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ABSTRACT 
We propose anImagedecomposition 
method that can viably deteriorates a 
picture into its cartoon and composition 
segments by utilizing a portrayal of 
surface. The portrayal rests on our 
perception that the surface segment 
appreciates a blockwise low-rank nature 
with conceivable cover and shear, on the 
grounds that composition, all in all, is 
universally different however by regional 
standards decently designed. We set up a 
cartoon composition disintegration 
demonstrate as a raised improvement issue, 
where the synchronous estimation of the 
toon and surface parts from a given picture 
or debased perception is executed by 
minimizing the aggregate variety and 
BNN. Moreover, the model can deal with 
different sorts of corruption happening in 
picture handling, including smear + 
missing pixels with a few sorts of clamor. 
By revising the issue through variable part, 
the supposed rotating heading strategy for 
multipliers gets to be relevant, bringing 
about an effective algorithmic answer for 
the issue. Numerical illustrations outline 
that the proposed model is exceptionally 
particular to examples of composition, 
which improves it deliver results than 
cutting edge disintegration models. 

Index Terms-Cartoon-texturedecompo -

sition, convexoptimization, image 
restoration, low-rank interpretation, 
texturecharacterization. 

INTRODUCTION: 

Oneof the most important and longstanding 
problemsin image processing is image 
decomposition, whichplays a central role in 
a wide range of applications suchas image 
restoration, biomedical engineering, 
astronomicalimaging, remote sensing, 
pattern recognition, and computervision. In 
image decomposition, an image is often 
modeled asthe superposition of two 
meaningful components, namely, thecartoon 
component and the texture component. The 
cartoon component is the piecewise-smooth 
part having the global structural information 
of the image, and the texture component is 
the locally-patterned oscillating part. A 
popular and effective strategy to achieve 
such decomposition is to formulate it as a 
convex optimization problem, in which the 
components are characterized by appropriate 
convex priors. Indeed, under a variety of 
scenarios, image decomposition based on 
the said strategy has been extensively 
studied[1-10]. 

Very recently, Schaeffer and Osher 
proposed to interpret texture using what is 
called the Low Patch-Rank [11]. Their 
approach is mainly motivated by Robust 
PCA [12]–[15] and models the texture 
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component as an alignment of patches which 
are almost linearly dependent. For its special 
capability of capturing patterned structure, 
their cartoon-texture decomposition model, 
which we shall refer to as the LPR model, is 
shown to be superior to other existing ones 
in terms of texture characterization and at 
the same time outperforms the non-local TV 
regularization [16]–[18] in the restoration of 
well-textured images. However, it is also 
true that, because of its fully-global (not 
locally-adaptive) nature, the LPR model is 
not much suitable for characterizing 

texture having various different patterns, 
which is typical in many images, and 
thereby sometimes producing undesirable 
patterned-artifacts 

The very nature of BNN in the proposed 
model not only realizes a reasonable texture 
characterization by its low-rank 
interpretation but also overcomes the 
limitation of the LPR model by its local 
adaptivity. In addition, the proposed model 
is designed to accept various degradation 
scenarios, including blur + missing pixels 
with noise. Such a scenario was considered 
in a recent study under a Gaussian noise 
assumption. Notably the proposed model 
can also handle several non-Gaussian noise 
cases in a unified way with the associated 
convex optimization problem solvable using 
proximal splitting techniques.  

 The rest of the paper is organized into 3 
sections section 2 describe the proposed 
method and results are discusswed in section 
4 and conclusions are given in section 4 

PROPOSED METHOD:  IMAGE 
DECOMPOSITION MODEL 

This section is devoted to the proposal of an 
image decomposition model as a convex 
optimization problem, where we 

characterize the texture component using 
multiple BNN with different shear angles 
and present a guarantee of the existence of a 
minimizer. An optimization scheme based 
on ADMM for the proposed model is also 
provided with its convergence property and 
efficient implementation. 

Formulation: Consider to the estimation of 
ideal cartoon and texture components C, T∈ 
RP

N
P (N= nRvRnRhR, nRvR× nRhR corresponds tothe 

image size) from an observation v:= 
ɧ( (uorg)∈RP

M
P(M∈N), where uRorgR=C + 

T∈RP

N
P is an original image,∈ RP

M×N
Pa linear 

observation operator representing 
somedeterioration process (e.g., blur and/or 
missing pixels), andN : RP

M
P→ RP

M
Pa noise 

contamination being not necessarilyadditive. 
The proposed cartoon-texture decomposition 
(possibly with degradation) is then 
formulated as follows. 

