Regular elements of semigroup $B_{X}(D)$ defined by X-semilattice which is Union of Two Rhombes and a Chain

Yasha diasamidze and giuli Tavdgiridze
Sh.Rustaveli state university
Batumi, GEORGIA

Abstract

Q=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, ···, T_{m-1}, T_{m}\right\}(m \geq 6)\) subsemilattice of X - semilattice of unions D where the elements $T_{i}^{\prime} \mathrm{s}$ are satisfying the following properties, $T_{0} \subset T_{1} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-1} \subset T_{m}, T_{0} \subset T_{2} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-1} \subset T_{m}, T_{0} \subset T_{2} \subset T_{4} \subset T_{5} \subset$ $\subset T_{6} \subset \ldots \subset T_{m-1} \subset T_{m}, \quad T_{1} \backslash T_{2} \neq \varnothing, T_{2} \backslash T_{1} \neq \varnothing, T_{1} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{1} \neq \varnothing, \quad T_{3} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing$, $T_{1} \cup T_{2}=T_{3}, T_{4} \cup T_{1}=T_{4} \cup T_{3}=T_{5}$. we will investige the properties of regular elements of the complete semigroup of binary relations $B_{X}(D)$ satisfying $V(D, \alpha)=Q$. And For the case where X is a finite set we derive formulas by means of which we can calculate the numbers of regular elements of the respective semigroup.

\section*{Introduction}

1. Let X be an arbitrary nonempty set, D be a X - semilattice of unions, i.e. a nonempty set of subsets of the set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbitrary mapping from X into D. To each such a mapping f there corresponds a binary relation α_{f} on the set X that satisfies the condition $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x))$. The set of all such $\alpha_{f} \quad(f: X \rightarrow D)$ is denoted by $B_{X}(D)$. It is easy to prove that $B_{X}(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by a X - semilattice of unions D (see [2,3 2.1 p .34$]$).

By \varnothing we denote an empty binary relation or empty subset of the set X. The condition $(x, y) \in \alpha$ will be written in the form $x \alpha y$. Further let $x, y \in X, Y \subseteq X, \alpha \in B_{X}(D), T \in D, \varnothing \neq D^{\prime} \subseteq D$ and $t \in \breve{D}=\bigcup_{Y \in D} Y$. Then by symbols we denote the following sets:

$$
\begin{aligned}
& y \alpha=\{x \in X \mid y \alpha x\}, Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\}, \\
& X^{*}=\{T \mid \varnothing \neq T \subseteq X\}, D_{t}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid t \in Z^{\prime}\right\}, D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\} . \\
& \ddot{D}_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\}, I\left(D^{\prime}, T\right)=\cup\left(D^{\prime} \backslash D_{T}^{\prime}\right), Y_{T}^{\alpha}=\{x \in X \mid x \alpha=T\} .
\end{aligned}
$$

Under the symbol $\wedge\left(D, D_{t}\right)$ we mean an exact lower bound of the set D_{t} in the semilattice D.
Definition 1.1. An element α taken from the semigroup $B_{X}(D)$ called a regular element of the semigroup $B_{X}(D)$ if in $B_{X}(D)$ there exists an element β such that $\alpha \circ \beta \circ \alpha=\alpha$ (see [1,2,3]).

Definition 1.2. We say that a complete X - semilattice of unions D is an $X I$ - semilattice of unions if it satisfies the following two conditions:
a) $\wedge\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$;
b) $Z=\bigcup_{t \in Z} \wedge\left(D, D_{t}\right)$ for any nonempty element Z of D (see [2,3 definition 1.14.2]).

Definition 1.3. Let D be an arbitrary complete X - semilattice of unions, $\alpha \in B_{X}(D)$ and $Y_{T}^{\alpha}=\{x \in X \mid x \alpha=T\}$. If

$$
V[\alpha]=\left\{\begin{array}{l}
V\left(X^{*}, \alpha\right), \text { if } \varnothing \notin D, \\
V\left(X^{*}, \alpha\right), \text { if } \varnothing \in V\left(X^{*}, \alpha\right), \\
V\left(X^{*}, \alpha\right) \cup\{\varnothing\}, \text { if } \varnothing \notin V\left(X^{*}, \alpha\right) \text { and } \varnothing \in D,
\end{array}\right.
$$

then it is obvious that any binary relation α of a semigroup $B_{X}(D)$ can always be written in the form $\alpha=\bigcup_{T \in V[\alpha]}\left(Y_{T}^{\alpha} \times T\right)$ the sequel, such a representation of a binary relation α will be called quasinormal.

Note that for a quasinormal representation of a binary relation α, not all sets $Y_{T}^{\alpha}(T \in V[\alpha])$ can be different from an empty set. But for this representtation the following conditions are always fulfilled:
a) $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha}=\varnothing$, for any $T, T^{\prime} \in D$ and $T \neq T^{\prime}$;
b) $X=\bigcup_{T \in V[\alpha]} Y_{T}^{\alpha}$
(see [2,3 definition 1.11.1]).
Definition 1.4. We say that a nonempty element T is a nonlimiting element of the set D^{\prime} if $T \backslash l\left(D^{\prime}, T\right) \neq \varnothing$ and a nonempty element T is a limiting element of the set D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\varnothing$ (see [2,3 definition 1.13.1 and definition 1.13.2]).

