions, Then Q is always an XI – semilattice of unions.

Proof

$$Q_t = \begin{cases} \left\{ T_0, T_1, T_2, T_3, T_4, T_5, T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in C, \\ \left\{ T_1, T_2, T_3, T_4, T_5, T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_0, \\ \left\{ T_2, T_3, T_4, T_5, T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_1, \\ \left\{ T_1, T_3, T_4, T_5, T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_2, \\ \left\{ T_4, T_5, T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_3, \\ \left\{ T_1, T_3, T_5, T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_4, \\ \left\{ T_6, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_5, \\ \left\{ T_7, \dots, T_{m-1}, T_m \right\} & \text{if} \quad t \in P_6, \\ \hline - - - - - \\ \left\{ T_{m-1}, T_m \right\} & \text{if} \quad t \in P_{m-2}, \\ \left\{ T_m \right\} & \text{if} \quad t \in P_{m-1} \end{cases}$$

then We have obtained that $\land (Q,Q_t) \in D$ for any $t \in T_m$. Furthermore, if $Q^{\land} = \{\land (Q,Q_t)t \in T_m\}$, then $Q^{\land} = \{T_0,T_1,T_2,T_4,T_6,T_7,...,T_m\}$ and it is easy to verify that any nonempty element of the semilattice Q is the union of some elements of the set Q^{\land} . Now, taking into account Definition 1.2, we obtain that Q is an XI – semilattice of unions. \Box

lemma. 2.2 if $Q = \{T_0, T_1, T_2, T_3, T_4, T_5, T_6, ..., T_{m-1}, T_m\}$ $(m \ge 6)$ is XI – semilattice of unions than $(T_4 \cap T_1, T_4 \setminus T_3, T_1 \setminus T_4, T_2 \setminus T_1, T_6 \setminus T_5, ..., T_m \setminus T_{m-1}, X \setminus T_m)$ is a partition of the set X. Proof. the lemma immediately follows from the formal equalities (2.2)

riooi, the lemma milliediately follows from the formal equalities (2.2)

Theorem 2.1. Let $Q = \{T_0, T_1, T_2, T_3, T_4, T_5, T_6, ..., T_{m-1}, T_m\}$ $(m \ge 6)$ be a subsemilattice of the semilattice D which satisfies (2.1) conditions (see Fig. 2.1). (see Fig. 1). A binary relation α of the semigroup $B_X(D)$ that has a quasinormal

representation of the form $\alpha = \bigcup_{i=0}^{m} (Y_i^{\alpha} \times T_i)$, where $Q = V(D, \alpha)$, is a regular element of the semigroup $B_X(D)$ iff

for some α – isomorphism φ of the semilattice Q on some X – subsemilattice $D' = \{\varphi(T_1), \varphi(T_2), ..., \varphi(T_m)\}$ of the semilattice D satisfies the conditions

$$Y_0^{\alpha} \supseteq \varphi(T_0), \ Y_0^{\alpha} \cup Y_1^{\alpha} \supseteq \varphi(T_1), \ Y_0^{\alpha} \cup Y_2^{\alpha} \supseteq \varphi(T_2), \ Y_0^{\alpha} \cup Y_2^{\alpha} \cup Y_4^{\alpha} \supseteq \varphi(T_4),$$

$$Y_1^{\alpha} \cup Y_2^{\alpha} \cup \dots \cup Y_p^{\alpha} \supseteq \varphi(T_p), \ Y_q^{\alpha} \cap \varphi(T_q) \neq \emptyset,$$

$$(2.3)$$

for any p = 6, 7, ..., m-1 and q = 1, 2, 4, 6, 7, ..., m.

