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Abstract 

We discuss how the strength of the magnetic field are 
closely related to the electronic properties in the normal 
metallic states and the superconducting states.   We 
formulate the electron–phonon coupling constants, which 
are very important physical parameters in the various 
research fields such as the normal metallic states and 
superconducting states, under the external applied 
magnetic field as well as under no external applied field.   
On the basis of these results, we compare the normal 
metallic states with the superconducting states.   
Furthermore, in this article, we elucidate the mechanism 
of the Faraday’s law in normal metallic states and the 
Meissner effects in superconductivity, on the basis of the 
theory suggested in our previous researches.   Because of 
the very large stabilization energy of about 35~70 eV for 
the Bose–Einstein condensation, the Faraday’s law, 
Ampère’s law, and the Meissner effects can be observed.    
Keywords: Normal Metal, Superconductor, Electron–
Phonon Interactions, Electromotive Forces, Meissner 
effect.  

 
1. Introduction 

In modern physics and chemistry, the effect of 
electron–phonon interactions [1–7] in molecules and 
crystals has been an important topic.   In the Bardeen–
Cooper–Schrieffer (BCS) theory of superconductivity, 
electron–phonon coupling [1–7] is the consensus 
mechanism for attractive electron–electron interactions.   
On the other hand, room-temperature superconductivity 
has not yet been discovered even though many 
researchers have tried to realize the occurrence of high-
temperature superconductivity for 100 years.    

Related to seeking for the room-temperature 
superconductivity, in this article, we compare the normal 
metallic states with the superconducting states.   In 
superconductivity, two electrons behave only as a Bose 
particle.   On the other hand, in the normal metallic states, 
an electron behaves as bosonic as well as fermionic under 
the applied external magnetic or electric field.     

The effect of vibronic interactions and electron–
phonon interactions [1–7] in molecules and crystals is an 
important topic of discussion in modern physics.   The 
vibronic and electron–phonon interactions play an 
essential role in various research fields such as the 

decision of molecular structures, Jahn–Teller effects, 
Peierls distortions, spectroscopy, electrical conductivity, 
and superconductivity.   We have investigated the 
electron–phonon interactions in various charged 
molecular crystals for more than ten years [1–8].   In 
particular, in 2002, we predicted the occurrence of 
superconductivity as a consequence of vibronic 
interactions in the negatively charged picene, 
phenanthrene, and coronene [8].   Recently, it was 
reported that these trianionic molecular crystals exhibit 
superconductivity [9].    

Furthermore, in this article, we elucidate the 
mechanism of the Faraday’s law (experimental rule 
discovered in 1831) in normal metallic states [10] and the 
Meissner effects (discovered in 1933) in 
superconductivity, on the basis of the theory suggested in 
our previous researches [1–7].    
 
2. Vibronic Stabilization Energies without Any 
External Applied Field in Molecules 

In this section, we discuss the electron–phonon 
interactions without external applied magnetic field in 
molecules.    
 
2.1 One-Electron Model 

Let us consider an inert Fermi-sea, in which the 
electrons are treated as non-interacting [1–7].   To this 
Fermi-sea, one electron is added above the Fermi-surface.   
This one added electron does not interact with the inert 
Fermi-sea, as shown in Fig. 1.   One electron occupies a 
plane-wave state kone,av. , in the absence of interactions, 
as shown in Fig. 2 (a),  
 
kone,av. = Pk ground

T( ) kground  

              + Pkexcited
T( ) kexcited ,                                  1( )  

 
where the Pkground

T( ) and Pkexcited
T( )  values denote the 

probability of the occurrence of the electronic states 
kground  and kexcited , respectively, which can be 

defined as  
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kground =
1
2

+k ↓ +
1
2

–k ↑ ,                               2( )  

kexcited =
1
2

+k ↑ +
1
2

–k ↓ .                               3( )  

+k –k
rapidly converting

+k –k

(a) ground state

(b) one-electron theory

(c) two-electrons BCS theory

Nvacant (= NBCS) orbitals

Noccupied orbitals

 
Fig. 1. Electronic states in the (a) ground state, (b) 
monoanionoic state, and (c) dianionic state.   
 
Here, the one extra electron in the absence of such a 
peculiar interaction is denoted by kone,av. , and in the 

presence of the interaction by Kone,av. .   Denoting the 
Hamiltonian of the system by 
 
H = H0 + Veff ,                                                               4( ) 
 
then 
 
H0 ± k = ε k ±k ,                                                          5( )  
 
where ε k  denotes the single-particle energy of the non-
interacting fermion system.   Adding interactions, the 
exact Schrödinger equation for the one-particle problem 
defined above are given by 
 
H Kone,av. = Eone,k Kone, av. ,                                     6( ) 
 

where Eone, k  denotes the exact one-particle energy above 
the Fermi-surface, in the presence of vibronic interactions.   
Assuming that the states kone,av.  form a complete set  
 

xexternal = 0( )

+k ↑ –k ↓ +k ′ ↑ –k ′ ↓

+k ↑ –k ↓ +k ′ ↑ –k ′ ↓

x external = 0( )

+k ↑ –k ↓

ψ k ,one,av. x external( )= k one,av. x external( ) = c +k ↑ x external( )+k + c –k ↓ x external( ) –k

c +k ↑ 0( ) = c –k ↓ 0( ) =
1
2

ψ k ,one,av. 0( )= kone,av. 0( ) =
1
2

+k +
1
2

–k
1
2

+k ↑( ) 1
2

–k ↓( )
k one,av. 0( )= +

1
2

k
 

 
 

 

 
 + –

1
2

k
 

 
 

 

 
 = 0

x external = 0( )

–k ↓+k ↑

ψ k ,two,av . x external( )= k ,–k

+k ↑ –k ↓
k two,av . 0( ) = +k( )+ –k( )= 0

k

k´ = k –q

–k

–k´ = –k + q

second-order processes in vibronic and electron–phonon interactions

q –q
intermediate states intermediate states

–k´ = –k + q

k

k´ = k –q

–k

(i) (ii)

rapidly converting

one-electron model

two-electrons BCS model

rapidly converting

rapidly converting

(a) no external applied electric or magnetic field in one-electron model

the second-order processes in the vibronic and electron–phonon interactions can be applied

(b) no external applied electric or magnetic field in two-electrons BCS model

the second-order processes in the vibronic and electron–phonon interactions can be applied  
Fig. 2. Electron–phonon interactions without any external 
magnetic field. 
 
such that the exact one-particle eigenstate can be expanded 
in this basis, then 
 
Kone,av. = ak kone,av.

k
∑  

= ak Pkground
T( ) kground + Pk excited

T( ) kexcited{ }
k
∑  
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= ak Pkground
T( )

+k ↓ + –k ↑

2

 
 
 

  k
∑  

        + ak Pkexcited
T( )

+ k ↑ + –k ↓

2

 
 
 

  
 

= bk +k + –k( )
k
∑ .                                                     7( ) 

 
Inserting Eq. (7) into Eq. (6), and then we obtain 
 

H0 + Veff( ) bk
k
∑ +k + –k( )= Eone bk

k
∑ +k + –k( ).  

                                                                                        8( ) 
 
Considering the above orthogonality relation 

k ′ k = δk ,k ′ , we thus find 
 

bk ′ +k ′ + –k′( )H0
k′
∑ +k + –k( )= 2bkεk ,            9( ) 

 
bk ′ +k ′ + –k′( )Eone

k′
∑ +k + –k( )= 2bkEone .     10( ) 

 
The quantity k ′ Veff k  denotes a one-electron scattering 
matrix element from a one-particle state k  to a one-
particle state k ′ .    

We now consider that the electronic states k can be 
stabilized by Vone  only when the scattering within the 
same electronic states k occurs.   That is, we have  
 

+ k′ Veff + k = + k′ Veff – k = –k ′ Veff + k  

          = –k ′ Veff – k = –Vone,kδk,k ′ ,                     11( ) 
 

bk ′ +k ′ + –k′( )Veff
k′
∑ +k + –k( ) 

= –4Vone bk ′δk,k ′
k ′
∑ .                                                  12( )  

 
Thus, Eq. (8) takes the form 
 
2bk εk – Eone( )= 4Vonebk .                                        13( )  
 
Then the energy difference between the states of one non-
interacting particle on the Fermi-surface ( ε k ), and the 
exact energy eigenvalue ( Eone ), is introduced, i.e., 
∆vib ,one = εk – Eone .   The ∆vib ,one  denotes the 
stabilization energy of independent one electron as a 
consequence of the electron–phonon interactions.    

 
∆vib ,one = 2Vone .                                                         14( )  
 
2.2 Conventional Two-Electrons BCS Model 

Let us consider added two electrons above the Fermi-
surface, as shown in Fig. 1 (c).   We now consider that the 
electronic states k can be stabilized by Vone  only when 
the scattering within the same electronic states k occurs.   
Here, the two-particle state in the absence of such a 
peculiar interaction is denoted by +k , –k , as shown in 
Figs. 1 (c) and 2 (b), and in the presence of the interaction 
by K1 , K2 .    
 