Definition 1.5. The one-to-one mapping φ between the complete X - semilattices of unions $\phi(Q, Q)$ and $D^{\prime \prime}$ is called a complete isomorphism if the condition

$$
\varphi\left(\cup D_{1}\right)=\bigcup_{T^{\prime} \in D_{1}} \varphi\left(T^{\prime}\right)
$$

is fulfilled for each nonempty subset D_{1} of the semilattice D^{\prime} (see [2,3 definition 6.3.2]).
Definition 1.6. Let α be some binary relation of the semigroup $B_{X}(D)$. We say that the complete isomorphism φ between the complete semilattices of unions Q and D^{\prime} is a complete α-isomorphism if
(a) $Q=V(D, \alpha)$;
(b) $\varphi(\varnothing)=\varnothing$ for $\varnothing \in V(D, \alpha)$ and $\varphi(T) \alpha=T$ for eny $T \in V(D, \alpha)$ (see [2,3 definition 6.3.3]).

Lemma 1.1. Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ and $D_{j}=\left\{T_{1}, \ldots, T_{j}\right\}$ be some sets, where $k \geq 1$ and $j \geq 1$. Then the number $s(k, j)$ of all possible mappings of the set Y on any such subset of the set D_{j}^{\prime} that $T_{j} \in D_{j}^{\prime}$ can be calculated by the formula $s(k, j)=j^{k}-(j-1)^{k}$ (see [2,3 Corollary 1.18.1]).
lemma1.2. Let $D_{j}=\left\{T_{1}, T_{2}, \ldots T_{j}\right\}, X$ and Y - be three such sets, that $\varnothing \neq Y \subseteq X$. If f is such mapping of the set X, in the set D_{j}, for which $f(y)=T_{j}$ for some $y \in Y$, then the number s of all those mappings f of the set X in the set D_{j} is equal to $s=j^{|X \backslash Y|} \cdot\left(j^{|Y|}-(j-1)^{|Y|}\right)$ (see [2,3 Theorem 1.18.2]).

Theorem 1.1. Let $D=\left\{\breve{D}, Z_{1}, Z_{2}, \ldots, Z_{n-1}\right\}$ be some finite X - semilattice of unions and $C(D)=\left\{P_{0}, P_{1}, P_{2}, \ldots, P_{n-1}\right\}$ be the family of sets of pairwise nonintersecting subsets of the set X. If φ is a mapping of the semilattice D on the family of sets $C(D)$ which satisfies the condition $\varphi(\breve{D})=P_{0}$ and $\varphi\left(Z_{i}\right)=P_{i}$ for any $i=1,2, \ldots, n-1$ and $\hat{D}_{z}=D \backslash\{T \in D \mid Z \subseteq T\}$, then the following equalities are valid:

$$
\begin{equation*}
\breve{D}=P_{0} \cup P_{1} \cup P_{2} \cup \ldots \cup P_{n-1}, Z_{i}=P_{0} \cup \bigcup_{T \in \hat{D}_{Z_{i}}} \varphi(T) . \tag{*}
\end{equation*}
$$

In the sequel these equalities will be called formal.
It is proved that if the elements of the semilattice D are represented in the form (*), then among the parameters P_{i} $(i=0,1,2, \ldots, n-1)$ there exist such parameters that cannot be empty sets for D. Such sets $P_{i}(0<i \leq n-1)$ are called basis sources, whereas sets $P_{j}(0 \leq j \leq n-1)$ which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one. (see [5])

Theorem 1.2. Let $\beta \in B_{X}(D)$. A binary relation β is a regular element of the semigroup $B_{X}(D)$ iff the complete X - semilattice of unions $D^{\prime}=V(D, \beta)$ satisfies the following two conditions:
a) $V\left(X^{*}, \beta\right) \subseteq D^{\prime}$;
b) D^{\prime} is a complete $X I-$ semilattice of unions (see [2,3 Theorem 6.3.1]).

Theorem 1.3. . Let D be a finite X-semilattice of unions and $\alpha \in B_{X}(D) ; D(\alpha)$ be the set of those elements T of the semilattice $Q=V(D, \alpha) \backslash\{\varnothing\}$ which are nonlimiting elements of the set \ddot{Q}_{T}. Then a binary relation α having a quasinormal representation of the form $\alpha=\bigcup_{T \in V(D, \alpha)}\left(Y_{T}^{\alpha} \times T\right)$ is a regular element of the semigroup $B_{X}(D)$ iff $V(D, \alpha)$ is a $X I$-semilattice of unions and for some α-isomorphism φ from $V(D, \alpha)$ to some X subsemilattice D^{\prime} of the semilattice D the following conditions are fulfilled:
a) $\bigcup_{T^{\prime} \in \dot{D}(\alpha)_{T}} Y_{T^{\prime}}^{\alpha} \supseteq \varphi(T)$ for any $T \in D(\alpha)$;
b) $\quad Y_{T}^{\alpha} \cap \varphi(T) \neq \varnothing$ for any element T of the set $\ddot{D}(\alpha)_{T}$ (see [2,3 Theorem 6.3.3]).

Theorem 1.4. let X be a finite set. if φ is a fixed element of the set $\Phi\left(Q, D^{\prime}\right)$ and $\Omega(Q)=m_{0}$ then

$$
\left|R\left(D^{\prime}\right)\right|=m_{0} \cdot q \cdot\left|R_{\varphi}\left(Q, D^{\prime}\right)\right|
$$

2.RESULTS

Let X be a finite set, D be a complete X-semilattice of unions, $m \geq 6$ and $Q=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, \ldots, T_{m-1}, T_{m}\right\}(m \geq 6)$ be a subsemilattice of unions of D satisfies the following conditions