Proof. To begin with, we recall that Q is an XI – semilattice of unions (see lemma 2.1). Now we are to find the nonlimiting element of the sets \ddot{Q}_q^* of the semilattice $Q^* = Q \setminus \{\emptyset\}$. Indeed, let $T_q \in Q^*$, where q = 0,1,2,...,m. Then for q = 0,1,2,...,m we obtain respectively

Therefore

i.e. $T_q \setminus l\left(\ddot{Q}_{T_q}, T_q\right) \neq \varnothing$, where q=1,2,4,6,7,...,m. Thus we have obtained that T_3 , T_5 are the limiting elements of the sets $\ddot{Q}_{T_3}^*$, $\ddot{Q}_{T_5}^*$ and the T_q are the nonlimiting elements of the set $\ddot{Q}_{T_q}^*$, where q=1,2,4,6,7,...,m. (see definition 1.4) Now, in view of Theorem 1.3 a binary relation α of the semigroup $B_X(D)$ is a regular element of this semigroup iff there exists an α -isomorphism φ of the semilattice Q on some X-subsemilattice $D'=\left\{\varphi\left(T_0\right),...,\varphi\left(T_m\right)\right\}$ of the semilattice Q such that

$$\begin{array}{l} Y_0^\alpha \supseteq \varphi(T_0), \ Y_0^\alpha \cup Y_1^\alpha \supseteq \varphi(T_1), \ Y_0^\alpha \cup Y_2^\alpha \supseteq \varphi(T_2), \ Y_0^\alpha \cup Y_2^\alpha \cup Y_4^\alpha \supseteq \varphi(T_4), \\ Y_1^\alpha \cup Y_2^\alpha \cup ... \cup Y_p^\alpha \supseteq \varphi(T_p), \ Y_q^\alpha \cap \varphi(T_q) \neq \varnothing, \end{array}$$

for any p = 6, 7, ..., m and q = 1, 2, 4, 6, 7, ..., m.

It is clearly understood that the inclusion $Y_1^{\alpha} \cup ... \cup Y_m^{\alpha} = X \supseteq \varphi(T_m)$ is always valid. Therefore

$$Y_0^{\alpha} \supseteq \varphi(T_0), \ Y_0^{\alpha} \cup Y_1^{\alpha} \supseteq \varphi(T_1), \ Y_0^{\alpha} \cup Y_2^{\alpha} \supseteq \varphi(T_2), \ Y_0^{\alpha} \cup Y_2^{\alpha} \cup Y_4^{\alpha} \supseteq \varphi(T_4),$$

$$Y_1^{\alpha} \cup Y_2^{\alpha} \cup ... \cup Y_n^{\alpha} \supseteq \varphi(T_n), \ Y_a^{\alpha} \cap \varphi(T_a) \neq \emptyset,$$

for any p = 6, 7, ..., m-1 and q = 1, 2, 4, 6, 7, ..., m.

Theorem is proved.

Theorem 2.2. Let $Q = \{T_0, T_1, T_2, T_3, ..., T_m\}$ $(m \ge 6)$ be a subsemilattice of the semilattice D which satisfies (2.1) conditions (see Fig. 2.1)

If the XI – semilattices Q and $D' = \{\overline{T}_0, \overline{T}_1, \overline{T}_2, ..., \overline{T}_m\}$ are α – isomorphic and $|\Omega(Q)| = m_0$, then the following equality is valid:

N: 2395-3470

www.ijseas.com

$$\begin{split} \left| R\left(D' \right) \right| &= m_0 \cdot \left(3^{\left| \overline{T}_4 \setminus \overline{T}_3 \right|} - 2^{\left| \overline{T}_4 \setminus \overline{T}_3 \right|} \right) \cdot \left(2^{\left| \overline{T}_1 \setminus \overline{T}_4 \right|} - 1 \right) \cdot \left(2^{\left| \overline{T}_2 \setminus \overline{T}_1 \right|} - 1 \right) \cdot \left(7^{\left| \overline{T}_6 \setminus \overline{T}_5 \right|} - 6^{\left| \overline{T}_6 \setminus \overline{T}_5 \right|} \right) \cdot \\ & \cdot \left(8^{\left| \overline{T}_7 \setminus \overline{T}_6 \right|} - 7^{\left| \overline{T}_7 \setminus \overline{T}_6 \right|} \right) \cdot \cdots \left(m^{\left| \overline{T}_{m-1} \setminus \overline{T}_{m-2} \right|} - (m-1)^{\left| \overline{T}_{m-1} \setminus \overline{T}_{m-2} \right|} \right) \cdot \left(m+1 \right)^{\left| X \setminus \overline{T}_m \right|} . \end{split}$$