H0 + k, –k = 2ε k +k , –k ,                                         15( )  
 
where ε k  denotes the single-particle energy of the non-
interacting fermion system.   We must have 2εk > 2ε F  in 
the presence of the inert Fermi-sea, due to the Pauli 
principle.   Adding interactions, the exact Schrödinger 
equation for the two-particle problem defined above is 
given by 
 
H K1 , K2 = Etwo K1 , K2 ,                                          16( )  
 
where Etwo  denotes the exact two-particle energy of the 
two electrons above the Fermi-surface, in the presence of 
an attractive interaction.   Assuming that the states 
+k , –k  form a complete set such that the exact two-

particle eigenstate can be expanded in this basis, then 
 
K1 , K2 = ak Pkground

T( ) + k↓, –k ↑{
k
∑  

                        + Pkexcited
T( ) + k↑, –k ↓ } 

= ak Pkground
T( ) + k↓, –k ↑{

k
∑  

          + ak Pkexcited
T( ) + k↑, –k ↓ } 

= ck +k , –k{ }
k
∑ .                                                       17( )  

 
Inserting Eq. (17) into Eq. (16), and then we obtain, 
 

H0 + Veff( ) ck +k , –k
k
∑ = Etwo ck + k, –k

k
∑ .         18( )  

 
Considering the above orthogonality relation 

+k ′ , –k ′ + k, –k = δk,k ′ , we thus find 
 

ck ′ +k ′ , –k ′ H0 + k, –k
k′
∑ = 2ckεk ,                        19( )  
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ck ′ +k ′ , –k ′ Etwo + k , –k

k′
∑ = ckEtwo ,                    20( ) 

and thus  
 
ck 2εk – Etwo( )= – ck ′

k ′
∑ +k ′, –k ′ Veff + k, –k .     21( )  

 
The quantity + k′ , –k ′ Veff + k, –k  denotes a two-
particle scattering matrix element for particles on opposite 
sides of the Fermi surface, from a two-particle state 
+k , –k  to a two-particle state +k ′ , –k ′ .   This 

scattering matrix element is attractive ( V two ) within the 
same electronic states k, and zero elsewhere [1–6].   That 
is, we have  
 

+ k′ , –k ′ Veff + k, –k = –V twoδk ,k ′ ,                        22( )  
 

ck ′
k′
∑ +k ′ , –k ′ Veff + k, –k = –V two ck ′

k ′
∑ δk, k ′ .    23( )  

 
Thus, Eq. (21) takes the form 
 
ck 2εk – Etwo( )= V twock .                                           24( ) 
 
Then the energy difference between the states of two non-
interacting particles on the Fermi-surface, and the exact 
energy eigenvalue Etwo , is introduced, i.e., 
∆vib ,two = 2εF – Etwo.   In terms of this variable, Eq. (24) 
may be written 
 
∆vib ,two = V two .                                                          25( )  
 
2.3 Comparison of the One-Electron Theory with the 
Conventional Two-Electrons BCS Theory 

Let us next investigate the relationships between our 
new theory of one-electron model and the conventional 
BCS theory of two-electrons model in electron pairing 
processes.   As discussed in the previous section, the 
vibronic stabilization energies are derived as Eqs. (14) 
and (25) in our new theory of independent one-electron 
model and the conventional theory of bound state two-
electrons model, respectively.   The vibronic stabilization 
energies for the opened-shell one electron systems in the 
various research fields such as the decision of molecular 
structures, Jahn–Teller effects, Peierls distortions, 
spectroscopy, electrical conductivity, and 
superconductivity can be estimated by our one-electron 
model.   On the other hand, since an electron pair must be 
finally formed from two electrons, we must here consider 
the stabilization energy of two electrons as a consequence 

of the vibronic interactions in order to estimate 
stabilization energies for electron pairing.   Vibronic 
stabilization energy of independent two electrons in the 
one-electron theory (∆vib , pair, one ) is denoted as 
 
∆vib ,pair, one = 2∆vib, one = 4Vone .                               26( )  
 
Vibronic stabilization energy of bound state two electrons 
in the two-electrons BCS theory (∆vib ,pair, two ) is denoted 
as 
 
∆vib ,pair, two = ∆vib, two = V two .                                   27( )  
 
Vk→ k ′, m = hνk →k ′ ,m gk→ k ′,m

2 ,                                   28( )  
 
Vk→ k ′ = Vk →k ′,m

m
∑ ,                                                 29( )  

 
where gk→ k ′,m  is the dimensionless vibronic coupling 
constant for the mth mode, which denotes the slope in the 
original point on the potential energy surface along each 
vibrational mode m, and which is proportional to the 
number of electrons above the Fermi level under 
consideration [1–7], as shown in Fig. 3.   However, in Eq. 
(14), only independent one electron has been considered 
and two electrons have not been treated.   That is, vibronic 
stabilization energies for the opened-shell electronic states 
have been calculated by many researchers, without 
definite reason, on the basis of the second-order processes 
in the electron–phonon interactions in quantum field 
theory, in which the phonon exchanges between two 
electrons should be considered.    

Let us look into the electron–phonon interactions for 
the independent one-electron model Vone .   The Vone  
value can be expressed as 
 
Vone = gk→k ′,m

2 hνm
m
∑ ,                                               30( ) 

 
where gk→ k ′,m  is the vibronic coupling constant between 
the electronic states originating from an electron 
promotion from the orbital k to the orbital k´ and the 
vibrational mode m, and the νm  is the frequency for the 
vibrational mode m, as shown in Fig. 3 (b).    

Let us next look into the bound state two-electrons 
model.   In a similar way, by considering that the 
dimensionless vibronic coupling constants are 
proportional to the number of electrons above the Fermi 
level under consideration (i.e., 
g+ k, –k→+k ′ ,–k ′,m = 2gk→k ′ ,m ), the electron–phonon 
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coupling constant V two  for the two-electrons model can 
be defined as 

Um

Qm

Um
0( )

gground = 0 ∆vib,zero=0

(a) ground state

 

Um

Qm

Um
1( )

∆vib,one

gk →k ′,m

(b) second-order processes in the vibronic and 
electron–phonon interactions in one-electron mod

 
Um

Qm

Um
2( )

∆vib,two

V two = 4V one

g+k ,–k →+k ′ ,–k ′ ,m

g+k ,–k →+k ′ ,–k ′ ,m = 2gk →k ′ ,m

(c) second-order processes in the vibronic and 
electron–phonon interactions in two-electrons 
BCS model

 Fig. 3. Vibronic stabilization energy for (a) ground state, 
(b) monoanionic state, and (c) dianionic state.  

  

V two = g+ k, –k→+k ′ ,–k ′,m
2

m
∑ hνm = 2gk→ k ′,m( )2 hνm

m
∑  

= 4 gk→ k′ ,m
2 hνm

m
∑ = 4Vone ,                                       31( )  

 
where g+ k, –k →+k ′ ,– k ′, m  is the vibronic coupling constant 
between the electronic states originating from two 
electrons promotion from the orbital ( + k , –k ) to the 
orbital (+ k ′ , –k′ ) and the vibrational mode m.    

Let us next discuss the vibronic stabilization energies 
estimated by the one- and two-electrons theory.   From 
Eqs. (14), (25), and (31), the relationships between the 
∆vib ,pair, one  and ∆vib ,pair, two  values can be expressed as 
 
∆vib ,pair, one = 2∆vib,one = ∆vib ,two = ∆vib ,pair, two .    32( ) 
 
Therefore, the vibronic stabilization energies derived from 
the one-electron theory (∆vib , pair, one ) are exactly the same 
with those derived from the conventional two-electrons 
BCS theory (∆vib ,pair, two ).    
 
3. Vibronic Stabilization Energies under the External 
Applied Magnetic Field in Molecules 

In this section, we discuss the electron–phonon 
interactions under external applied magnetic field in 
molecules.    
 
3.1 One-Electron Model 

Let us consider an inert Fermi-sea, in which the 
electrons are treated as non-interacting [1–7].   To this 
Fermi-sea, one electron is added above the Fermi-surface.   
This one added electron does not interact with the inert 
Fermi-sea, as shown in Fig. 1.   One electron occupies a 
plane-wave state kone,av. ck↑ ,ck↓( ) , in the absence of 

interactions, as shown in Fig. 2 (a),  
 
kone,av. ck↑ ,ck↓( ) = Pkground

T( ) kground ck↑, ck↓( )  

                          + Pkexcited
T( ) kexcited ck↑ ,ck↓( ) ,   33( ) 

 
where  
 
kground ck ↑ , ck ↓( ) = ck↓ + k ↓ + ck ↑ –k ↑ ,             34( ) 

 
kexcited ck↑ , ck↓( ) = ck↑ +k ↑ + ck↓ –k ↓ .            35( )  

 
kground ck↑ ,ck↓( )kground ck↑ , ck↓( )  
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= kexcited ck↑ , ck↓( )kexcited ck↑ , ck↓( )  

= ck↓
2 + ck↑

2 = 1,                                                           36( )  
 

kone,av. ck↑, ck↓( )kone,av. ck↑ ,ck↓( )  

= Pkground
T( ) kground ck↑ ,ck↓( )kground ck↑ , ck↓( )  

+ Pkexcited
T( ) kexcited ck↑ ,ck ↓( )kexcited ck↑ , ck↓( ) = 1.  

                                                                                     37( )  
 
Here, the one extra electron in the absence of such a 
peculiar interaction is denoted by kone,av. ck↑ ,ck↓( ) , and 

in the presence of the interaction by Kone,av. ck↑ ,ck↓( ) .   