Fig.2.1

$$
\begin{aligned}
& T_{0} \subset T_{1} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-1} \subset T_{m}, \\
& T_{0} \subset T_{2} \subset T_{3} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-1} \subset T_{m}, \\
& T_{0} \subset T_{2} \subset T_{4} \subset T_{5} \subset T_{6} \subset \ldots \subset T_{m-1} \subset T_{m}, \\
& T_{1} \backslash T_{2} \neq \varnothing, T_{2} \backslash T_{1} \neq \varnothing, T_{1} \backslash T_{4} \neq \varnothing, \\
& T_{4} \backslash T_{1} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing \\
& T_{1} \cup T_{2}=T_{3}, T_{4} \cup T_{1}=T_{4} \cup T_{3}=T_{5} .
\end{aligned}
$$

Note that the diagram of the given X - semilattice of Unions Q is shown fig.2.1
Let $P_{0}, P_{1}, \ldots, P_{m-1}$ and C be the pairwise nonintersecting Subset of the set X and

$$
\varphi=\left(\begin{array}{llllllllllllllllllllllllllllllllll}
T_{0} & T_{1} & T_{2} & T_{3} & T_{4} & T_{5} & T_{6} & \ldots & T_{m-1} & T_{m} \\
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} & \ldots & P_{m-1} & C
\end{array}\right)
$$

is a mapping of the semilattice Q onto the family of sets $\left\{P_{0}, P_{1}, \ldots, P_{m-1}, C\right\}$ Then the formal equalities corresponding to the semilattice Q we have a form (see Theorem 1.1)

$$
\begin{align*}
& T_{m}=C \cup P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup \ldots \cup P_{m-1}, \\
& T_{m-1}=C \cup P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup \ldots \cup P_{m-2}, \\
& -\cdots--\cdots P_{1}, \\
& T_{6}=C \cup P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5}, \tag{2.2}\\
& T_{5}=C \cup P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4}, \\
& T_{4}=C \cup P_{0} \cup P_{1} \cup P_{2} \cup P_{3}, \\
& T_{3}=C \cup P_{0} \cup P_{1} \cup P_{2} \cup P_{4}, \\
& T_{2}=C \cup P_{0} \cup P_{1}, \\
& T_{1}=C \cup P_{0} \cup P_{2} \cup P_{4}, \\
& T_{0}=C,
\end{align*}
$$

where $|C| \geq 0,\left|P_{0}\right| \geq 0,\left|P_{2}\right| \geq 0$ and $P_{1}, P_{3}, P_{4}, P_{5}, P_{6}, \ldots P_{m-1}, P_{m} \notin\{\varnothing\}$.
lemma 2.1. Let $Q=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, \ldots, T_{m-1}, T_{m}\right\}(m \geq 6)$ be a subsemilattice of the semilattice D and Q subsemilattice satisfies (2.1) conditions, Then Q is always an $X I$ - semilattice of unions.

Proof:

then We have obtained that $\wedge\left(Q, Q_{t}\right) \in D$ for any $t \in T_{m}$. Furthermore, if $Q^{\wedge}=\left\{\wedge\left(Q, Q_{t}\right) t \in T_{m}\right\}$, then $Q^{\wedge}=\left\{T_{0}, T_{1}, T_{2}, T_{4}, T_{6}, T_{7}, \ldots, T_{m}\right\}$ and it is easy to verify that any nonempty element of the semilattice Q is the union of some elements of the set Q^{\wedge}. Now, taking into account Definition 1.2, we obtain that Q is an $X I$ - semilattice of unions.
lemma. 2.2 if $Q=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, \ldots, T_{m-1}, T_{m}\right\}(m \geq 6)$ is $X I-$ semilattice of unions than $\left(T_{4} \cap T_{1}, T_{4} \backslash T_{3}, T_{1} \backslash T_{4}, T_{2} \backslash T_{1}, T_{6} \backslash T_{5}, \ldots, T_{m} \backslash T_{m-1}, X \backslash T_{m}\right)$ is a partition of the set X.
Proof. the lemma immediately follows from the formal equalities (2.2)
Theorem 2.1. Let $Q=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, \ldots, T_{m-1}, T_{m}\right\}(m \geq 6)$ be a subsemilattice of the semilattice D which satisfies (2.1) conditions (see Fig. 2.1). (see Fig. 1). A binary relation α of the semigroup $B_{X}(D)$ that has a quasinormal representation of the form $\alpha=\bigcup_{i=0}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$, where $Q=V(D, \alpha)$, is a regular element of the semigroup $B_{X}(D)$ iff for some α - isomorohism φ of the semilattice Q on some X - subsemilattice $D^{\prime}=\left\{\varphi\left(T_{1}\right), \varphi\left(T_{2}\right), \ldots, \varphi\left(T_{m}\right)\right\}$ of the semilattice D satisfies the conditions

$$
\begin{align*}
& Y_{0}^{\alpha} \supseteq \varphi\left(T_{0}\right), Y_{0}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \ldots \cup Y_{p}^{\alpha} \supseteq \varphi\left(T_{p}\right), Y_{q}^{\alpha} \cap \varphi\left(T_{q}\right) \neq \varnothing \tag{2.3}
\end{align*}
$$

for any $p=6,7, \ldots, m-1$ and $q=1,2,4,6,7, \ldots, m$.