Proof. In the first place, we note that the semilattice Q has only one automorphisms (i.e. $|\Phi(Q,Q)|=1$). Let $\alpha\in\overline{R}(Q,D')$ and a quasinormal representation of a regular

binary relation α have the form

$$\alpha = \bigcup_{i=1}^{m} (Y_i^{\alpha} \times T_i)$$

Then according to Theorem 2.1 the condition $\alpha \in \overline{R}(Q, D')$ is fulfilled if

$$\begin{array}{l} Y_0^{\alpha} \supseteq \overline{T}_0, \ Y_0^{\alpha} \cup Y_1^{\alpha} \supseteq \overline{T}_1, \ Y_0^{\alpha} \cup Y_2^{\alpha} \supseteq \overline{T}_2, \\ Y_0^{\alpha} \cup Y_2^{\alpha} \cup Y_4^{\alpha} \supseteq \overline{T}_4, \ Y_1^{\alpha} \cup Y_2^{\alpha} \cup ... \cup Y_p^{\alpha} \supseteq \overline{T}_p, \\ Y_a^{\alpha} \cap \overline{T}_a \neq \varnothing. \end{array} \tag{2.4}$$

for any p = 6,7,...,m-1 and q = 1,2,4,6,7,...,m.

Now, assume that f_{α} is a mapping of the set X in D such that $f_{\alpha}(t) = t\alpha$ for any $t \in X$. $f_{1\alpha}$, $f_{2\alpha}$, $f_{3\alpha}$, $f_{4\alpha}$, $f_{p\alpha}$ (p = 6,7,...,m), $f_{m+1 \alpha}$ are respectively the restrictions of the mapping f_{α} on the sets $\overline{T}_4 \cap \overline{T}_1$, $\overline{T}_4 \setminus \overline{T}_3$, $\overline{T}_1 \setminus \overline{T}_4$, $\overline{T}_2 \setminus \overline{T}_1$, $\overline{T}_6 \setminus \overline{T}_5$,..., $\overline{T}_m \setminus \overline{T}_{m-1}$ and $X \setminus \overline{T}_m$. We have, by assumption, that these sets do not intersect pairwise and the set-theoretic union of these sets is equal to X.

Let us establish the properties of the mappings $t \in X$. $f_{1\alpha}$, $f_{2\alpha}$, $f_{3\alpha}$, $f_{4\alpha}$, $f_{p\alpha}$ (p = 6,7,...,m), $f_{m+1\alpha}$.

1) $t \in \overline{T}_4 \cap \overline{T}_1$. Hence by virtue of the inclusions (2.4) we have

$$t \in (Y_0^{\alpha} \cup Y_2^{\alpha} \cup Y_4^{\alpha}) \cap (Y_0^{\alpha} \cup Y_1^{\alpha}) = Y_0^{\alpha},$$

i.e., $t\alpha=T_0$ by the definition of the set Y_0^α . Thus $f_{1\alpha}\left(t\right)=T_0$ for any $t\in\overline{T}_4\cap\overline{T}_1$.

2) $t \in \overline{T}_4 \setminus \overline{T}_3$. In that case, by virtue of inclusion (2.4) we have $t \in \overline{T}_4 \setminus \overline{T}_3 \subseteq \overline{T}_4 \subseteq Y_0^{\alpha} \cup Y_2^{\alpha} \cup Y_4^{\alpha}$. Therefore $t\alpha \in \{T_0, T_2, T_4\}$ by the definition of the sets $Y_0^{\alpha}, Y_2^{\alpha}, Y_4^{\alpha}$. Thus $f_{2\alpha}(t) \in \{T_0, T_2, T_4\}$ for any $t \in \overline{T}_4 \setminus \overline{T}_3$.

On the other hand, the inequality $Y_4^{\alpha} \cap \overline{T}_4 \neq \emptyset$ is true. Therefore $t_4 \in Y_4^{\alpha}$ for some element $t_4 \in \overline{T}_4$. Hence it follows that $t_4 \alpha = T_4$. Furthermore, if $t_4 \in \overline{T}_3$, then $t_4 \alpha \in \left\{T_0, T_1, T_2, T_3\right\}$. However the latter condition contradicts the equality $t_4 \alpha = T_4$. The contradiction obtained shows that $t_4 \in \overline{T}_4 \setminus \overline{T}_3$. Thus $f_{2\alpha}\left(t_4\right) = T_4$ for some $t_4 \in \overline{T}_4 \setminus \overline{T}_3$.