Denoting the Hamiltonian of the system by 
 
H = H0 + Veff ,                                                             38( )  
 
then 
 
H0 ± k = ε k ±k ,                                                        39( )  
 
where ε k  denotes the single-particle energy of the non-
interacting fermion system.   Adding interactions, the 
exact Schrödinger equation for the one-particle problem 
defined above are given by 
 
H Kone,av. ck↑, ck↓( )  

= Eone ck↑ ,ck↓( )Kone,av. ck ↑ , ck ↓( ) ,                         40( )  

 
where Eone ck↑ , ck↓( )  denotes the exact one-particle 
energy above the Fermi-surface, in the presence of 
vibronic interactions.   Assuming that the states 
kone, av. ck↑ , ck↓( ) form a complete set such that the exact 
one-particle eigenstate can be expanded in this basis, then 
 
Kone,av. ck↑ ,ck↓( ) = ak kone,av. ck↑ , ck↓( )

k
∑  

= ak Pkground
T( ) kground ck↑ , ck↓( ){

k
∑  

        + ak Pkexcited
T( )kexcited ck↑ , ck↓( )} 

= ak Pkground
T( ) ck↓ + k ↓ + ck ↑ –k ↑( ){

k
∑  

        + ak Pkexcited
T( ) ck↑ + k ↑ + ck ↓ –k ↓( )} 

= bk ck↑ k ↑ + ck↓ k ↓( )
k
∑ .                                     41( )  

 
Inserting Eq. (41) into Eq. (40), and then we obtain 
 

H0 + Veff( ) ak
k
∑ kone,av. ck↑ ,ck↓( )  

= Eone ck↑ ,ck↓( ) ak
k
∑ kone,av. ck↑ ,ck↓( ) .                42( ) 

 
Considering the above orthogonality relation 

k ′ k = δk ,k ′ , we thus find 
 

bk ′ ck ′ ↑ k ′ ↑ + ck′ ↓ k ′ ↓( )H0
k′
∑ ck ↑ k ↑ + ck ↓ k ↓( ) 

= bkε k ,                                                                         43( )  
 

bk ′ ck ′ ↑ k ′ ↑ + ck′ ↓ k ′ ↓( )Eone
k′
∑ ck↑ k ↑ + ck ↓ k ↓( ) 

= bk Eone,                                                                     44( )  
 
and thus  
 
bk ε k – Eone ck↑ , ck↓( )( ) 
= – bk ′ ck ′↑ k′ ↑ + ck ′↓ k ′↓( )

k ′
∑  

                                  × Veff ck↑ k ↑ + ck↓ k ↓( ).  45( )  
 
The quantity k ′ Veff k  denotes a one-electron scattering 
matrix element from a one-particle state k  to a one-
particle state k ′  (Fig. 2).    

The quantity k ′ Veff k  denotes a one-electron 
scattering matrix element from a one-particle state k  to 
a one-particle state k ′ .   That is, we have  
 

k ′ ↑ Veff k ↑ = k ′ ↑Veff k ↓ = k′ ↓ Veff k ↑  

                  = k′ ↓ Veff k ↓ = –Voneδk ,k ′ ,                46( ) 
 

bk ′ ck ′ ↓ +k ′ ↓ + ck ′↑ –k ′↑( )Veff
k′
∑  

                                               × ck↓ +k ↓ + ck↑ –k ↑( ) 
= –Vone bk ′

k ′
∑ ck ′ ↓ck↓ + ck ′↓ ck↑ + ck ′↑ ck↓ + ck ′↑ ck↑( ) 

                                                                                × δk ,k ′  
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= –Vone bk ′
k ′
∑ 1+ 2ck ′↑ck↓( )δk ,k ′  

= –2Vone bk ′
k ′
∑ 1

2
+ ck ′↑ ck↓

 
 
  

 
 δk ,k ′  

= –2Vone f Bose ck↑ ,ck↓( ) bk ′
k ′
∑ δk ,k ′  

= –2bkVone f Bose ck↑ , ck↓( ),                                        47( )  
 
where  
 

f Bose ck↑ , ck↓( )=
1
2

+ ck↑ck↓ =
1
2

+ ck↓ 1– ck↓
2 .    48( )  

 
Thus, Eq. (42) takes the form 
 
bk ε k – Eone ck↑ , ck↓( )( )= 2bkVone f Bose ck↑ ,ck↓( ).  49( )  

 
Then the energy difference between the states of one non-
interacting particle on the Fermi-surface ( ε F ), and the 
exact energy eigenvalue ( Eone ck↑ , ck↓( )), is introduced, 

i.e., ∆vib ,one ck↑ , ck↓( )= εF – Eone ck↑ ,ck↓( ).   In terms 
of this variable, Eq. (49) may be written 
 
∆vib ,one ck↑ , ck↓( )= 2Vone f Bose ck↑ , ck↓( ),               50( )  
 
The ∆vib ,one ck↑ , ck↓( ) denotes the stabilization energy of 
independent one electron as a consequence of the 
electron–phonon interactions under the external applied 
magnetic field.    
 
3.2 Comparison of the One-Electron Theory with the 
Conventional Two-Electrons BCS Theory under the 
Applied Magnetic Field in Molecules 

Let us next discuss the vibronic stabilization energy of 
independent two electrons in the one-electron theory 
(∆vib , pair, one ck ↑,k ↓( )).    

When the magnetic field penetrates into the specimen 
(∆Bin ≠ 0 ), the ∆vib ,pair, two ck↑,k↓( ) value can be defined 

as  
 
∆vib ,pair, two ck↑,k↓( )= 2∆vib ,one ck ↑,k ↓( ) 

                           = 4Vone f Bose ck↑ck↓( ).                    51( )  
 

On the other hand, when the magnetic field is expelled 
from the specimen as a consequence of the Meissner effect 

(∆Bin = 0 ), the ∆vib ,pair, two ck↑,k↓( ) value can be defined 

as  
 
∆vib ,pair, two ck↑,k↓( )= 2∆vib ,one ck↑,k↓( ) 

                          = 4Vone − 4Vone 1 − f Bose ck↑ ck↓( )( ) 
                           = 4Vone f Bose ck↑ck↓( ).                    52( )  
 

The total electronic energy for the electronic state with 
∆Bin ≠ 0  is the same with that for the electronic state 
with ∆Bin = 0 .   On the other hand, the kinds of energies 
are different.   The electronic energy level itself for the 
electronic state with ∆Bin ≠ 0  is stabilized by 
4Vone f Bose ck↑ ck↓( )  with zero kinetic energy for the 
supercurrent, while those for the electronic state with 
∆Bin = 0  is 4Vone  with the kinetic energy of supercurrent 

4Vone 1− f Bose ck ↑ck↓( )( ).    

 
4. The Origin of the Faraday’s Law 
4.1 Theoretical Background 

In this article, we consider the molecular systems for 
mathematical simplicity.   On the other hand, we can 
easily apply this discussion to the case in the solids.    

The wave function for an electron occupying the 
highest occupied crystal orbital (HOCO) in a material 
under the external applied field ( xin = Bin  or Ein ) can be 
expressed as  
 
kHOCO T( ) Bout, Bin( ); Eout, E in( ); Bk HOCO

; IkHOCO( )  

= Pground T( ) kHOCO,ground,0 xin( )  

+ Pexcited T( ) kHOCO,excited,0 xin( ) ,                         53( )  
 
where 
 
kHOCO,excited,0 xin( )  

= c+k HOCO ↑,0 xin( )+kHOCO ↑  

+c–kHOCO ↓,0 xin( ) –kHOCO ↓ ,                                   54( )  

 
kHOCO,ground, 0 xin( )  

= c– kHOCO ↑,0 xin( ) –kHOCO ↑  

+c+k HOCO ↓,0 xin( )+kHOCO ↓ ,                                    55( )  

 
Pground T( )+ Pexcited T( )= 1,                                        56( )  
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c+kHOCO ↓,0
2 xin( )+ c–kHOCO ↑, 0

2 xin( )= 1,                       57( ) 

 
c–kHOCO ↓,0

2 xin( )+ c+ kHOCO ↑, 0
2 xin( )= 1.                       58( )  

 
The magnetic field ( Bk HOCO

xout , xin( ) = Bin( ) ) at the 
condition of the external applied field xout  and the field 
felt by an electron xin  can be expressed as  
 
Bk HOCO

xout , xin( ) 
= BkHOCO ↑ xout , xin( )– BkHOCO ↓ xout , xin( ),                 59( ) 

 
where  
 
Bk HOCO ↑ xout , xin( ) 
= Pexcited T( )c+kHOCO ↑ ,xin

2 xout – xin( ) 
+ Pground T( )c–k HOCO ↑,xin

2 xout – xin( ),                         60( )  

 
Bk HOCO ↓ xout , xin( ) 
= Pexcited T( )c–kHOCO ↓,xin

2 xout – xin( ) 
+ Pground T( )c+k HOCO ↓,xin

2 xout – xin( ).                         61( )  

 
The electric field ( Ik HOCO

xout , xin( ) = Ein( ) ) at the 
condition of the external applied field xout  and the field 
felt by an electron xin  can be expressed as  
 
Ik HOCO

xout , xin( ) 
= I+kHOCO

xout , xin( )– I–kHOCO
xout , xin( ),                   62( )  

 
I+ kHOCO

xout , xin( ) 
= Pexcited T( )c+kHOCO ↑ ,xin

2 xout – xin( ) 
+ Pground T( )c+k HOCO ↓,xin

2 xout – xin( ),                         63( ) 

 
I–k HOCO

xout , xin( ) 

= Pexcited T( )c–kHOCO ↓, xin

2 xout – xin( ) 
+ Pground T( )c–k HOCO ↑,xin

2 xout – xin( ).                         64( ) 

 
Let us look into the energy levels for various electronic 

states when the applied field increases from 0 to xout  at 0 
K in superconductor, in which the HOCO is partially 
occupied by an electron.   The stabilization energy as a 
consequence of the electron–phonon interactions can be 
expressed as  
 

ESC,electronic xout, xin( )– ENM,electronic 0 ,0( )  
= –2Vone f Bose,0 xin( ),                                                  65( )  
 
where the –2Vone  denotes the stabilization energy for the 
electron–phonon interactions between an electron 
occupying the HOCO and the vibronically active modes 
[1–7] (Fig. 4).    

ENM 0,0( )
ESC 0,0( )

2V onef Bose,0 x in( )

ESC x in, x in( )

εF

interactions

electron–
phonon

Fig. 4. Stabilization energy as a consequence of the 
electron–phonon interactions as a function of the 
external applied field.  