Proof. To begin with, we recall that Q is an $X I$ - semilattice of unions (see lemma 2.1). Now we are to find the nonlimiting element of the sets \ddot{Q}_{q}^{*} of the semilattice $Q^{*}=Q \backslash\{\varnothing\}$. Indeed, let $T_{q} \in Q^{*}$, where $q=0,1,2, \ldots, m$. Then for $q=0,1,2, \ldots, m$ we obtain respectively

$$
\begin{aligned}
& l\left(\ddot{Q}_{T_{m}}^{*}, T_{m}\right)=\cup\left(\left\{T_{0}, T_{1}, \ldots, T_{m}\right\} \backslash\left\{T_{m}\right\}\right)=\cup\left\{T_{0}, T_{1}, \ldots, T_{m-1}\right\}=T_{m-1}, \\
& l\left(\ddot{Q}_{T_{m-1}}^{*}, T_{m-1}\right)=\cup\left(\left\{T_{0}, T_{1}, \ldots, T_{m-1}\right\} \backslash\left\{T_{m-1}\right\}\right)=\cup\left\{T_{0}, T_{1}, \ldots, T_{m-2}\right\}=T_{m-2}, \\
& l\left(\ddot{Q}_{T_{6}}^{*}, T_{6}\right)=\cup\left(\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\} \backslash\left\{T_{6}\right\}\right)=\cup\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right\}=T_{5}, \\
& l\left(\ddot{Q}_{T_{5}}^{*}, T_{5}\right)=\cup\left(\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right\} \backslash\left\{T_{5}\right\}\right)=\cup\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}\right\}=T_{5} \text {, } \\
& l\left(\ddot{Q}_{T_{4}}^{*}, T_{4}\right)=\cup\left(\left\{T_{0}, T_{2}, T_{4}\right\} \backslash\left\{T_{4}\right\}\right)=\cup\left\{T_{0}, T_{2}\right\}=T_{2} \text {, } \\
& l\left(\ddot{Q}_{T_{3}}^{*}, T_{3}\right)=\cup\left(\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\} \backslash\left\{T_{3}\right\}\right)=\cup\left\{T_{0}, T_{1}, T_{2}\right\}=T_{3} \text {, } \\
& l\left(\ddot{Q}_{T_{2}}^{*}, T_{2}\right)=\cup\left(\left\{T_{0}, T_{2}\right\} \backslash\left\{T_{2}\right\}\right)=\cup\left\{T_{0}\right\}=T_{0} \text {, } \\
& l\left(\ddot{Q}_{T_{1}}^{*}, T_{1}\right)=\cup\left(\left\{T_{0}, T_{1}\right\} \backslash\left\{T_{1}\right\}\right)=\cup\left\{T_{0}\right\}=T_{0}, \\
& l\left(\ddot{Q}_{T_{0}}^{*}, T_{0}\right)=\cup\left(\left\{T_{0}\right\} \backslash\left\{T_{0}\right\}\right)=\cup\{\varnothing\}=\varnothing,
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& T_{m} \backslash l\left(\ddot{Q}_{T_{m}}^{*}, T_{m}\right)=T_{m} \backslash T_{m-1} \neq \varnothing, T_{m-1} \backslash l\left(\ddot{Q}_{T_{m-1}}^{*}, T_{m-1}\right)=T_{m-1} \backslash T_{m-2} \neq \varnothing, \\
& T_{6} \backslash l\left(\ddot{Q}_{T_{6}}^{*}, T_{6}\right)=T_{6} \backslash T_{5} \neq \varnothing, T_{5} \backslash l\left(\ddot{Q}_{T_{5}}^{*}, T_{5}\right)=T_{5} \backslash T_{5}=\varnothing \text {, } \\
& T_{4} \backslash l\left(\ddot{Q}_{T_{4}}^{*}, T_{4}\right)=T_{4} \backslash T_{2} \neq \varnothing, T_{3} \backslash l\left(\ddot{Q}_{T_{3}}^{*}, T_{3}\right)=T_{3} \backslash T_{3}=\varnothing \text {, } \\
& T_{2} \backslash l\left(\ddot{Q}_{T_{2}}^{*}, T_{2}\right)=T_{2} \backslash T_{0} \neq \varnothing, T_{1} \backslash l\left(\ddot{Q}_{T_{1}}^{*}, T_{1}\right)=T_{1} \backslash T_{0} \neq \varnothing \text {, } \\
& T_{0} \backslash l\left(\ddot{Q}_{T_{0}}^{*}, T_{0}\right)=T_{0} \backslash \varnothing \neq \varnothing \text {, if } T_{0} \neq \varnothing \text {, }
\end{aligned}
$$

i.e. $T_{q} \backslash l\left(\ddot{Q}_{T_{q}}, T_{q}\right) \neq \varnothing$, where $q=1,2,4,6,7, \ldots, m$. Thus we have obtained that T_{3}, T_{5} are the limiting elements of the sets $\ddot{Q}_{T_{3}}^{*}$, $\ddot{Q}_{T_{5}}^{*}$ and the T_{q} are the nonlimiting elements of the set $\ddot{Q}_{T_{q}}^{*}$, where $q=1,2,4,6,7, \ldots, m$. (see definition 1.4) Now, in view of Theorem 1.3 a binary relation α of the semigroup $B_{X}(D)$ is a regular element of this semigroup iff there exists an α - isomorphism φ of the semilattice Q on some X - subsemilattice $D^{\prime}=\left\{\varphi\left(T_{0}\right), \ldots, \varphi\left(T_{m}\right)\right\}$ of the semilattice Q such that

$$
\begin{aligned}
& Y_{0}^{\alpha} \supseteq \varphi\left(T_{0}\right), Y_{0}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \ldots \cup Y_{p}^{\alpha} \supseteq \varphi\left(T_{p}\right), Y_{q}^{\alpha} \cap \varphi\left(T_{q}\right) \neq \varnothing
\end{aligned}
$$

for any $p=6,7, \ldots, m$ and $q=1,2,4,6,7, \ldots, m$.
It is clearly understood that the inclusion $Y_{1}^{\alpha} \cup \ldots \cup Y_{m}^{\alpha}=X \supseteq \varphi\left(T_{m}\right)$ is always valid. Therefore

$$
\begin{aligned}
& Y_{0}^{\alpha} \supseteq \varphi\left(T_{0}\right), Y_{0}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \ldots \cup Y_{p}^{\alpha} \supseteq \varphi\left(T_{p}\right), Y_{q}^{\alpha} \cap \varphi\left(T_{q}\right) \neq \varnothing
\end{aligned}
$$

for any $p=6,7, \ldots, m-1$ and $q=1,2,4,6,7, \ldots, m$.
Theorem is proved.
Theorem 2.2. Let $Q=\left\{T_{0}, T_{1}, T_{2}, T_{3}, \ldots, T_{m}\right\}(m \geq 6)$ be a subsemilattice of the semilattice D which
satisfies (2.1) conditions (see Fig. 2.1)

