
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

21

AUTOMATIC SCALING OF INTERNET APPLICATIONS FOR
CLOUD COMPUTING SERVICES

Kotta Pratap ReddyP

1
P, Mr.Y.Durga PrasadP

2
P, Dr.Y.VenkateswaruluP

3

P

1
PMtechStudent ,CSE, Giet Engineering College, Rajahmundry, A,P, India

P

2
PAsst. Professor, Dept of CSE, Giet Engineering College, Rajahmundry, A,P, India

P

3
PProfessor and HOD, Dept of CSE, Giet Engineering College, Rajahmundry, A,P, India

ABSTRACT
An automatic scaling property utilized by
many Internet applications in the cloud
service provider and get benefit from where
their resource usage can be scaled up and
down automatically.The present paper
proposes a system that provides automatic
scaling for Internet applications in the cloud
environment. The present method
encapsulate each application instance inside
a virtual machine (VM) and use
virtualization technology to provide fault
isolation and this method is called Class
Constrained Bin Packing (CCBP) problem
where each server is a bin and each class
represents an application. The class
constraint reflects the practical limit on the
number of applications a server can run
simultaneously. The present paper develops
an efficient semi-online color set algorithm
that achieves good demand satisfaction ratio
and saves energy by reducing the number of
servers used when the load is low.
Experiment results demonstrate that the
proposed system can improve the
throughput by 180% over an open source
implementation of Amazon EC2 and restore
the normal QoS five times as fast during
flash crowds.

Index Terms—Cloud computing,
virtualization, auto scaling, CCBP, green
computing

INTRODUCTION

One of the most usefulbenefits of cloud
computing service is the resource flexibility:
a business customer can scale up and down
its resource usage as needed without upfront
capital investment or long term
commitment. The Amazon EC2 service [1],
for example, allows users to buy as many
virtual machine (VM) instances as they want
and operate them much like physical
hardware. However, the users still need to
decide how much resources are necessary
and for how long. A user only needs to
upload the application onto a single server in
the cloud, and the cloud service will
replicate the application onto more or fewer
servers as its demand comes and goes.

Fig. 1 shows the typical architecture of data
center servers for Internet applications. It
consists of a load balancing switch, a set of
application servers, and a set of backend
storage servers. The front end switch is
typically a Layer 7 switch [2] which parses
application level information in Web
requests and forwards them to the servers
with the corresponding applications running.
Each application can run on multiple server
machines and the set of their running
instances are often managed by some
clustering software such as WebLogic [3].
Each server machine can host multiple
applications. The applications store their

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

22

state information in the backend storage
servers. The storage servers may also
become overloaded, but the focus of this
work is on the application tier. The Google
AppEngine service, for example, requires
that the applications be structured in such a
two tier architecture and uses the BigTable
as its scalable storage solution [4].

Fiure 1: Internet applications two-tiered
architecture

Even though the cloud computing model is
sometimes advocated as providing infinite
capacity on demand, the capacity of data
centers in the real world is finite. The
illusion of infinite capacity in the cloud is
provided through statistical multiplexing.
The present method defines the demand
satisfaction ratio as the percentage of
application demand that is satisfied
successfully. The amount of computing
capacity available to an application is
limited by the placement of its running
instances on the servers. Various studies
have found that the cost of electricity is a
major portion of the operation cost of large
data centers. At the same time, the average
server utilization in many Internet data
centers is very low: real world estimates
range from 5% to 20% [5], [6].

In this paper, we present a system
that provides automaticscaling for Internet
applications in the cloud environment.The
present approach includes the following.The
automatic scaling problem in thecloud
environment, and model it as a modified
ClassConstrained Bin Packing (CCBP)
problem where eachserver is a bin and each
class represents an application.The present
study develop an innovative auto scaling
algorithm to solvethe problem and present a
rigorous analysis on the qualityof it with
provable bounds. Experiments and
simulationsshow that our algorithm is highly
efficient andscalable which can achieve high
demand satisfactionratio, low placement
change frequency, short requestresponse
time, and good energy saving.

The present paper builds a real cloud
computing system which supportsour auto
scaling algorithm. the present method
compare the performanceof our proposed
system with an open source implementation
of theAmazon EC2 auto scaling system in a
testbed of 30 DellPowerEdge blade servers.
Experiments show that the proposedsystem
can restore the normal QoS five times as fast
whena flash crowd happens.

The rest of the paper is organized as
follows. Section 2presents the architecture
of the system and formulatesthe auto scaling
problem. Section 3 describes the details of
our proposed algorithm. Experiment results
are presentedin Sections 4. Section 7 gives
the conclusions of the paper.

SYSTEM ARCHITECTURE

The architecture of our system is shown in
Fig. 2. The proposed method encapsulates
each application instance inside a
virtualmachine (VM). The use of VMs is
necessary to provideisolation among
untrusted users. Each server in the system

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

23

runs the Xen hypervisor whichsupports a
privileged domain 0 and one or more
domainU [7]. Each domain U encapsulates
an application instance,which is connected
to shared network storage (i.e., thestorage
tier). The multiplexing of VMs to PMs
(PhysicalMachines) is managed using the
Usher framework [8]. The main logic of our
system is implementedas a set of plug-ins to
Usher. Each node runs an Usher localnode
manager (LNM) on domain 0 which keeps
track of theset of applications running on
that node and the resourceusage of each
application.