 
The (= f Bose ,0 Ein( )) denotes the ratio of the bosonic 

property under the internal field xin  
( c+kHOCO ↓,0 xin( )= c+kHOCO ↑ ,0 xin( )= c+ kHOCO ,0 xin( )  
and 
c–kHOCO ↑,0 xin( )= c–k HOCO ↓, 0 xin( )= c–kHOCO ,0 xin( ) ), 

and can be estimated as  
 
f Bose,0 xin( )= f Bose ,xin

0( )  

=
1
2

+ c–kHOCO ,0 xin( ) 1– c–kHOCO ,0
2 xin( ).                  66( )  

 
The f Bose, Bin

0( )(= f Bose ,0 Bin( )) denotes the ratio of the 
bosonic property under the internal field xin  
( c+kHOCO ↑,0 xin( )= c–kHOCO ↑, 0 xin( )= ck HOCO ↑,0 xin( )  
and 
c+kHOCO ↓,0 xin( )= c–kHOCO ↓, 0 xin( )= ck HOCO ↓,0 xin( ) ), 

and can be estimated as  
 
f Bose,0 xin( )= f Bose ,xin

0( )  

=
1
2

+ ckHOCO ↓ ,0 xin( ) 1– ckHOCO ↓,0
2 xin( ).                 67( )  

 
4.2 New Interpretation of the Faraday’s Law in the 
Normal Metallic States 

Let us next apply the Higgs mechanism to the 
Faraday’s law in the normal metallic states.   Let us next 
consider the superconductor, the critical magnetic field of 
which is Bc .   Below Tc, the bosonic Cooper pairs are in 
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the superconducting states.   We consider the case where 
the HOCO is partially occupied by an electron.   We 
consider that the magnetic field is quantized by 
∆Bunit = Bc / nc( ).   The nc  value is very large and the 
quantization value of Bc / nc  is very small ( Bc / nc ≈ 0) 
(Fig. 5).   That is, the jth quantized magnetic field Bj  
with respect to the zero magnetic field can be defined as  
 
Bj = j∆Bunit .                                                                68( )  
 

Bin

Bout
(Bc,0)

(Bj,Bj)

(–Bc,0)

Fig. 5. Bout versus Bin in the normal metallic 
and superconducting states.

(Bj+1,Bj+1)

(Bj–1,Bj–1)

superconductivity

metall ic

metall ic

 
 

The ratio of the bosonic property under the internal 
magnetic field Bexcited  with respect to the ground state for 
the magnetic field Bγ  ( Bin = Bγ + Bexcited ) can be 
denoted as f Bose, Bγ

Bexcited( ).   In particular, the ratio of 
the bosonic property under the internal magnetic field Bin  
with respect to the ground state for the zero magnetic field 
can be denoted as f Bose,0 Bin( ) .   We define the 
electronic 
kHOCO T( ) Bout, Bin( ); Eout, E in( ); Bk HOCO

; IkHOCO( )   

state, where the Eout  denotes the induced electric field 
applied to the specimen, the Ein  the induced electric field 
felt by the electron, the Bk HOCO

 the induced magnetic 
moment from the electron (the induced magnetic field 
Binduced,kHOCO

 or the change of the spin magnetic 
moment of an electron σ spin ,kHOCO

 from the each ground 
state), and the Ik HOCO

 the induced electric moment of an 

electron (canonical electric momentum pcanonical,kHOCO
 or 

the electric momentum of an electron vem,k HOCO
).    

Without any external applied magnetic field ( j = 0 ; 
Bout = Bin = 0), the ratio of the bosonic property under 
the internal magnetic field 0 can be estimated to be 
f Bose,0 0( ) = 1.   Therefore, the electronic state pairing of 

an electron behaves as a boson,  
 
f Bose, 0 0( ) = 1.                                                              69( )  

 
In such a case 
( c+kHOCO ↑,0 0( )= c–kHOCO ↑,0 0( ) = c+k HOCO ↓,0 0( )

= c–kHOCO ↓,0 0( )= 1/ 2 ), there is no induced current 

and the magnetic fields, as expected,  
 
Bk HOCO

0, 0( ) = BkHOCO ↑ 0,0( )– BkHOCO ↓ 0, 0( ) 

= Pexcited T( )c+kHOCO ↑,0
2 0( )+ Pground T( )c–k HOCO ↑,0

2 0( ){ } 

– Pexcited T( )c–kHOCO ↓,0
2 0( )+ Pground T( )c+kHOCO ↓,0

2 0( ){ } 

= 0,                                                                               70( )  
 
Ik HOCO

0, 0( ) = I+kHOCO
0,0( )– I–kHOCO

0, 0( )  

= Pexcited T( )c+kHOCO ↑,0
2 0( )+ Pground T( )c+k HOCO ↓, 0

2 0( ){ } 

– Pexcited T( )c–kHOCO ↓,0
2 0( )+ Pground T( )c–kHOCO ↑,0

2 0( ){ } 

= 0.                                                                                71( ) 
 
This can be in agreement with the fact that charges at rest 
feel no magnetic forces and create no magnetic fields.   
This is the bosonic ground normal metallic state for j = 0  
( kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) ) (Figs. 6 and 7 (a)).   It 
should be noted that the electronic states are in the ground 
normal metallic states when all the pcanonical, vem, σ spin , 
and Binduced  values are 0 ( pcanonical = 0 , vem = 0 , 
σ spin = 0 , and Binduced = 0 ), and are in the excited 
normal metallic states when the pcanonical, vem, σ spin , or 
Binduced  values are not 0 ( pcanonical ≠ 0 , vem ≠ 0 , 
σ spin ≠ 0 , or Binduced ≠ 0).    

Let us next consider the case where the applied 
magnetic field ( Bout ) increases from 0 to ∆Bunit  (Fig. 6).   
Soon after the external magnetic field is applied, the 
momentum of the electronic state pairing of an electron 
cannot be changed but the electromotive force can be 
induced, because of the Nambu–Goldstone boson formed 
by the fluctuation of the bosonic electronic state pairing 
of an electron kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) .   In such a 
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case, the Bk HOCO
∆Bunit , 0( ) and Ik HOCO

∆Bunit , 0( ) values 

for the kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state can 
be estimated as  
 
Bk HOCO

∆Bunit , 0( )= Pexcited T( )c+kHOCO ↑,0
2 ∆Bunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Bunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Bunit( ){  

                             + Pground T( )c+kHOCO ↓,0
2 ∆Bunit( )} 

                             = 0,                                                 72( ) 
 
and thus  
 
Ik HOCO

∆Bunit , 0( )= Pexcited T( )c+kHOCO ↑,0
2 ∆Bunit( ){  

                             + Pground T( )c+kHOCO ↓,0
2 ∆Bunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Bunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Bunit( )} 

                             = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Bunit( ){  

                                                     – c–k HOCO ↓, 0
2 ∆Bunit( )}  

                             = IkHOCO ,emf ∆Bunit , 0( )= ∆Eunit .  73( ) 
 

kHOCOT( ) 0, 0( ); 0 ,0( );0;0( )

kHOCOT( ) ∆Bunit,0( ); ∆Eunit,∆E unit( );Binduced;vem( )

kHOCOT( ) ∆Bunit, ∆Bunit( ); 0,0( );0; 0( )

k HOCO T( ) 0,∆ B unit( ); –∆ E unit ,– ∆E unit( );B induced ;v em( )

kHOCO T( ) ∆ Bunit , 0( ); ∆E unit ,∆E unit( );σ spin ;p canonical( )

Bin

Bout

Fig. 6. The Bin versus Bout between γ =0 and γ = 1.  
 
Large Bose–Einstein condensation energy 
(Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) may be related to the  

 

k HOCO T( ) 0, 0( ); 0,0( );0; 0( )

k HOCO T( ) ∆Bunit , 0( ); ∆Eunit , 0( ); 0; 0( )

∆Bunit

BkHOCO 0,0( )= 0

k HOCO T( ) ∆Bunit, 0( ); ∆Eunit , 0( );Binduced ; 0( )

∆Eunit

k HOCO T( ) ∆Bunit , 0( ); ∆Eunit , ∆E unit( );Binduced ;v em( )

k HOCO T( ) ∆Bunit , 0( ); ∆Eunit , ∆E unit( );σspin; pcanonical( )

k HOCO T( ) ∆Bunit , ∆Bunit( ); 0,0( ); 0; 0( )
∆Bunit

Binduced = ∆Bunit

v em = ∆E unit

pcanonical = ∆Eunit

Binduced = ∆Bunit

Binduced = ∆Bunit

∆Eunit

Iemf = ∆Eunit

Iemf = ∆Eunit

Bout = ∆Bunit

Bout = ∆Bunit

Bout = ∆Bunit

Bout = ∆Bunit

photon

(a) ground bosonic normal metallic state for j = 0

(b) excited bosonic normal metallic state for j = 0

photon

(c) excited bosonic normal metallic state for j = 0

photon

(d) excited bosonic normal metallic state for j = 0

photon

(f) ground bosonic normal metallic state for j = 1

photon

photon emission (electrical resistivity)

(e) excited fermionic normal metallic state for j = 0

Fig. 7. The electronic states between j =0 and j = 1 
in normal metallic states.  

 
Newton’s third law and the conventional principle that 
“nature does not like the immediate change”.    