3) $t \in \overline{T_1} \setminus \overline{T_4}$. In that case, by virtue of inclusion (2.4) we have $t \in \overline{T_1} \setminus \overline{T_4} \subseteq \overline{T_1} \subseteq Y_0^{\alpha} \cup Y_1^{\alpha}$. Therefore $t\alpha \in \{T_0, T_1\}$ by the definition of the sets $Y_0^{\alpha}, Y_1^{\alpha}$. Thus $f_{3\alpha}(t) \in \{T_0, T_1\}$ for any $t \in \overline{T_1} \setminus \overline{T_4}$.

On the other hand, the inequality $Y_1^{\alpha} \cap \overline{T}_1 \neq \emptyset$ is true. Therefore $t_1 \in Y_1^{\alpha}$ for some element $t_1 \in \overline{T}_1$. Hence it follows that $t_1 \alpha = T_1$. Furthermore, if $t_1 \in \overline{T}_4$, then $t_1 \alpha \in \{T_0, T_2, T_4\}$. However the latter condition contradicts the equality $t_1 \alpha = T_1$. The contradiction obtained shows that $t_1 \in \overline{T}_1 \setminus \overline{T}_4$. Thus $f_{3\alpha}(t_1) = T_1$ for some $t_1 \in \overline{T}_1 \setminus \overline{T}_4$.

4) $t \in \overline{T}_2 \setminus \overline{T}_1$. In that case, by virtue of inclusion (2.4) we have $t \in \overline{T}_2 \setminus \overline{T}_1 \subseteq \overline{T}_2 \subseteq Y_0^\alpha \cup Y_2^\alpha$. Therefore $t\alpha \in \{T_0, T_2\}$ by the definition of the sets Y_0^α, Y_2^α . Thus $f_{4\alpha}(t) \in \{T_0, T_2\}$ for any $t \in \overline{T}_2 \setminus \overline{T}_1$.

On the other hand, the inequality $Y_2^{\alpha} \cap \overline{T}_2 \neq \emptyset$ is true. Therefore $t_2 \in Y_2^{\alpha}$ for some element $t_2 \in \overline{T}_2$. Hence it follows that $t_2 \alpha = T_2$. Furthermore, if $t_2 \in \overline{T}_1$, then $t_2 \alpha \in \{T_0, T_1\}$. However the latter condition contradicts the equality $t_2 \alpha = T_2$. The contradiction obtained shows that $t_2 \in \overline{T}_2 \setminus \overline{T}_1$. Thus $f_{4\alpha}(t_2) = T_2$ for some $t_2 \in \overline{T}_2 \setminus \overline{T}_1$.

N: 2395-3470

www.ijseas.com

5) $t \in \overline{T}_s \setminus \overline{T}_{s-1}$ (s = 6, 7, ..., m). In that case, by virtue of inclusion (2.4) we have

$$t \in \overline{T}_s \setminus \overline{T}_{s-1} \subseteq \overline{T}_s \subseteq Y_0^{\alpha} \cup Y_1^{\alpha} \cup Y_2^{\alpha} \cup ... \cup Y_s^{\alpha}$$
.

Therefore $t\alpha \in \{T_0, T_1, ..., T_s\}$ by the definition of the sets $Y_0^{\alpha}, Y_1^{\alpha}, ..., Y_s^{\alpha}$. Thus $f_{s\alpha}(t) \in \{T_0, T_1, ..., T_s\}$ for any $t \in \overline{T}_s \setminus \overline{T}_{s-1}$.

On the other hand, the inequality $Y_s^{\alpha} \cap \overline{T}_s \neq \emptyset$ is true. Therefore $t_s \in Y_s^{\alpha}$ for some element $t_s \in \overline{T}_s$. Hence it follows that $t_s \alpha = T_s$. Furthermore, if $t_s \in \overline{T}_{s-1}$, then $t_s \alpha \in \{T_0, T_1, ..., T_{s-1}\}$. However the latter condition contradicts the equality $t_s \alpha = T_s$. The contradiction obtained shows that $t_s \in \overline{T}_s \setminus \overline{T}_{s-1}$. Thus $f_{s\alpha}(t_s) = T_s$ for some $t_s \in \overline{T}_s \setminus \overline{T}_{s-1}$.