Figure 2: the system architecture.

The schedule procedure of our system can
be described asfollows.

1. The LNM at each node and the L7
switch collectthe application
placement, the resource usage of
eachinstance, and the total request
number of each
applicationperiodically.

2. The Application Scheduler is
invoked periodically tomake the
following decisions:

— Application placement: for each
application decide the set of
servers its instances run on.

— load distribution: for each
application, predict its future
resource demands based on
therequest rate and past statistics,
and then decide how to allocate its
load among the set of
runninginstances. The load of an
Internet application islargely
driven by the rate of user requests.

3. The decisions are forwarded to the
LNM and the L7switch for
execution. The list of action items
for eachnode includes:

— standby or wake up instructions

— application starts and stops

— the allocation of local resource
among the applications

After that the Scheduler notifies the L7
switchof the new configuration including:

— the list of applications

— for each application, the location
of its runninginstances and the probability of
request distributionamong them

The L7 switch then starts processing
Web requests accordingto the new
configuration.It may seem from the
discussion above that the UsherCTRL is a
central point of failure.

From above architecture notice that
complicated applications can take along
time (several minutes or much longer) to
start and finishall the initializations.The
present method takes the advantage of this
featureto bypass the application start process
by suspending a fullystarted and initialized
application instance to the disk

PROPOSED METHOD

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

24

Automatic scaling: The auto scaling
problem is defined as follows: Suppose,
have a server set S on which need torun a set
of applications (A). The CPU capacity
ofserver s (s € S) is CRsR, the maximum
number of applicationinstances which can
run on server simultaneously accordingto
memory factor is MRsR, and the CPU demand
of application(a € A) isCRaR .

To simplify the problem described
above, the present method assumption that
the servers are homogeneous with uniform
capacity. Then the auto scaling problem is
similar to the Class Constrained Bin Packing
(CCBP) problem when label each
application as a class and treat the CPU
demands of all classes as the items which
need to be packed into bins. The only
difference is that the CCBP problem does
not have the “Minimize the placement
change frequency” goal. Therefore, in order
to solve our problem, the present method
modified the CCBP model to support the
“Minimize the placement change frequency”
goal and provide a new enhanced semi
online approximation algorithm to solve it
.the proposed algorithm is given below.

Proposed Algorithm: the proposed algorithm
belongs to the family of color set algorithms
[13], but with significant modification to
adapt to proposed problem. The proposed
methods labels each class of items with a
color and organize them into color sets as
they arrive in the input sequence. The
number of distinct colors in a color set is at
most c (i.e., the maximum number of
distinct classes in a bin).This ensures that
items in a color set can always be packed
intothe same bin without violating the class
constraint. Thepacking is still subject to the
capacity constraint of the bin.All color sets
contain exactly c colors except the last one
whichmay contain fewer colors.

Items from different color sets are
packed independently.Agreedy algorithm is
used to pack items within each color set:the
items are packed into the current bin until
the capacity isreached. Then the next bin is
opened for packing. Thus eachcolor set has
at most one unfilled (i.e., non-full) bin. Note
that a full bin may contain fewer than c
colors. When a new itemfrom a specific
color set arrives, it is packed into the
correspondingunfilled bin. If all bins of that
color set are full, then anew bin is opened to
accommodate the item.

Application Load Increase

The load increase of an application is
modeled as the arrival of items with the
corresponding color. A naive algorithm is to
always pack the item into the unfilled bin if
there is one. If the unfilled bin does not
contain that color already, then a new color
is added into the bin. This corresponds to the
start of a new application instance which is
an expensive operation. Instead, the
proposed algorithm attempts to make room
for the newitem in a currently full bin by
shifting some of its items into theunfilled
bin. Let be the color of the new item and be
any ofthe existing colors in the unfilled bin.
The proposed method search for a binwhich
contains items of both colors. Then the
proposed method moves an item of color
from bin to the unfilled bin. Thismakes
room for an item in bin where we pack the
new item.

The searching for bin process is

binbR1 Rcontains colors cR1 Rand cR3

binbR2 Rcontains colors cR2 Rand cR3

If proposed method can find such two bins,
the following procedureis follows:

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

25

• move an item of color cR2 Rfrom bin bR2
Rto the unfilled bin

• move an item of color cR3 Rfrom bin bR1
Rto bin bR2

• pack the item in bin bR1

This process is illustrated in Fig. 3

Figure 3: Schematic diagram ofArrival a
new item

APPLICATION LOAD DECREASE

The load decrease of an application
is modeled as the departure of previously
packed items. Note that the departure event
here is associated with a specific color, not
with a specific item. The algorithm has the
freedom to choose which item of thatcolor
to remove.