(Cartoon-texture decomposition using 
BNN) 

 

where tRkR(k = 1, . . . , K ) are the 
sub-texture components, Z ⊂ RN
 is the set of all zero-average vectors 
defined by Z := {x ∈ RP

N
P |

 NRiR=1P

x
PiP

=
P0}, D ⊂RP

N
P  a 

(normalized) dynamic range constraint given 
by D := {x∈ RN | xRiR∈ [0, 1] (i=1, . . . , N)},
 λ∈R++,  and Fv ∈ 0 P

(
PRP

M
P )

 is a certain datafidelity function 
regarding the observation v, the proximity 
operator of which is available. Note that the 
texture component T is modeled as
 T:=RkRKR=R1P

t
Pk, where each tRkRis 

characterized by BNN with a different shear 
angle, i.e., consisting of patterns extending 
in a specific direction. 
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(a) Noiseless case: Since v = uRorgR, a 
suitable fidelity is FRvR(x) = ιCv(x), 
where ιCRvRis the indicator function of 
the closed convex set CRvR:= {x ∈ RP

M
P| 

x = v}. The associated proximity 
operator is given by proxγFRvR(x) = 
PCRvR(x) = v, where PC stands for the 
metric projection onto a nonempty 
closed convex set CI 

(b) Gaussian noise case: A standard 
choice is to use the additive _2 
fidelity: FRvR:=μ/2||  · −v||2/2(μ ∈ RR++R, 
and ||·||R2R denotes the ɧR2R norm), with 
the associated proximityoperator 
given by proxγFRvR(x) = μγv+xμγ+1 . 
An alternativechoice is the 
constrained type fidelity: Fv(x) := 
ιB2v,ε(x),where BP

2
PRv,εR:= {x ∈ RP

M
P| ||x 

–v||2 ≤ ε} (ε ∈ RR++R).The associated 
proximity operator is the metric 
projectiononto BP

2
PRv,εR, i.e., proxγFRvR(x) 

= PRBRP

2
PRv,εR(x) = x, if x ∈BP

2
Pv,ε;v + 

ε(x−v)/ ||x−v||2, otherwise. 
(c) Impulsive noise case: It is well 

known that using the ᶅR1R norm as 
fidelity measure is robust to 
impulsive noise contamination. The 
additive ᶅR1R fidelity is given by Fv := 
μ|| · −v||R1R (μ ∈ RR++R, and ||·||R1R denotes 
the ᶅR1 Rnorm), the proximity operator 
of which can be computed by the 
soft-thresholding: for i= 1, . . . , M, 
by 

 

wheresgn denotes the signum 
function. As in (a), the constrained 
type alternative is FRvR(x) := ιBR1Rv,ε 
(x), where BR1Rv,ε:= {x ∈ RP

M
P| ||x –v||1 

≤ ε}. The associated proximity 
operator can be computed efficiently 
by a fast ᶅR1 Rball projection algorithm 
[19]. 

(d) Poisson noise case: It has been 
shown that under Poisson noise 
contamination, the so-called 
generalized KulbackLeibler 
divergence is suitable for Fv. The 
definition and the computation of the 
associated proximity operator can be 
found in [20]. 

RESULTS AND DISCUSSIONS 

We examine the effectiveness of the 
proposed cartoon texture decomposition 
model in several scenarios. All experiments 
were performed using MATLAB (R2013a), 
on a Windows 7 (64bit) desktop computer 
with an Intel Core i7 2.8 GHz processor and 
8.0 GB of RAM. The dynamic range of test 
images (256 × 256) are normalized to [0, 
1].In (5), we use γ = 0.1 and s(0) = d(0) = 0, 
and for the stopping criterion, adopt _r(n+1) 
− r(n)_2 <0.1. The tolerance value and max 
iteration number of the preconditioned 
conjugate gradient method are set to 1.0 × 
10 P

−6
P and 20, respectively. 

Decomposition 

Here we consider pure decomposition, i.e., 
no degradation,to analyze the characteristics 
of the proposed model. In thiscase, the 
observation v is the original image uorg, so 
that asuitable data-fidelity function is 
ιCv.We first use the synthesized image 
Sakura, shown in thetop left of Fig. 1, to 
give a clear insight into the behavior ofthe 
proposed decomposition, i.e., the sub-texture 
separationcapability. For reference, we also 
apply the nuclear normmodel, i.e., simply 
using the nuclear norm (i.e., BNN withk = 1, 
θ1 = (∗, 0), and mv = δv= nv ,mh= δh= 
nh)as a prior for texture component, and the 
LPR model tothe image, where we optimize 
them by using the proposedalgorithm 
modified for these models.7 We choose the 
blocksize m and the shift step number δ of 
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BNN as (16, 16) and(8, 8), and the number 
of sub-texture components is set toK = 3. In 
each model, the parameter controlling the 
balancebetween TV and texture prior (the 
nuclear norm, LPR or BNN)is selected in 
such a way that the decomposed cartoon and 
texturecomponents are closest to the oracle 
ones in the sense ofthe Euclidean distance. 
Note that such parameter optimization is 
only available when we use synthesized 
images. 