6) $t \in X \setminus \overline{T}_m$. Then by virtue of the condition $X = \bigcup_{i=0}^m Y_i^{\alpha}$ we have $t \in \bigcup_{i=0}^m Y_i^{\alpha}$. Hence we obtain $t\alpha \in \{T_0, T_1, T_2, ..., T_m\}$.

Thus $f_{m+1 \alpha}(t) \in \{T_0, T_1, T_2, ..., T_m\}$ for any $t \in X \setminus \overline{T}_m$.

Therefore for a binary relation $\alpha \in \overline{R}(Q, D')$ there exists an ordered system $(f_{1\alpha}, f_{2\alpha}, ..., f_{m+1\alpha})$

Now let

$$\begin{split} &f_1: \overline{T}_4 \cap \overline{T}_1 \to \left\{T_0\right\}, \ f_2: \overline{T}_4 \setminus \overline{T}_3 \to \left\{T_0, T_2, T_4\right\}, \ f_3: \overline{T}_1 \setminus \overline{T}_4 \to \left\{T_0, T_1\right\}, \ f_4: \overline{T}_2 \setminus \overline{T}_1 \to \left\{T_0, T_2\right\} \\ &f_s: \overline{T}_s \setminus \overline{T}_{s-1} \to \left\{T_0, T_1, ..., T_s\right\}, \ s = 6, 7, ..., m \ , \ f_{m+1}: X \setminus \overline{T}_m \to \left\{T_0, T_1, ..., T_m\right\} \end{split}$$

be the mappings satisfying the following conditions:

- 7) $f_1(t) = T_0$ for any $t \in \overline{T}_4 \cap \overline{T}_1$;
- 8) $f_2(t) \in \{T_0, T_2, T_4\}$ for any $t \in \overline{T}_4 \setminus \overline{T}_3$ and $f_2(t_4) = T_4$ for some $t_4 \in \overline{T}_4 \setminus \overline{T}_3$;
- 9) $f_3(t) \in \{T_0, T_1\}$ for any $t \in \overline{T}_1 \setminus \overline{T}_4$ and $f_3(t_1) = T_1$ for some $t_1 \in \overline{T}_1 \setminus \overline{T}_4$;
- **10**) $f_4(t) \in \{T_0, T_2\}$ for any $t \in \overline{T}_2 \setminus \overline{T}_1$ and $f_4(t_2) = T_2$ for some $t_2 \in \overline{T}_2 \setminus \overline{T}_1$;
- **11**) $f_s(t) \in \{T_0, T_1, T_2, ..., T_s\}$ for any $t \in \overline{T}_s \setminus \overline{T}_{s-1}$, and $f_s(t_s) = T_s$ for some $t_s \in \overline{T}_s \setminus \overline{T}_{s-1}$, where s = 6, 7, ..., m;
- **12**) $f_{m+1}(t) \in \{T_0, T_1, T_2, ..., T_m\}$ for any $t \in X \setminus \overline{T}_m$.

Now we write the mapping $f: X \to D$ as follows:

$$f(t) = \begin{cases} f_1(t), & \text{if} \quad t \in \overline{T}_4 \cap \overline{T}_1, \\ f_2(t), & \text{if} \quad t \in \overline{T}_4 \setminus \overline{T}_3, \\ f_3(t), & \text{if} \quad t \in \overline{T}_1 \setminus \overline{T}_4, \\ f_4(t), & \text{if} \quad t \in \overline{T}_2 \setminus \overline{T}_1, \\ f_s(t), & \text{if} \quad t \in \overline{T}_s \setminus \overline{T}_{s-1}, p = 6, 7, ..., m, \\ f_{m+1}(t), & \text{if} \quad t \in X \setminus \overline{T}_m. \end{cases}$$

To the mapping f we put into correspondence the relation $\beta = \bigcup_{t \in X} (\{t\} \times f(t))$.