When the electromotive force 
( Ik HOCO

∆Bunit , 0( )= ∆Eunit ) is induced, a Nambu–
Goldstone boson formed by the fluctuation of the 
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electronic state pairing of an electron 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  is absorbed by a 

photon (electric field) (Fig. 7 (b)).   Therefore, a photon 
(electric field) has finite mass as a consequence of 
interaction with the Nambu–Goldstone boson formed by 
the fluctuation of the bosonic electronic state pairing of an 
electron.   Soon after the electromotive force is induced, 
the momentum of the bosonic electronic state pairing of 
an electron cannot be changed but the magnetic field can 
be induced.   In such a case, the Ik HOCO

∆Eunit , 0( ) and 
Bk HOCO

∆Eunit , 0( )  values for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state (Fig. 
7 (c)) can be estimated as  
 
Ik HOCO

∆Eunit , 0( )= Pexcited T( )c+ kHOCO ↑, 0
2 ∆Eunit( ){  

                             + Pground T( )c+kHOCO ↓,0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )},   

                             = 0,                                                 74( )  
 
and thus  
 
Bk HOCO

∆Eunit , 0( )= Pexcited T( )c+ kHOCO ↑, 0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                            + Pground T( )c+k HOCO ↓, 0
2 ∆Eunit( )} 

                           = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Eunit( ){  

                                                 – c–k HOCO ↓, 0
2 ∆Eunit( )} 

                = Binduced,kHOCO
∆Eunit , 0( )= –∆Bunit .       75( )  

 
The induced magnetic field Binduced,kHOCO

∆Eunit , 0( ) 
expels the initially applied external magnetic field ∆Bunit  
from the normal metallic specimen (Fig. 7 (c)).   
Therefore, the induced magnetic field 
Binduced,kHOCO

∆Eunit , 0( )  is the origin of the Faraday’s 
law in the normal metallic states and the Meissner effects 
in the superconducting states.   It should be noted that the 
magnetic field Binduced, kHOCO

∆Eunit , 0( ) ≠ 0( )  is induced 
but the spin magnetic moment of an electron with opened-
shell electronic structure is not changed ( σ spin = 0 ).   

This is very similar to the diamagnetic currents in the 
superconductivity in that the supercurrents are induced 
( vem ≠ 0 ) but the total canonical momentum is zero 
( pcanonical = 0 ).   The magnetic field is induced not 
because of the change of each element of the spin 
magnetic moment σ spin  of an electron (similar to the 
pcanonical  in the superconducting states) but because of 
the change of the total magnetic momentum as a whole 
Binduced  (similar to the vem  in the superconducting 
states).    

On the other hand, such excited bosonic electronic state 
pairing of an electron with the induced magnetic fields 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  can be 

immediately destroyed because the induced electric field 
penetrates into the normal metallic specimen, and the 
electronic state becomes another bosonic excited 
supercurrent state for j = 0  
( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( ) ) 
(Fig. 7 (d)).   In the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state, an electron receives the electromotive force ∆Eunit , 
and thus the superconducting current can be induced, and 
thus there is kinetic energy ( Ekinetic ∆Eunit , ∆Eunit( )) of 
the supercurrent.  In such a case, the 
Bk HOCO

∆Eunit , ∆Eunit( )  and Ik HOCO
∆Eunit , ∆Eunit( ) 

values for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state can be estimated as  
 
Bk HOCO

∆Eunit , ∆Eunit( )= BkHOCO
∆Eunit , 0( ) 

                            = Pexcited T( )c+kHOCO ↑,0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                            + Pground T( )c+k HOCO ↓, 0
2 ∆Eunit( )} 

                           = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Eunit( ){  

                                                 – c–k HOCO ↓, 0
2 ∆Eunit( )} 

                = Binduced,kHOCO
∆Eunit , 0( )= –∆Bunit ,       76( )  

 
Ik HOCO

∆Eunit , ∆Eunit( )= IkHOCO
∆Bunit , 0( ) 

                             = Pexcited T( )c+ kHOCO ↑, 0
2 ∆Bunit( ){  

                             + Pground T( )c+kHOCO ↓,0
2 ∆Bunit( )} 
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                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Bunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Bunit( )} 

                             = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Bunit( ){  

                                                     – c–k HOCO ↓, 0
2 ∆Bunit( )}  

                      = vem,kHOCO
∆Eunit , ∆Eunit( )= ∆Eunit .  77( )  

 
That is, the energy of the electromotive force ∆Eunit  

for the kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  
state is converted to the kinetic energy of the supercurrent 
for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state.   Both the supercurrent (vem,k HOCO
∆Eunit , ∆Eunit( )) 

and the magnetic field ( Binduced,kHOCO
∆Eunit , ∆Eunit( ) ) 

can be induced under the condition of the opened-shell 
electronic structure with zero spin magnetic momentum 
and canonical momentum (σ spin = 0 ; pcanonical = 0).    

On the other hand, such excited bosonic normal 
metallic states with supercurrents 
( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( ) ) 
can be immediately destroyed because of the unstable 
opened-shell electronic states subject to the external 
applied magnetic field, and the electronic state becomes 
another excited fermionic normal metallic states for j = 0  
(
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

) (Fig. 7 (e)).   In such a case, the Bk HOCO
∆Eunit , ∆Eunit( )  

and Ik HOCO
∆Eunit , ∆Eunit( )  values for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )
 state can be estimated as  
 
Bk HOCO

∆Eunit , ∆Eunit( )= BkHOCO
∆Eunit , 0( ) 

                            = Pexcited T( )c+kHOCO ↑,0
2 ∆Eunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Eunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Eunit( ){  

                            + Pground T( )c+k HOCO ↓, 0
2 ∆Eunit( )} 

                           = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Eunit( ){  

                                                 – c–k HOCO ↓, 0
2 ∆Eunit( )} 

                = σ spin ,k HOCO
∆Eunit , ∆Eunit( )= –∆Bunit ,   78( )  

 
Ik HOCO

∆Eunit , ∆Eunit( )= IkHOCO
∆Bunit , 0( ) 

                             = Pexcited T( )c+ kHOCO ↑, 0
2 ∆Bunit( ){  

                             + Pground T( )c+kHOCO ↓,0
2 ∆Bunit( )} 

                             – Pexcited T( )c–k HOCO ↓, 0
2 ∆Bunit( ){  

                             + Pground T( )c–kHOCO ↑, 0
2 ∆Bunit( )} 

                             = 2Pexcited T( ) c+kHOCO ↑,0
2 ∆Bunit( ){  

                                                     – c– k HOCO ↓, 0
2 ∆Bunit( )}  

             = pcanonical, kHOCO
∆Eunit , ∆Eunit( )= ∆Eunit .  79( )  

 
It should be noted that the electronic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 state is now somewhat fermionic because the pcanonical 
value is not 0.   In other words, the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 state is closely related to the normal conducting states in 
that the normal metallic current with pcanonical ≠ 0  and 
vem = 0  is induced by the induced electromotive forces.    

Such excited fermionic normal metallic states with 
currents and the induced magnetic field 
(
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

) can be immediately destroyed because of the unstable 
opened-shell electronic states subject to the external 
applied magnetic field, and the induced current and the 
magnetic field can be immediately destroyed, and thus the 
initially external applied magnetic field can start to 
penetrate into the normal metallic specimen.   Therefore, 
the electronic state tries to become another ground 
bosonic metallic state for j = 1 
( kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( ) ) (Fig. 7 (f)).   In 

such a case, the Bk HOCO
∆Bunit , ∆Bunit( )   and 

Ik HOCO
∆Bunit , ∆Bunit( )  values for the 

kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state can be 
estimated as  
 
Ik HOCO

∆Bunit , ∆Bunit( )= Pexcited T( )c+kHOCO ↑,∆Bunit

2 0( ){  

                                    + Pground T( )c+k HOCO ↓, ∆Bunit

2 0( )} 

                                    – Pexcited T( )c–kHOCO ↓,∆Bunit

2 0( ){  
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                                    + Pground T( )c–k HOCO ↑,∆Bunit

2 0( )} 

                                    = 0,                                          80( ) 
 
and thus  
 
Bk HOCO

∆Bunit , ∆Bunit( )= Pexcited T( )c+kHOCO ↑ ,∆Bunit

2 0( ){  

                                + Pground T( )c–k HOCO ↑, ∆Bunit

2 0( )} 

                                – Pexcited T( )c–kHOCO ↓,∆Bunit

2 0( ){  

                                + Pground T( )c+k HOCO ↓, ∆Bunit

2 0( )} 

                                = 2Pexcited T( ) c+ kHOCO ↑,∆Eunit

2 0( ){  

                                                     – c–k HOCO ↓,∆Eunit

2 0( )} 

                   = σ spin,kHOCO
∆Bunit , ∆Bunit( )= ∆Bunit .   81( ) 

 
It should be noted that the ground bosonic 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state is unstable 

with respect to the ground bosonic state for zero magnetic 
field kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) .    

The f Bose,∆Bunit
0( )  value is smaller than the 

f Bose,0 0( )  value.   It should be noted that the 
f Bose,Bin

0( )  value decreases with an increase in the Bin  
value.   That is, the bosonic and fermionic properties 
decrease and increase with an increase in the Bin  value, 
respectively.   The London penetrating length 
λ L ∆Bunit , ∆Bunit( )  value and the mass of a photon 
mphoton ∆Bunit , ∆Bunit( )  for the ground bosonic normal 

metallic kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state 
can be estimated to be + ∞  and 0, respectively.   That is, a 
photon becomes massless at the ground bosonic electronic 
states ( kHOCO T( ) Bin , Bin( ); 0, 0( ); 0;0( ) ) under the 

magnetic field of Bk HOCO
Bin , Bin( ), and thus the external 

applied magnetic field can penetrate into the normal 
metallic medium.    