If the $X I$ - semilattices Q and $D^{\prime}=\left\{\bar{T}_{0}, \bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ are α - isomorphic and $|\Omega(Q)|=m_{0}$, then the following equality is valid:

$$
\begin{aligned}
\left|R\left(D^{\prime}\right)\right|= & m_{0} \cdot\left(3^{\left|\bar{T}_{4} \backslash \backslash \bar{T}_{3}\right|}-2^{\mid \bar{T}_{4} \backslash \bar{T}_{3}}\right) \cdot\left(2^{\left|\bar{T}_{1} \backslash \bar{T}_{4}\right|}-1\right) \cdot\left(2^{\left|2^{\mid \bar{T}_{2}} \backslash \bar{T}_{1}\right|}-1\right) \cdot\left(7^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}-6^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}\right) . \\
& \cdot\left(8^{8^{\bar{T}_{7} \backslash \bar{T}_{6}} \mid}-7^{\bar{T}_{7}, \overline{\bar{T}}_{6} \mid}\right) \cdots\left(m^{\left|\bar{T}_{m-1}\right| \bar{T}_{m-2} \mid}-(m-1)^{\bar{T}_{m-1}\left|\bar{T}_{m-2}\right|}\right) \cdot(m+1)^{X \backslash \bar{T}_{m} \mid} .
\end{aligned}
$$

Proof. In the first place, we note that the semilattice Q has only one automorphisms (i.e. $|\Phi(Q, Q)|=1$). Let $\alpha \in \bar{R}\left(Q, D^{\prime}\right)$ and a quasinormal representation of a regular
binary relation α have the form

$$
\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)
$$

Then according to Theorem 2.1 the condition $\alpha \in \bar{R}\left(Q, D^{\prime}\right)$ is fulfilled if

$$
\begin{align*}
& Y_{0}^{\alpha} \supseteq \bar{T}_{0}, Y_{0}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \bar{T}_{1}, Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \bar{T}_{2}, \\
& Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \bar{T}_{4}, Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \ldots \cup Y_{p}^{\alpha} \supseteq \bar{T}_{p}, \tag{2.4}\\
& Y_{q}^{\alpha} \cap \bar{T}_{q} \neq \varnothing
\end{align*}
$$

for any $p=6,7, \ldots, m-1$ and $q=1,2,4,6,7, \ldots, m$.
Now, assume that f_{α} is a mapping of the set X in D such that $f_{\alpha}(t)=t \alpha$ for any $t \in X . f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}$, $f_{p \alpha} \quad(p=6,7, \ldots, m), \quad f_{m+1 \alpha}$ are respectively the restrictions of the mapping f_{α} on the sets $\bar{T}_{4} \cap \bar{T}_{1}, \bar{T}_{4} \backslash \bar{T}_{3}, \bar{T}_{1} \backslash \bar{T}_{4}, \bar{T}_{2} \backslash \bar{T}_{1}, \bar{T}_{6} \backslash \bar{T}_{5}, \ldots, \bar{T}_{m} \backslash \bar{T}_{m-1}$ and $X \backslash \bar{T}_{m}$. We have, by assumption, that these sets do not intersect pairwise and the set-theoretic union of these sets is equal to X.

Let us establish the properties of the mappings $t \in X . f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{p \alpha}(p=6,7, \ldots, m), f_{m+1 \alpha}$.

1) $t \in \bar{T}_{4} \cap \bar{T}_{1}$. Hence by virtue of the inclusions (2.4) we have

$$
t \in\left(Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{4}^{\alpha}\right) \cap\left(Y_{0}^{\alpha} \cup Y_{1}^{\alpha}\right)=Y_{0}^{\alpha}
$$

i.e., $t \alpha=T_{0}$ by the definition of the set Y_{0}^{α}. Thus $f_{1 \alpha}(t)=T_{0}$ for any $t \in \bar{T}_{4} \cap \bar{T}_{1}$.
2) $t \in \bar{T}_{4} \backslash \bar{T}_{3}$, . In that case, by virtue of inclusion (2.4) we have $t \in \bar{T}_{4} \backslash \bar{T}_{3} \subseteq \bar{T}_{4} \subseteq Y_{0}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{4}^{\alpha}$. Therefore $t \alpha \in\left\{T_{0}, T_{2}, T_{4}\right\}$ by the definition of the sets $Y_{0}^{\alpha}, Y_{2}^{\alpha}, Y_{4}^{\alpha}$. Thus $f_{2 \alpha}(t) \in\left\{T_{0}, T_{2}, T_{4}\right\}$ for any $t \in \bar{T}_{4} \backslash \bar{T}_{3}$, .