 The proposed departure
algorithmworks as follows. If the color set
does not have an unfilled bin,we can remove
any item of that color and the resulting
binbecomes the unfilled bin. Otherwise, if
the unfilled bin containsthe departing color,
a corresponding item there can beremoved
directly. In all other cases, we need to
remove anitem from a currently full bin and
then fill the hole with anitem moved in from
somewhere else. Let cR1 Rbe the departingcolor
and be any of the colors in the unfilled bin.
The proposed method need tofind a bin

which contains items of both colors. Let be
such abin. We remove the departing item
from bin and then movein an item of color
from the unfilled bin. The procedure
issimilar to the previous case for application
load increase. Fig. 4illustrates this process
for a chain with three colors.

Figure 4: Schematic diagram of depicturing
an existing item

Analysis of the Approximation Ratio

The quality of a polynomial time algorithm
A is measured by its approximation ratio
R(A) to the optimal algorithm OPT:

Where  is the list
and A() and OPT(
bins used under the algorithm and the
optimal algorithm, respectively [9, 10].

EXPERIMENTS

We in experiments.

To evaluate the effectiveness of our system,
the Web applications used in the

experiments are Apache servers serving
CPU intensive PHP scripts. Each

applicationinstance is encapsulated in a

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

26

separate VM. The servers areconnected over
a Gigabit Ethernet. The client machines

runhttperf to invoke the PHP scripts on the
Apache servers. Thisallows us to subject the
applications to different degrees ofCPU load

by adjusting the client request rates. The
proposed method considers aserver as “full”

when its capacity reaches 80%. This
leavessome room for additional load

increase. To save time on the experiments,
the present approach configures the

Application Scheduler with anaggressive
two minutes interval between invocations.
Thisallows us to complete the experiments

in a timely manner.

The auto scaling capability of our algorithm
with nine applications and 30 Dell
PowerEdge servers with Intel E5620 CPU
and 24 GB of RAM. The servers run Xen-
4.0 and Linux 2.6.18. The results are shown
in Figs.5, 6, 7 and 8. To increase the load of
one application dramatically to emulate a
“flash crowd” event while keeping the load
of the other applications steady.

Fig. 5 shows the request rate of theflash
crowd application and the number of active
servers (i.e.,APMs) used by all applications
over the course of the experiment.Initially,
the load in the system is low and only a
smallnumber of servers are used. When the
flash crowd happens, the present approached
algorithm detects the skyrocketing request
rate quicklyand scales up the server
resources decisively. The above figures
show that it uses up all 30 servers during the
peak demand. Then the present method

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015
 ISSN: 2395-3470

www.ijseas.com

27

reduces the request rate of the application
graduallyto emulate that the flash crowd is
over. The algorithm scalesdown the server
resources accordingly to conserve energy.

CONCLUSIONS:

In this paper proposed the design and
implementation of a system that can scale up
and down the number of application
instances automatically based on demand. In
this paper developed a color set algorithm to
decide the application placement and the
load distribution. The proposed system
achieves high satisfaction ratio of
application demand even when the load is
very high. It saves energy by reducing the
number of running instances when the load
is low.

REFERENCES:

[1] Amazon Elastic Compute Cloud
(Amazon EC2).
http://aws.amazon.com/ec2/. Accessed on
May 10, 2012.

[2] A. Cohen, S. Rangarajan, and H. Slye,
“On the performance of tcpsplicing for url-
aware redirection,” in Proc. 2nd Conf.
USENIX Symp.Internet Technol. Syst.,
1999, p. 11.

[3] Oracle WebLogic Suite.
http://www.oracle.com/us/products/middlew
are/ cloud-app-
foundation/weblogic/overview/index.html.
Accessedon May 10, 2012.

[4] Google App Engine.
http://code.google.com/appengine/.
Accessedon May 10, 2012.

[5] M. Armbrust et al., “Above the clouds:
A Berkeley view of cloudcomputing,” EECS

Depart., Univ. California, Berkeley, CA,
Tech.Rep. UCB/EECS-2009–28, Feb. 2009.

[6] L. Siegele, “Let it rise: A special report
on corporate IT,” in TheEconomist, London,
U.K.: London Economist Newspaper, Oct.
2008,vol. 389, pp. 3–16.

[7] P. Barham, B. Dragovic, K. Fraser, S.
Hand, T. Harris, A. Ho,R. Neugebauer, I.
Pratt, and A. Warfield, “Xen and the art
ofvirtualization,” in Proc. ACM Symp.
Oper. Syst. Princ. (SOSP’03),Oct. 2003, pp.
164–177.

[8] M. McNett, D. Gupta, A. Vahdat, and G.
M. Voelker, “Usher: Anextensible
framework for managing clusters of virtual
machines,” inProc. Large Install. Syst.
Admin. Conf. (LISA’07), Nov. 2007, pp. 1–
15

[9] M. R. Garey and D. S. Johnson, “A
71/60 theorem for bin packing,”J.
Complexity, vol. 1, pp. 65–106, 1985.

[10] Scalr: The Auto Scaling Open Source
Amazon EC2 Effort. https://www.

scalr.net/. Accessed on May 10, 2012.