In summary, because of the very large stabilization 
energy ( Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) for the Bose–
Einstein condensation ( pcanonical = 0 ; 
Vkin , Bose, kHOCOσ 0( ) = 0 eV ), the magnetic momentum of 
an electron cannot be changed but electromotive force 
(∆Eunit ) can be induced soon after the external magnetic 
field is applied.   This is the excited bosonic normal 
metallic state for j = 0  

( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( ) ).   In such a 
case, the induced electric field as well as the applied 
external magnetic field is expelled from the normal 
metallic specimen.   It should be noted that the electronic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state is still 

bosonic since the pcanonical value is 0.   The electric and 
magnetic momentum of a bosonic electronic state pairing 
of an electron cannot be changed but the magnetic field 
can be induced soon after the electromotive force is 
induced.   Therefore, the electronic state becomes 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( ) .   This is 

the origin of the Ampère’s law.   This induced magnetic 
field Binduced  can expel the initially external applied 
magnetic field Bout = ∆Bunit( )  from the normal metallic 
specimen.   That is, the Binduced  and Bout = ∆Bunit( ) 
values are completely compensated by each other.   This 
is the origin of the Lenz’s law.   On the other hand, such 
excited bosonic supercurrent states with the induced 
magnetic fields 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  can be 

immediately destroyed because the electromotive force 
penetrates into the normal metallic specimen, and the 
electronic state becomes another bosonic excited 
supercurrent state for j = 0  
( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( ) ).   
In the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state, the supercurrent can be induced, and thus there is 
kinetic energy ( Ekinetic ∆Eunit , ∆Eunit( ) ).   This is the 
origin of the Faraday’s law.   That is, the energy of the 
electromotive force ∆Eunit  for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state is 

converted to the kinetic energy of the supercurrent for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state.   Both the supercurrent (vem,k HOCO
∆Eunit , ∆Eunit( )) 

and the magnetic field ( Binduced,kHOCO
∆Eunit , ∆Eunit( ) ) 

can be induced under the condition of the opened-shell 
electronic structure with zero spin magnetic momentum 
and canonical momentum ( σ spin = 0 ; pcanonical = 0 ).   
This is the origin of the Faraday’s and Ampère’s law.   
Such excited bosonic states with supercurrents 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

can be immediately destroyed because of the unstable 
opened-shell electronic states, and the induced 
supercurrent can be immediately destroyed, and the 
electronic state becomes another excited fermionic normal 
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metallic state for j = 0  
( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( )(
;σspin ; pcanonical) ).   The excited fermionic normal 

metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( )(
;σspin ; pcanonical)  state is very unstable and try to 

become another ground bosonic metallic state for j = 1, 
and the induced electrical current and the induced 
magnetic field can be immediately dissipated, and thus the 
initially applied external magnetic field can penetrate into 
the ground bosonic normal metallic state 
( kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( ) ) medium.   
 
4.3 Energy Levels for Various Electronic States 

Let us look into the energy levels for various electronic 
states when the applied magnetic field ( Bout ) increases 
from 0 to ∆Bunit  at 0 K in superconductor, in which the 
HOCO is partially occupied by an electron.   The total 
energy Etotal xout , xin( ) for various electronic states with 
respect to the Fermi level before electron–phonon 
interactions at 0 K and xout = xin = 0  (Fig. 4) can be 
expressed as  
 
Etotal xout , xin( )= ESC xout, xin( )– ENM 0,0( )  
= Eelectronic xout, xin( )+ Emagnetic xout , xin( ).             82( )  
 
At Bout = Bin = 0 , the electronic state is in the ground 
normal metallic kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state for 
j = 0 .   The electronic and magnetic energies for the 
kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state can be expressed as  

 
Eelectronic 0, 0( )= –2Vone f Bose ,0 0( ) = –2Vone .            83( )  
 
Emagnetic 0, 0( ) = 0.                                                       84( ) 
 

The Eelectronic ∆Bunit , 0( )  value for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state can be 
estimated as  
 
Eelectronic ∆Bunit , 0( ) 
= –2Vone f Bose,0 0( )+ EIkHOCO

∆Bunit ,0( ) 

= –2Vone f Bose,0 ∆Bunit( ),                                             85( ) 
 
where the EIkHOCO

∆Bunit , 0( ) value denotes the energy of 

the electromotive force, and is estimated as 

 
EIkHOCO

∆Bunit , 0( ) 
= 2Vone f Bose,0 0( )– f Bose ,0 ∆Bunit( )( ) 
= 2Vone 1 – f Bose,0 ∆Bunit( )( ).                                      86( ) 
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Bunit , 0( )) as a consequence of the expelling 
of the external initially applied magnetic field ∆Bunit ,  
 
Emagnetic ∆Bunit , 0( )= Eexpel ∆Bunit , 0( ) 
                              =

1
2

µ 0∆Bunit
2 vSC,                          87( )  

 
where the µ 0  denotes the magnetic permeability in 
vacuum, and the vSC  denotes the volume of the specimen.   
The total energy level for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state can be 

estimated as  
 
Etotal ∆Bunit , 0( ) 
= Eelectronic ∆Bunit , 0( )+ Emagnetic ∆Bunit , 0( ) 

= –2Vone f Bose,0 ∆Bunit( )+
1
2

µ0∆Bunit
2 vSC .                 88( )  

 
We can consider from Eqs. (85)–(88) that the energy for 
the excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state is –2Vone  

with the energy of the electromotive force 
2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( )  and the energy of 
the expelling of the external initially applied magnetic 
field Emagnetic ∆Eunit , 0( ), and thus the total energy for 
the bosonic excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state is 

–2Vone f Bose ,0 ∆Eunit( )+ Eexpel ∆Bunit , 0( ) .   In other 
words, the energy for the applied magnetic field ∆Bunit  is 
converted to the energy of the electromotive force 
2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( )  and the energy of 
the expelling of the external initially applied magnetic 
field Eexpel ∆Bunit , 0( ) .    

The Eelectronic ∆Eunit , 0( )  value for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state can 
be estimated as   
 
Eelectronic ∆Eunit , 0( ) 
= –2Vone f Bose,0 0( )+ EIkHOCO

∆Eunit , 0( ) 
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= –2Vone f Bose,0 ∆Eunit( ).                                            89( ) 
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Eunit , 0( )) as a consequence of the induced 
magnetic field EBkHOCO

∆Eunit ,0( ),  

 
Emagnetic ∆Eunit , 0( )= EBkHOCO

∆Eunit ,0( ) 

                               =
1
2

µ 0∆Bunit
2 vSC .                         90( )  

 
The total energy level for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state can 

be estimated as  
 
Etotal ∆Eunit , 0( ) 
= Eelectronic ∆Eunit ,0( )+ Emagnetic ∆Eunit ,0( ) 

= –2Vone f Bose,0 ∆Bunit( )+
1
2

µ0∆Bunit
2 vSC .                 91( ) 

 
We can consider from Eqs. (89)–(91) that the energy for 
the normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state is 

–2Vone  with the expelling energy of the electromotive 
force 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( ) and the energy 
of the induced magnetic field EBkHOCO

∆Eunit ,0( ) , and 

thus the total energy for the bosonic excited normal 
metallic kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  

state is –2Vone f Bose ,0 ∆Eunit( )+ EBkHOCO
∆Eunit ,0( ).   In 

other words, the energy for the applied magnetic field 
∆Bunit  is converted to the expelling energy of the 
electromotive force 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( ) 
and the induced magnetic field EBkHOCO

∆Eunit ,0( ).    

The Eelectronic ∆Eunit , ∆Eunit( )  value for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  
state can be estimated as  
 
Eelectronic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 0( )+ Evem

∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 ∆Eunit( ),                                            92( )  
 
where the Evem

∆Eunit , ∆Eunit( ) value denotes the kinetic 
energy of the supercurrent, and is estimated as 
Evem

∆Eunit , ∆Eunit( ) 

= 2Vone f Bose,0 0( )– f Bose ,0 ∆Eunit( )( ) 

= 2Vone 1 – f Bose,0 ∆Eunit( )( ).                                      93( )  
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Eunit , ∆Eunit( ) ) as a consequence of the 
induced magnetic field EBkHOCO

∆Eunit , ∆Eunit( ),  

 
Emagnetic ∆Eunit , ∆Eunit( )= EBkHOCO

∆Eunit , ∆Eunit( ) 

                                       =
1
2

µ 0∆Bunit
2 vSC .                 94( )  

 
The total energy level for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state can be estimated as  
 
Etotal ∆Eunit , ∆Eunit( ) 
= Eelectronic ∆Eunit , ∆Eunit( )+ Emagnetic ∆Eunit , ∆Eunit( ) 

= –2Vone f Bose,0 ∆Eunit( )+
1
2

µ 0∆Bunit
2 vSC .                95( ) 

 
We can consider from Eqs. (92)–(95) that the energy level 
for the excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is –2Vone  with the kinetic energy of the 
supercurrent 2Vone f Bose ,0 0( )– f Bose,0 ∆Eunit( )( ) and the 
energy of the induced magnetic field 
EBkHOCO

∆Eunit , ∆Eunit( ), and thus the total energy for the 

bosonic excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is 
–2Vone f Bose ,0 ∆Eunit( )+ EBkHOCO

∆Eunit , ∆Eunit( ) .   In 

other words, the energy for the initially applied magnetic 
field ∆Bunit  is converted to the kinetic energy of the 
supercurrent 2Vone f Bose ,0 0( )– f Bose, 0 ∆Eunit( )( ) and the 
energy of the induced magnetic field 
EBkHOCO

∆Eunit , ∆Eunit( ).    