On the other hand, the inequality $Y_{4}^{\alpha} \cap \bar{T}_{4} \neq \varnothing$ is true. Therefore $t_{4} \in Y_{4}^{\alpha}$ for some element $t_{4} \in \bar{T}_{4}$. Hence it follows that $t_{4} \alpha=T_{4}$. Furthermore, if $t_{4} \in \bar{T}_{3}$, then $t_{4} \alpha \in\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\}$. However the latter condition contradicts the equality $t_{4} \alpha=T_{4}$. The contradiction obtained shows that $t_{4} \in \bar{T}_{4} \backslash \bar{T}_{3}$, Thus $f_{2 \alpha}\left(t_{4}\right)=T_{4}$ for some $t_{4} \in \bar{T}_{4} \backslash \bar{T}_{3}$.
3) $t \in \bar{T}_{1} \backslash \bar{T}_{4}$. In that case, by virtue of inclusion (2.4) we have $t \in \bar{T}_{1} \backslash \bar{T}_{4} \subseteq \bar{T}_{1} \subseteq Y_{0}^{\alpha} \cup Y_{1}^{\alpha}$. Therefore $t \alpha \in\left\{T_{0}, T_{1}\right\}$ by the definition of the sets $Y_{0}^{\alpha}, Y_{1}^{\alpha}$. Thus $f_{3 \alpha}(t) \in\left\{T_{0}, T_{1}\right\}$ for any $t \in \bar{T}_{1} \backslash \bar{T}_{4}$.

On the other hand, the inequality $Y_{1}^{\alpha} \cap \bar{T}_{1} \neq \varnothing$ is true. Therefore $t_{1} \in Y_{1}^{\alpha}$ for some element $t_{1} \in \bar{T}_{1}$. Hence it follows that $t_{1} \alpha=T_{1}$. Furthermore, if $t_{1} \in \bar{T}_{4}$, then $t_{1} \alpha \in\left\{T_{0}, T_{2}, T_{4}\right\}$. However the latter condition contradicts the equality $t_{1} \alpha=T_{1}$. The contradiction obtained shows that $t_{1} \in \bar{T}_{1} \backslash \bar{T}_{4}$. Thus $f_{3 \alpha}\left(t_{1}\right)=T_{1}$ for some $t_{1} \in \bar{T}_{1} \backslash \bar{T}_{4}$.
4) $t \in \bar{T}_{2} \backslash \bar{T}_{1}$. In that case, by virtue of inclusion (2.4) we have $t \in \bar{T}_{2} \backslash \bar{T}_{1} \subseteq \bar{T}_{2} \subseteq Y_{0}^{\alpha} \cup Y_{2}^{\alpha}$. Therefore $t \alpha \in\left\{T_{0}, T_{2}\right\}$ by the definition of the sets $Y_{0}^{\alpha}, Y_{2}^{\alpha}$. Thus $f_{4 \alpha}(t) \in\left\{T_{0}, T_{2}\right\}$ for any $t \in \bar{T}_{2} \backslash \bar{T}_{1}$.

On the other hand, the inequality $Y_{2}^{\alpha} \cap \bar{T}_{2} \neq \varnothing$ is true. Therefore $t_{2} \in Y_{2}^{\alpha}$ for some element $t_{2} \in \bar{T}_{2}$. Hence it follows that $t_{2} \alpha=T_{2}$. Furthermore, if $t_{2} \in \bar{T}_{1}$, then $t_{2} \alpha \in\left\{T_{0}, T_{1}\right\}$. However the latter condition contradicts the equality $t_{2} \alpha=T_{2}$. The contradiction obtained shows that $t_{2} \in \bar{T}_{2} \backslash \bar{T}_{1}$. Thus $f_{4 \alpha}\left(t_{2}\right)=T_{2}$ for some $t_{2} \in \bar{T}_{2} \backslash \bar{T}_{1}$.
5) $t \in \bar{T}_{s} \backslash \bar{T}_{s-1}(s=6,7, \ldots, m)$. In that case, by virtue of inclusion (2.4) we have

$$
t \in \bar{T}_{s} \backslash \bar{T}_{s-1} \subseteq \bar{T}_{s} \subseteq Y_{0}^{\alpha} \cup Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \ldots \cup Y_{s}^{\alpha}
$$

Therefore $t \alpha \in\left\{T_{0}, T_{1}, \ldots, T_{s}\right\}$ by the definition of the sets $Y_{0}^{\alpha}, Y_{1}^{\alpha}, \ldots, Y_{s}^{\alpha}$. Thus $f_{s \alpha}(t) \in\left\{T_{0}, T_{1}, \ldots, T_{s}\right\}$ for any $t \in \bar{T}_{s} \backslash \bar{T}_{s-1}$.

On the other hand, the inequality $Y_{s}^{\alpha} \cap \bar{T}_{s} \neq \varnothing$ is true. Therefore $t_{s} \in Y_{s}^{\alpha}$ for some element $t_{s} \in \bar{T}_{s}$. Hence it follows that $t_{s} \alpha=T_{s}$. Furthermore, if $t_{s} \in \bar{T}_{s-1}$, then $t_{s} \alpha \in\left\{T_{0}, T_{1}, \ldots, T_{s-1}\right\}$. However the latter condition contradicts the equality $t_{s} \alpha=T_{s}$. The contradiction obtained shows that $t_{s} \in \bar{T}_{s} \backslash \bar{T}_{s-1}$. Thus $f_{s \alpha}\left(t_{s}\right)=T_{s}$ for some $t_{s} \in \bar{T}_{s} \backslash \bar{T}_{s-1}$.
6) $t \in X \backslash \bar{T}_{m}$. Then by virtue of the condition $X=\bigcup_{i=0}^{m} Y_{i}^{\alpha}$ we have $t \in \bigcup_{i=0}^{m} Y_{i}^{\alpha}$. Hence we obtain $t \alpha \in\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{m}\right\}$.