Now let $Y_i^{\beta} = \{t \in X \mid t\beta = T_i\}$, where i = 0, 1, 2, ..., m. With this notation, the binary relation β is represented as $\beta = \bigcup_{i=0}^m (Y_i^{\beta} \times T_i)$. Moreover, from the definition of the binary relation β we immediately obtain

$$\begin{split} Y_0^{\beta} \supseteq \overline{T}_0, \ Y_0^{\beta} \cup Y_1^{\beta} \supseteq \overline{T}_1, \ Y_0^{\beta} \cup Y_2^{\beta} \supseteq \overline{T}_2, \\ Y_0^{\beta} \cup Y_2^{\beta} \cup Y_4^{\beta} \supseteq \overline{T}_4, \ Y_1^{\beta} \cup Y_2^{\beta} \cup ... \cup Y_p^{\beta} \supseteq \overline{T}_p, \\ Y_q^{\beta} \cap \overline{T}_q \neq \varnothing. \end{split}$$

for any p=6,7,...,m-1 and q=1,2,4,6,7,...,m since $f_2\left(t_4\right)=T_4$ for some $t_4\in\overline{T}_4\setminus\overline{T}_3$, $f_3\left(t_1\right)=T_1$ for some $t_1\in\overline{T}_1\setminus\overline{T}_4$, $f_4\left(t_2\right)=T_2$ for some $t_2\in\overline{T}_2\setminus\overline{T}_1$, $f_s\left(t_s\right)=T_s$ for some $t_s\in\overline{T}_s\setminus\overline{T}_{s-1}$, where s=6,7,...,m.

3470 -

www.ijseas.com

Hence by virtue of Theorem 2.1 we conclude that the binary relation β is a regular element of the semigroup $B_X(D)$ that belongs to the set $\overline{R}(Q,D')$.

By the lemma 1.1 and lemma 1.3 The numbers of all mappings of the form $f_{1\alpha}$, $f_{2\alpha}$, $f_{3\alpha}$, $f_{4\alpha}$, $f_{p\alpha}$ (p = 6,7,...,m), $f_{m+1,\alpha}$ ($\alpha \in \overline{R}(Q,D')$) are equal respectively to

$$1, \ 3^{|\overline{T}_4 \setminus \overline{T}_3|} - 2^{|\overline{T}_4 \setminus \overline{T}_3|}, \ 2^{|\overline{T}_1 \setminus \overline{T}_4|} - 1, \ 2^{|\overline{T}_2 \setminus \overline{T}_1|} - 1 \dots, (s+1)^{|\overline{T}_s \setminus \overline{T}_{s-1}|} - s^{|\overline{T}_s \setminus \overline{T}_{s-1}|}, \ (m+1)^{|X \setminus \overline{T}_m|}.$$

Therefore the equality

$$\left|\overline{R}\left(Q,D'\right)\right| = \left(3^{\left|\overline{T}_{4}\setminus\overline{T}_{3}\right|} - 2^{\left|\overline{T}_{4}\setminus\overline{T}_{3}\right|}\right) \cdot \left(2^{\left|\overline{T}_{1}\setminus\overline{T}_{4}\right|} - 1\right) \cdot \left(2^{\left|\overline{T}_{2}\setminus\overline{T}_{1}\right|} - 1\right) \cdot \left(\left(s+1\right)^{\left|\overline{T}_{s}\setminus\overline{T}_{s-1}\right|} - s^{\left|\overline{T}_{s}\setminus\overline{T}_{s-1}\right|}\right) \cdot \left(m+1\right)^{\left|X\setminus\overline{T}_{m}\right|}$$

is valid, where s = 6, 7, ..., m.

Now, using the equalities $|\Omega(Q)| = m_0$, $|\Phi(Q,D')| = 1$ and theorem 1.4, we Obtain

$$\begin{aligned} \left| R(D') \right| &= m_0 \cdot \left(2^{\left| \overline{T_1} \setminus \overline{T_4} \right|} - 1 \right) \cdot \left(2^{\left| \overline{T_2} \setminus \overline{T_1} \right|} - 1 \right) \cdot \left(3^{\left| \overline{T_4} \setminus \overline{T_3} \right|} - 2^{\left| \overline{T_4} \setminus \overline{T_3} \right|} \right) \cdot \left(7^{\left| \overline{T_6} \setminus \overline{T_5} \right|} - 6^{\left| \overline{T_6} \setminus \overline{T_5} \right|} \right) \cdot \\ & \cdot \left(8^{\left| \overline{T_7} \setminus \overline{T_6} \right|} - 7^{\left| \overline{T_7} \setminus \overline{T_6} \right|} \right) \cdot \cdot \cdot \left(m^{\left| \overline{T_{m-1}} \setminus \overline{T_{m-2}} \right|} - (m-1)^{\left| \overline{T_{m-1}} \setminus \overline{T_{m-2}} \right|} \right) \cdot (m+1)^{\left| X \setminus \overline{T_m} \right|} . \end{aligned}$$

Theorem is proved.