The Eelectronic ∆Eunit , ∆Eunit( )  value for the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )
 state can be estimated as  
 
Eelectronic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 0( )+ Epcanonical

∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,0 ∆Eunit( ),                                            96( )  
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where the Ep canonical
∆Eunit , ∆Eunit( )  value denotes the 

kinetic energy of the normal current, and is estimated as 
 
Ep canonical

∆Eunit , ∆Eunit( ) 

= 2Vone f Bose,0 0( )– f Bose ,0 ∆Eunit( )( ) 

= 2Vone 1 – f Bose,0 ∆Eunit( )( ).                                      97( )  
 
Furthermore, we must consider the magnetic energy 
( Emagnetic ∆Eunit , ∆Eunit( ) ) as a consequence of the 
induced spin magnetic moment 
Eσspin,HOMO

∆Eunit , ∆Eunit( ),  
 
Emagnetic ∆Eunit , ∆Eunit( ) 
= Eσspin,HOMO

∆Eunit , ∆Eunit( )=
1
2

µ 0∆Bunit
2 vSC .         98( )  

 
The total energy level for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 state can be estimated as  
 
Etotal ∆Eunit , ∆Eunit( ) 
= Eelectronic ∆Eunit , ∆Eunit( )+ Emagnetic ∆Eunit , ∆Eunit( ) 

= –2Vone f Bose,0 ∆Eunit( )+
1
2

µ 0∆Bunit
2 vSC .               99( )  

 
The Eelectronic ∆Bunit , ∆Bunit( )  and 

Emagnetic ∆Bunit , ∆Bunit( )  values for the 

kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state can be 
estimated as  
 
Eelectronic ∆Eunit , ∆Eunit( )= –2Vone f Bose ,∆Bunit

0( ),  100( )  
 
Emagnetic ∆Bunit , ∆Bunit( )= 0.                                    101( )  
 
The total energy level for the 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state can be 

estimated as  
 
Etotal ∆Eunit , ∆Eunit( ) 
= Eelectronic ∆Eunit , ∆Eunit( )+ Emagnetic ∆Eunit , ∆Eunit( ) 
= –2Vone f Bose,∆Bunit

0( ).                                            102( )  
 

The energy for the excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is –2Vone  with kinetic energy of supercurrent 

2Vone 1– f Bose ,0 ∆Bunit( )( ), and thus the total electronic 
energy for the bosonic excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is –2Vone f Bose ,0 ∆Bunit( ).   The electronic energy 
level for the bosonic ground normal metallic 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state is the same 

with those for the bosonic and fermionic excited normal 
metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

and 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 states, respectively.   On the other hand, it should be 
noted that even though the electronic energies are 
conserved between them, the kinds of energies are 
different.   The electronic energy level itself for the 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  is 

–2Vone f Bose ,0 ∆Bunit( )  with zero kinetic energy for the 
supercurrent, while those for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

and 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 states are –2Vone  with the kinetic energy of supercurrent 
2Vone 1– f Bose ,0 ∆Bunit( )( ) .   That is, the bosonic 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  
and fermionic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 excited normal metallic states are unstable with respect to 
the ground bosonic state for zero magnetic field, in the 
space of the ground bosonic state for zero magnetic field 
kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) .   This is because the 

kinetic energy of currents ( 2Vone 1– f Bose ,0 ∆Bunit( )( )) 
for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

and 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 states are larger than that (0) for the 
kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state, while the electronic 

energy level for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

and 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 states are the same ( –2Vone ) with that for 
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kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) .   The bosonic 

kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  ground state is 
unstable with respect to the ground bosonic state for zero 
magnetic field, in the space of the ground bosonic state 
for zero magnetic field kHOCO T( ) 0, 0( ); 0,0( ); 0;0( ) .   
This is because the electronic energy level 
( –2Vone f Bose ,0 ∆Bunit( ) ) for the 

kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  is higher than 

that –2Vone  for the kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  state, 
while the kinetic energies for both the 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  and 

kHOCO T( ) 0, 0( ); 0,0( ); 0;0( )  states are zero.   That is, 
the total electronic energy is conserved when the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is converted to the 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state via the 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )
 state.   During this conversion, the kinetic energy for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

and 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 states can be changed to the higher electronic state 
energy for the kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  
state by the penetration of the magnetic field (∆Bunit ).    

On the other hand, the magnetic energy for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state ( Emagnetic ∆Bunit , 0( ) ) with respect to the next 
ground normal metallic ground 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state 

( Emagnetic ∆Bunit , ∆Bunit( ) ) can be expressed as 

µ 0∆Bunit
2 vSC / 2 .   Therefore, because of the magnetic 

energy Emagnetic ∆Bunit , 0( )> Emagnetic ∆Bunit , ∆Bunit( ) , 
such excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state is not stable, and thus the bosonic excited normal 
metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

electronic state is converted to the next bosonic ground 
normal metallic ground 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state via the 

another fermionic excited normal metallic 

kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )
 state.    

The total energy level ( Etotal Bout , Bin( ) ) for the 
fermionic excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 state can be estimated to be the same with that for the 
bosonic excited normal metallic 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state even though the potential energy Vpotential  for the 
bosonic state is converted to the kinetic energy 
Vkin , Fermi, kLUCOσ 0( )  for the fermionic state.    

We can consider that the Etotal ∆Bunit , 0( )  values for 
the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

and 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 states are larger than that for the 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state by the 

Emagnetic ∆Bunit , 0( )– Emagnetic ∆Bunit , ∆Bunit( )
= µ 0∆Bunit

2 vSC / 2( ) value.   Therefore, the conversion 
from the unstable 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 state to the stable 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state occurs by 

the first-order process of the electron–phonon 
interactions.   In other words, the unstable 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );σspin ; pcanonical( )

 state is converted to the stable 
kHOCO T( ) ∆Bunit ,∆Bunit( ); 0, 0( ); 0;0( )  state as a 

consequence of the energy conversion from the magnetic 
energy 
( Emagnetic ∆Bunit , 0( )– Emagnetic ∆Bunit , ∆Bunit( )

= µ 0∆Bunit
2 vSC / 2( ) ) to the photon emission Vphoton  

(electrical resistivity (Joule’s heats)) energy.   The 
magnetic expelling energy 
( Emagnetic ∆Bunit , 0( )– Emagnetic ∆Bunit , ∆Bunit( )

= µ 0∆Bunit
2 vSC / 2( )) has been basically created from the 

energy originating from the dynamic change of the 
magnetic field (generation of electricity).   Therefore, we 
can conclude that initially dynamically created energy 
originating from the dynamic change of the magnetic field 
(generation of electricity) is the origin of the Joule’s heats 
finally observed.    
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The energy for the magnetic field strength itself, which 
has not been considered to be origin of the electromotive 
forces, is closely related to the electromotive forces, the 
electrical current, and the resistivity.   On the other hand, 
the dynamically created energy originating from the 
dynamic change of the magnetic field (generation of 
electricity), which has been considered to originate from 
the electromotive forces, is closely related to the Joule’s 
heats, but not directly related to the electromotive forces.    

As discussed in the previous studies [1-7], the Stern–
Gerlach effect is the main reason why the even one 
electron can be in the bosonic state at usual low 
temperatures.   And the very large stabilization energy 
( Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) for the Bose–Einstein 
condensation ( pcanonical = 0 ; 
Vkin ,Bose,kHOCOσ 0( ) = 0 eV ) originating from the 
disappearance of the kinetic energy of an electron 
( pcanonical = 0 ; Vkin ,Bose,kHOCOσ 0( ) = 0 eV ) is the main 
reason why the magnetic momentum of an electron cannot 
be changed but electrical currents can be induced soon 
after the external magnetic field is applied.   If an electron 
were not in the bosonic state, the applied magnetic field 
would immediately penetrate into the specimen as soon as 
the magnetic field is applied, and we would not observe 
any electrical current even in the normal metals.   This 
bosonic electron is closely related to the concepts of the 
Higgs boson.    

The electronic energy is conserved and thus the change 
of the electronic states is not directly related to the Joule’s 
heats.   Therefore, applied energy for the electromotive 
forces as a consequence of the change of the magnetic 
field strength itself are not dissipated.   In other words, 
electrical resistivity can be observed because of the 
electronic properties (the disappearance of total 
momentum pcanonical = 0  and vem = 0  under the statistic 
magnetic field), on the other hand, the Joule’s heats can 
be observed not because of the electronic properties but 
because of the magnetic properties (the disappearance of 
the expelling energy of the magnetic fields originating 
from the energy for the change of the magnetic field at the 
beginning, created dynamically (generation of 
electricity)).   We dynamically create the energy for the 
dynamic change of the magnetic field (generation of 
electricity) at the beginning, related to the Joule’s heats, in 
addition to the energy for the magnetic field strength 
itself, related to the electromotive force, kinetic energy of 
an electron, and electrical resistivity.    
 
4.4 Meissner Effects in the Two-Electrons Systems in 
Superconductivity 

Because of the very large stabilization energy 
( 2Vkin ,Fermi,k HOCOσ 0( ) ≈ 70 eV ) for the Bose–Einstein 

condensation ( pcanonical = 0 ; 
Vkin ,Bose,kHOCOσ 0( ) = 0 eV ), the magnetic momentum of 
a bosonic Cooper pair cannot be changed but 
electromotive force ( ∆Eunit ) can be induced soon after 
the external magnetic field is applied.   This is the excited 
bosonic superconducting state for j = 0  
( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( ) ) (Fig. 8 (b)).   
In such a case, the electromotive force as well as the 
applied external magnetic field is expelled from the 
superconducting specimen.   It should be noted that the 
electronic kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( ); 0;0( )  state 
is still bosonic since the pcanonical  value is 0.   The 
electric and magnetic momentum of a bosonic Cooper 
pair cannot be changed but the magnetic field can be 
induced soon after the electromotive force is induced 
(Fig. 8 (c)).   Therefore, the electronic state becomes 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( ) .   This 

induced magnetic field Binduced  can expel the initially 
external applied magnetic field Bout = ∆Bunit( )  from the 
superconducting specimen.   That is, the Binduced  and 
Bout = ∆Bunit( )  values are completely compensated by 
each other.   This is the origin of the Meissner effect in 
superconductivity.   On the other hand, such excited 
bosonic supercurrent states with the induced magnetic 
fields kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  can 
be immediately destroyed because the electromotive force 
penetrates into the superconducting specimen, and the 
electronic state becomes another bosonic excited 
supercurrent state for j = 0  
( kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( ) ) 
(Fig. 8 (d)).   In the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state, the supercurrent can be induced, and thus there is 
kinetic energy ( Ekinetic ∆Eunit , ∆Eunit( ) ).   That is, the 
energy of the electromotive force ∆Eunit  for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , 0( );Binduced;0( )  state is 

converted to the kinetic energy of the supercurrent for the 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

state.   Both the supercurrent (vem,k HOCO
∆Eunit , ∆Eunit( )) 

and the magnetic field ( Binduced,kHOCO
∆Eunit , 0( )) can be 

induced under the condition of the closed-shell electronic 
structure with zero spin magnetic field and canonical 
momentum (σ spin = 0 ; pcanonical = 0).   This is the origin 
of the Ampère’s law and the Meissner effect in 
superconductivity.   Such excited bosonic states with 
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supercurrents 
kHOCO T( ) ∆Bunit ,0( ); ∆Eunit , ∆Eunit( );Binduced;vem( )  

cannot be destroyed because of the stable closed-shell 
electronic states, and the induced supercurrent cannot be 
destroyed.   This is the reason why we can observe 
nondissipative currents in superconductivity during 
applying the magnetic field.    