Thus $f_{m+1 \alpha}(t) \in\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{m}\right\}$ for any $t \in X \backslash \bar{T}_{m}$.
Therefore for a binary relation $\alpha \in \bar{R}\left(Q, D^{\prime}\right)$ there exists an ordered system $\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{m+1 \alpha}\right)$
Now let

$$
\begin{aligned}
& f_{1}: \bar{T}_{4} \cap \bar{T}_{1} \rightarrow\left\{T_{0}\right\}, f_{2}: \bar{T}_{4} \backslash \bar{T}_{3} \rightarrow\left\{T_{0}, T_{2}, T_{4}\right\}, f_{3}: \bar{T}_{1} \backslash \bar{T}_{4} \rightarrow\left\{T_{0}, T_{1}\right\}, f_{4}: \bar{T}_{2} \backslash \bar{T}_{1} \rightarrow\left\{T_{0}, T_{2}\right\} \\
& f_{s}: \bar{T}_{s} \backslash \bar{T}_{s-1} \rightarrow\left\{T_{0}, T_{1}, \ldots, T_{s}\right\}, s=6,7, \ldots, m, \quad f_{m+1}: X \backslash \bar{T}_{m} \rightarrow\left\{T_{0}, T_{1}, \ldots, T_{m}\right\}
\end{aligned}
$$

be the mappings satisfying the following conditions:
7) $f_{1}(t)=T_{0}$ for any $t \in \bar{T}_{4} \cap \bar{T}_{1}$;
8) $f_{2}(t) \in\left\{T_{0}, T_{2}, T_{4}\right\}$ for any $t \in \bar{T}_{4} \backslash \bar{T}_{3}$ and $f_{2}\left(t_{4}\right)=T_{4}$ for some $t_{4} \in \bar{T}_{4} \backslash \bar{T}_{3}$;
9) $f_{3}(t) \in\left\{T_{0}, T_{1}\right\}$ for any $t \in \bar{T}_{1} \backslash \bar{T}_{4}$ and $f_{3}\left(t_{1}\right)=T_{1}$ for some $t_{1} \in \bar{T}_{1} \backslash \bar{T}_{4}$;
10) $f_{4}(t) \in\left\{T_{0}, T_{2}\right\}$ for any $t \in \bar{T}_{2} \backslash \bar{T}_{1}$ and $f_{4}\left(t_{2}\right)=T_{2}$ for some $t_{2} \in \bar{T}_{2} \backslash \bar{T}_{1}$;
11) $f_{s}(t) \in\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{s}\right\}$ for any $t \in \bar{T}_{s} \backslash \bar{T}_{s-1}$, and $f_{s}\left(t_{s}\right)=T_{s}$ for some $t_{s} \in \bar{T}_{s} \backslash \bar{T}_{s-1}$, where $s=6,7, \ldots, m$;
12) $f_{m+1}(t) \in\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{m}\right\}$ for any $t \in X \backslash \bar{T}_{m}$.

Now we write the mapping $f: X \rightarrow D$ as follows:

$$
f(t)=\left\{\begin{array}{l}
f_{1}(t), \text { if } t \in \bar{T}_{4} \cap \bar{T}_{1}, \\
f_{2}(t), \text { if } t \in \bar{T}_{4} \backslash \bar{T}_{3} \\
f_{3}(t), \text { if } t \in \bar{T}_{1} \backslash \bar{T}_{4}, \\
f_{4}(t), \text { if } t \in \bar{T}_{2} \backslash \bar{T}_{1}, \\
f_{s}(t), \text { if } t \in \bar{T}_{s} \backslash \bar{T}_{s-1}, p=6,7, \ldots, m, \\
f_{m+1}(t), \text { if } t \in X \backslash \bar{T}_{m}
\end{array}\right.
$$

To the mapping f we put into correspondence the relation $\beta=\bigcup_{t \in X}(\{t\} \times f(t))$.
Now let $Y_{i}^{\beta}=\left\{t \in X \mid t \beta=T_{i}\right\}$, where $i=0,1,2, \ldots, m$. With this notation, the binary relation β is represented as $\beta=\bigcup_{i=0}^{m}\left(Y_{i}^{\beta} \times T_{i}\right)$. Moreover, from the defnition of the binary relation β we immediately obtain

$$
\begin{aligned}
& Y_{0}^{\beta} \supseteq \bar{T}_{0}, Y_{0}^{\beta} \cup Y_{1}^{\beta} \supseteq \bar{T}_{1}, Y_{0}^{\beta} \cup Y_{2}^{\beta} \supseteq \bar{T}_{2}, \\
& Y_{0}^{\beta} \cup Y_{2}^{\beta} \cup Y_{4}^{\beta} \supseteq \bar{T}_{4}, Y_{1}^{\beta} \cup Y_{2}^{\beta} \cup \ldots \cup Y_{p}^{\beta} \supseteq \bar{T}_{p}, \\
& Y_{q}^{\beta} \cap \bar{T}_{q} \neq \varnothing
\end{aligned}
$$

for any $p=6,7, \ldots, m-1$ and $q=1,2,4,6,7, \ldots, m$ since $f_{2}\left(t_{4}\right)=T_{4}$ for some $t_{4} \in \bar{T}_{4} \backslash \bar{T}_{3}, f_{3}\left(t_{1}\right)=T_{1}$ for some $t_{1} \in \bar{T}_{1} \backslash \bar{T}_{4}$, $f_{4}\left(t_{2}\right)=T_{2}$ for some $t_{2} \in \bar{T}_{2} \backslash \bar{T}_{1}, f_{s}\left(t_{s}\right)=T_{s}$ for some $t_{s} \in \bar{T}_{s} \backslash \bar{T}_{s-1}$, where $s=6,7, \ldots, m$.