Corollary 2.1. Let $Q = \{T_0, T_1, T_2, ..., T_6\}$ be a subsemilattice of the semilattice D and

$$\begin{split} T_0 &\subset T_1 \subset T_3 \subset T_5 \subset T_6, \ T_0 \subset T_2 \subset T_3 \subset T_5 \subset T_6, \\ T_0 &\subset T_2 \subset T_4 \subset T_5 \subset T_6, T_1 \setminus T_2 \neq \varnothing, \ T_2 \setminus T_1 \neq \varnothing, \\ T_1 \setminus T_4 \neq \varnothing, \ T_4 \setminus T_1 \neq \varnothing, \ T_3 \setminus T_4 \neq \varnothing, \ T_4 \setminus T_3 \neq \varnothing, \\ T_1 \cup T_2 &= T_3, \ T_4 \cup T_1 = T_4 \cup T_3 = T_5. \end{split}$$

(see Fig. 13.6.4). If the XI – semilattices Q and $D' = \{\overline{T}_1, \overline{T}_2, ..., \overline{T}_6\}$ are α – isomorphic and $|\Omega(Q)| = m_0$, the equality

Fig. 4

$$\left|R\left(D'\right)\right| = m_0 \cdot \left(2^{\left|\overline{T}_1 \setminus \overline{T}_4\right|} - 1\right) \cdot \left(2^{\left|\overline{T}_2 \setminus \overline{T}_1\right|} - 1\right) \cdot \left(3^{\left|\overline{T}_4 \setminus \overline{T}_3\right|} - 2^{\left|\overline{T}_4 \setminus \overline{T}_3\right|}\right) \cdot \left(7^{\left|\overline{T}_6 \setminus \overline{T}_5\right|} - 6^{\left|\overline{T}_6 \setminus \overline{T}_5\right|}\right) \cdot 7^{\left|X \setminus \overline{T}_m\right|}.$$

is valid.

Proof. The corollary immediately follows from Theorem 2.2

Reference

- 1. Lyapin E.S., Semigroups, Fizmatgiz, Moscow, 1960 (in Russian).
- 2. Ya. Diasamidze, Sh. Makharadze. Complete Semigroups of binary relations. Monograph. Kriter, Turkey, 2013, 1-520 pp.
- 3. Ya. Diasamidze, Sh. Makharadze. Complete Semigroups of binary relations. Monograph. M., Sputnik+, 2010, 657 p. (Russian).
- 4. Ya. I. Diasamidze. Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, Vol. 117, No. 4, 2003, 4271-4319.
- 5. Diasamidze Ya., Makharadze Sh., Partenadze G., Givradze O.. On finite *x* − semilattices of unions. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 141, № 4, 2007, 1134-1181.
- 6. Diasamidze Ya., Makharadze Sh., Maximal subgroups of complete semigroups of binary relations. Proc. A. Razmadze Math. Inst. 131, 2003, 21-38.

ISSN: 2395-3470

www.ijseas.com

- 7. Diasamidze Ya., Makharadze Sh., Diasamidze II., Idempotents and regular elements of complete semigroups of binary relations. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 153, № 4, 2008, 481-499.
- 8. Diasamidze Ya., Makharadze Sh., Rokva N., On *XI* − semilattices of union. Bull. Georg. Nation. Acad. Sci., 2, № 1. 2008, 16-24.
- 9. The properties of right units of semigroups belonging to some classes of complete semigroups of binary relations. Proc. of A. Razmadze Math. Inst. 150, 2009, 51-70.
- 10. Clifford A. H., Preston G. B., The algebraic theory of semigroups, Amer. Math. Soc., Providence, R. I., vol. 1, 1961; vol. 2, 1967.
- 11. Zaretskii K. A., Regular elements of the semigroup of binary relations. Uspekhi Mat, Nauk,17, no. 3, 1962, 177_189 (in Russian).