k HOCO T( ) 0, 0( ); 0,0( );0; 0( )

k HOCO T( ) ∆Bunit , 0( ); ∆Eunit , 0( ); 0; 0( )

∆Bunit

BkHOCO
0, 0( )= 0

k HOCO T( ) ∆Bunit, 0( ); ∆Eunit , 0( );Binduced ; 0( )
∆Eunit

k HOCO T( ) ∆Bunit , 0( ); ∆Eunit , ∆E unit( );Binduced ;v em( )

Binduced = ∆Bunit

v em = ∆E unit

Binduced = ∆Bunit

∆Eunit

Iemf = ∆ Eunit

Iemf = ∆Eunit

∆Eunit

Iemf = ∆ Eunit

Iemf = ∆Eunit

∆Eunit

vem = ∆Eunit

Bout = ∆Bunit

Bout = ∆Bunit

Bout = ∆Bunit

photon

(a) ground bosonic normal metallic state for j = 0

(b) excited bosonic normal metallic state for j = 0

photon

(c) excited bosonic normal metallic state for j = 0

photon

(d) excited bosonic normal metallic state for j = 0

Fig. 8. The electronic states between j =0 and j = 1 
in superconductivity.  

 
4.5 Reconsideration of the Lenz’s Law 

According to the Lenz’s law, it has been considered 
that the electrical current can be induced when the 
magnetic field is changed.   On the other hand, according 
to our theory, the electrical current can be induced in 
order that the photon becomes massive (that is, the 
magnetic field is expelled from the specimen) by 
absorbing Nambu–Goldstone boson formed by the 
fluctuation of the electronic state pairing of an electron, 
because of the very large stabilization energy 
( Vkin ,Fermi,kLUCOσ 0( ) ≈ 35 eV ) for the Bose–Einstein 
condensation ( pcanonical = 0 ; 

Vkin ,Bose,kLUCOσ 0( )= 0 eV ), and the Stern–Gerlach 
effect.   The initial electronic state tries not to change the 
electronic structure ( pcanonical = 0 ) by induction of the 
electrical current and magnetic field.   After that, the 
photon becomes massless (magnetic field can penetrate 
into the specimen), and thus the electrical current can be 
dissipated.   And at the same time, photon is emitted from 
an electron and this is the origin of the Joule’s heats.   

The energy for the magnetic field strength itself, which 
has not been considered to be origin of the electromotive 
forces, is closely related to the electromotive force, the 
electrical current, and the resistivity.   On the other hand, 
the dynamically created energy originating from the 
dynamic change of the magnetic field (generation of 
electricity), which has been considered to be origin of the 
electromotive forces, is closely related to the Joule’s 
heats, but not directly related to the electromotive forces.    

As discussed in the previous studies [1–7], the Stern–
Gerlach effect is the main reason why the even one 
electron can be in the bosonic state at usual low 
temperatures.   And the very large stabilization energy 
( Vkin ,Fermi,kLUCOσ 0( ) ≈ 35 eV ) for the Bose–Einstein 
condensation ( pcanonical = 0 ; 
Vkin ,Bose,kLUCOσ 0( )= 0 eV ) originating from the 
disappearance of the kinetic energy of an electron 
( pcanonical = 0 ; Vkin ,Bose,kLUCOσ 0( )= 0 eV ) is the main 
reason why the magnetic momentum of an electron cannot 
be changed but electrical currents can be induced soon 
after the external magnetic field is applied.   If an electron 
were not in the bosonic state, the applied magnetic field 
would immediately penetrate into the specimen as soon as 
the magnetic field is applied, and we would not observe 
any electrical current even in the normal metals.   This 
bosonic electron is closely related to the concepts of the 
Higgs boson.   
 
5. Concluding Remarks 

We definitely discussed how the independent one 
electron is stabilized in energy in view of the second-
order processes in vibronic and electron–phonon 
interactions in quantum field theory.   In particular, by 
comparison with the conventional BCS theory, we 
suggested new interpretation of the role of electron–
phonon interactions in electron pairing in 
superconductivity.   According to our calculated results, 
two electronic states originating from independent one 
electron become stabilized because phonon is exchanged 
between these two electronic states of independent one 
electron.   That is, phonon emitted by an electron is 
received by the same electron, and as a consequence of 
this phonon exchange between two electronic states with 
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opposite momentum and spins, this independent one 
electron becomes stabilized in energy.    

Related to seeking for the room-temperature 
superconductivity, in this article, we compare the normal 
metallic states with the superconducting states.   
Furthermore, in this article, we elucidate the mechanism of 
the Faraday’s law in normal metallic states and the 
Meissner effects in superconductivity, on the basis of the 
theory suggested in our previous researches.   

In superconductivity, two electrons behave only as a 
Bose particle.   On the other hand, in the normal metallic 
states, an electron behaves as bosonic as well as fermionic 
under the applied external magnetic or electric field.    An 
electron in the bosonic state with zero kinetic energy 
( pcanonical = 0 ; Vkin ,Bose,kHOCOσ 0( ) = 0 eV ) is much 
more stable than an electron in the fermionic state with 
large kinetic energy of about 35 eV ( pcanonical ≠ 0 ; 
Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) by about 35 eV, in the 
normal metallic state.   Two electrons in the bosonic state 
with zero kinetic energy ( pcanonical = 0 ; 
2Vkin ,Bose ,kHOCO σ 0( ) = 0 eV ) is much more stable than 
two electrons in the fermionic state with large kinetic 
energy of about 70 eV ( pcanonical ≠ 0 ; 
2Vkin ,Fermi,k HOCOσ 0( ) ≈ 70 eV ) by about 70 eV, in the 
superconducting state [1–7].   Because of the very large 
stabilization energy ( Vkin ,Fermi,kHOCO σ 0( )≈ 35 eV ) for 
the Bose–Einstein condensation ( pcanonical = 0 ; 
Vkin ,Bose,kHOCOσ 0( ) = 0 eV ), the magnetic momentum of 
an electron cannot be changed but electromotive force 
(∆Eunit ) can be induced soon after the external magnetic 
field is applied.   Furthermore, the electric and magnetic 
momentum of a bosonic electronic state pairing of an 
electron cannot be changed but the magnetic field can be 
induced soon after the electromotive force is induced.   
Both the supercurrent ( vem,k HOCO

∆Eunit , ∆Eunit( ) ) and 
the magnetic field ( Binduced, kHOCO

∆Eunit , ∆Eunit( )) can be 
induced under the condition of the opened-shell electronic 
structure with zero spin magnetic momentum and 
canonical momentum (σ spin = 0 ; pcanonical = 0).   This is 
the origin of the Faraday’s and Ampère’s law in the 
normal metallic state.   Furthermore, this is the origin of 
the Meissner effect and Ampère’s law in 
superconductivity.   If an electron were not in the bosonic 
state, the applied magnetic field would immediately 
penetrate into the specimen as soon as the magnetic field 
is applied, and we would not observe any electrical 
current even in the normal metals.    

The induced magnetic field Binduced,kHOCO
∆Eunit , 0( ) 

expels the initially applied external magnetic field ∆Bunit  
from the normal metallic specimen.   Therefore, the 

induced magnetic field Binduced,kHOCO
∆Eunit , 0( )  is the 

origin of the Faraday’s law in the normal metallic states 
and the Meissner effects in the superconducting states.   It 
should be noted that the magnetic field 
Binduced, kHOCO

∆Eunit , 0( ) ≠ 0( )  is induced but the spin 
magnetic moment of an electron with opened-shell 
electronic structure is not changed (σ spin = 0 ).   This is 
very similar to the diamagnetic currents in the 
superconductivity in that the supercurrents are induced 
( vem ≠ 0 ) but the total canonical momentum is zero 
( pcanonical = 0 ).   The magnetic field is induced not 
because of the change of each element of the spin 
magnetic moment σ spin  of an electron (similar to the 
pcanonical  in the superconducting states) but because of 
the change of the total magnetic momentum as a whole 
Binduced  (similar to the vem  in the superconducting 
states).    

The electronic energy is conserved and thus the change 
of the electronic states is not directly related to the Joule’s 
heats.   Therefore, applied energy for the electromotive 
forces as a consequence of the change of the magnetic 
field strength itself are not dissipated.   In other words, 
electrical resistivity can be observed because of the 
electronic properties (the disappearance of total 
momentum pcanonical = 0  and vem = 0  under the statistic 
magnetic field), on the other hand, the Joule’s heats can 
be observed not because of the electronic properties but 
because of the magnetic properties (the disappearance of 
the expelling energy of the magnetic fields originating 
from the energy for the change of the magnetic field at the 
beginning, created dynamically (generation of 
electricity)).   We dynamically create the energy for the 
dynamic change of the magnetic field (generation of 
electricity) at the beginning, related to the Joule’s heats, in 
addition to the energy for the magnetic field strength 
itself, related to the electromotive force, kinetic energy of 
an electron, and electrical resistivity.    
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