Hence by virtue of Theorem 2.1 we conclude that the binary relation β is a regular element of the semigroup $B_{X}(D)$ that belongs to the set $\bar{R}\left(Q, D^{\prime}\right)$.
By the lemma 1.1 and lemma 1.3 The numbers of all mappings of the form $f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{p \alpha}(p=6,7, \ldots, m)$, $f_{m+1 \alpha}\left(\alpha \in \bar{R}\left(Q, D^{\prime}\right)\right)$ are equal respectively to

$$
1,3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}-2^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}, 2^{\left|\bar{T}_{1} \backslash \bar{T}_{4}\right|}-1,2^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-1 \ldots,(s+1)^{\left|\bar{T}_{s} \backslash \bar{T}_{s-1}\right|}-s^{\left|\bar{T}_{s} \backslash \bar{T}_{s-1}\right|},(m+1)^{\left|x \backslash \bar{T}_{m}\right|} .
$$

Therefore the equality

$$
\left|\bar{R}\left(Q, D^{\prime}\right)\right|=\left(3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}-2^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right) \cdot\left(2^{\left|\bar{T}_{1} \backslash \bar{T}_{4}\right|}-1\right) \cdot\left(2^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-1\right) \cdot\left((s+1)^{\left|\bar{T}_{s} \backslash \bar{T}_{s-1}\right|}-s^{\left|\bar{T}_{s} \backslash \bar{T}_{s-1}\right|}\right) \cdot(m+1)^{\left|X \backslash \bar{T}_{m}\right|}
$$

is valid, where $s=6,7, \ldots, m$.
Now, using the equalities $|\Omega(Q)|=m_{0},\left|\Phi\left(Q, D^{\prime}\right)\right|=1 \quad$ and theorem1.4, we Obtain

$$
\begin{aligned}
&\left|R\left(D^{\prime}\right)\right|=m_{0} \cdot\left(2^{\left|\bar{T}_{1} \backslash \bar{T}_{4}\right|}-1\right) \cdot\left(2^{\left|\bar{T}_{T_{2}} \backslash \bar{T}_{1}\right|}-1\right) \cdot\left(3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}-2^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right) \cdot\left(7^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}-6^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}\right) \\
& \cdot\left(8^{\left|\overline{\bar{T}}_{7} \backslash \bar{T}_{6}\right|}-7^{\overline{\bar{T}}_{7} \backslash \bar{T}_{6}} \mid\right) \cdots\left(m^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}-(m-1)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}\right) \cdot(m+1)^{X \backslash \bar{T}_{m} \mid}
\end{aligned}
$$

Theorem is proved.
Corollary 2.1. Let $Q=\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{6}\right\}$ be a subsemilattice of the semilattice D and

$$
\begin{aligned}
& T_{0} \subset T_{1} \subset T_{3} \subset T_{5} \subset T_{6}, T_{0} \subset T_{2} \subset T_{3} \subset T_{5} \subset T_{6}, \\
& T_{0} \subset T_{2} \subset T_{4} \subset T_{5} \subset T_{6}, T_{1} \backslash T_{2} \neq \varnothing, T_{2} \backslash T_{1} \neq \varnothing, \\
& T_{1} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{1} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing, \\
& T_{1} \cup T_{2}=T_{3}, T_{4} \cup T_{1}=T_{4} \cup T_{3}=T_{5} .
\end{aligned}
$$

(see Fig. 13.6.4). If the $X I$-semilattices Q and $D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{6}\right\}$ are α-isomorphic and $|\Omega(Q)|=m_{0}$, the equality
Fig. 4

$$
\left|R\left(D^{\prime}\right)\right|=m_{0} \cdot\left(2^{\left|\bar{T}_{1} \backslash \bar{T}_{4}\right|}-1\right) \cdot\left(2^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-1\right) \cdot\left(3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}-2^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right) \cdot\left(7^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}-6^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}\right) \cdot 7^{\left|X \backslash \bar{T}_{m}\right|}
$$

is valid.
Proof. The corollary immediately follows from Theorem 2.2

Reference

1. 2. Lyapin E.S., Semigroups, Fizmatgiz, Moscow, 1960 (in Russian).
1. Ya. Diasamidze, Sh. Makharadze. Complete Semigroups of binary relations. Monograph. Kriter, Turkey, 2013, 1-520 pp.
2. Ya. Diasamidze, Sh. Makharadze. Complete Semigroups of binary relations. Monograph. M., Sputnik+, 2010, 657 p. (Russian).
3. Ya. I. Diasamidze. Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, Vol. 117, No. 4, 2003, 4271-4319.
4. Diasamidze Ya., Makharadze Sh., Partenadze G., Givradze O.. On finite x - semilattices of unions. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 141, № 4, 2007, 1134-1181.
5. Diasamidze Ya., Makharadze Sh., Maximal subgroups of complete semigroups of binary relations. Proc. A. Razmadze Math. Inst. 131, 2003, 21-38.
6. Diasamidze Ya., Makharadze Sh., Diasamidze Il., Idempotents and regular elements of complete semigroups of binary relations. Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 153, № 4, 2008, 481-499.
7. Diasamidze Ya., Makharadze Sh., Rokva N., On XI - semilattices of union. Bull. Georg. Nation. Acad. Sci., 2, № 1. 2008, 16-24.
8. The properties of right units of semigroups belonging to some classes of complete semigroups of binary relations. Proc. of A. Razmadze Math. Inst. 150, 2009, 51-70.
9. Clifford A. H., Preston G. B., The algebraic theory of semigroups, Amer. Math. Soc.,Providence, R. I., vol. 1, 1961; vol. 2, 1967.
10. Zaretskii K. A., Regular elements of the semigroup of binary relations. Uspekhi Mat, Nauk,17, no. 3, 1962, 177_189 (in Russian).