 

(a)      (b)  (c)       (d)       (e) 

Fig1: Pure decomposition results using 
the synthesized imagea) original Image    
b) cartoon Image  c) texture by cartoon 
d0 cartoon LPR   e0 texture by LPR 

As can be seen in Fig. 1, all the models 
produce reasonablecartoon-texture 
decompositions. This is because 
theSakura image consists of both simple 
cartoon and texture,and thus can be 
easily decomposed. We observe that 
patternsextending in different directions 
are extracted as sub-texturecomponents 
in an almost completely-separated 
manner byusing the proposed model 
with the exact shear angle of 
45◦,implying that the proposed texture 
characterization based onBNN with 
different shear angles appropriately 
works. Wealso show decomposition 

results of using shear angles whichdo not 
exactly match the directions in the third 
and fourth 

rows of Fig. 1. As expected, the larger 
difference of shearangle from the exact 
one leads to the more different sub-
textureseparation. One may think that, in 
the case of simpletexture such as in the 
Sakura image, similar sub-
texturecomponents can be generated by 
applying some directionalanalysis 
transform (e.g., directional wavelet) to 
the texturecomponent obtained by the 
nuclear or LPR model. Actually,this 
kind of things may be possible by using 
a combinationof some suitable methods, 
but, compared with such 
sequentialmethods, the use of the 
proposed model has the 
followingadvantages: i) To begin with, 
extracting a reasonable 
texturecomponent from a given image is 
difficult and important,and indeed, the 
succeeding experimental results 
demonstratethat the proposed model is 
more suitable to this task thanexisting 
models; ii) The proposed model provides 
cartoon-texturedecomposition and sub-
texture separation in a unifiedmanner, 
i.e., by just solving one convex 
optimization problem,so that we can 
guarantee the optimality in the sense of 
themodel.Next we compare the proposed 
model with the LPR onevia non-
synthesized images Barbara and House 
[the top leftof Fig. 2(a) and (b)]. Note 
that, in this case, the 
oracledecomposition of each image is 
unavailable, so that we cannotoptimize 
the parameters of the models as in the 
case of Sakura.To conduct a fair 
comparison, we produce 
decompositionresults by the use of the 
LPR model with different 
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parametersettings, in order to illustrate 
the superiority of the proposedmodel in 
terms of extracting patterned texture.The 
results are depicted in Fig. 3 (from top to 
bottom,cartoon component, texture 
component, and their close-ups).In Fig. 
3(b), we see that the texture component 
extracted bythe proposed model only 
contains patterned fabric and 
nocontours, implying that our model is 
very selective to patterns.Such 
decomposition cannot be achieved by 
the LPR modelas shown in Fig. 3(a), 
where if we set parameters to 
extractsufficient texture then the 
resulting texture component 
containscontours (left), and if set to not 
contain contours then patternedtexture 
remains in the cartoon component 
(right). In the caseof House, our texture 
component [Fig. 3(d)] exhibits patterned 

Structure like roof tiles and windows but 
there are very fewnon-patterned objects, 
which also indicates the selectivity ofthe 
proposed model. By contrast, the LPR 
model with anyparameter setting does 
not lead to a decomposition similarto the 
proposed one [Fig. 3(c)]. We also 
present the correspondingsub-texture 
components obtained by the 
proposedmodel in Fig. 5, in which we 
observe that patterns extendingin 
different directions are extracted 
separately. These results verify a special 
capability of BNN, namely, that of 
capturingglobally dissimilar but locally 
well-patterned nature of texture. 

The required iteration number and CPU 
time for the proposedmodel on Barbara 
are 66 and 37[sec], and those for the 
LPRmodel 151 and 32[sec], being 
almost the same on House. 

 

Fig. 2: Comparison of the results of 
deblurring (3 × 3 Gaussian blur) with 20% 
missing pixels for each group, from left to 
right, top to bottom: original, observation, 
LPR’s result, our result, and their close-ups): 
The proposed model is locally-adaptive, and 
hence it can restore fine texture without 
generating patterned artifacts observed in 
the LPR’s results. (a) Results on Barbara. 
(b) Results on House.  

 

Fig. 4. Comparison of decomposition results 
(for each column, from top to bottom, 
cartoon; texture; close-up of cartoon; close-
up of texture): The proposed model extracts 
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sufficient texture without containing edges 
and contours, which cannot be achieved by 
the LPR model using any parameter setting. 
(a) LPR with two different parameter 
settings. (b) Proposed. (c) LPR with two 
different parameter settings. (d) Proposed. 

 

Fig. 5: Sub-texture components of the 
results in Fig. 3(b) and (d): Patterns 
extending in different directions are 
extracted separately. Note that they are 
magnified by a factor of three for visibility. 

We plot in Fig. 6 the improvement of PSNR 
and SSIM by the proposed model and the 
LPR model from the best average 
performance of the G-norm model [12], 
where we examine the proposed method 
using different block sizes and shift step 
numbers with respect to varying λ in (3). 
From the results in Fig. 7, the best average 
performance of the proposed model with all 
the block sizes and shift step numbers 
exceed those of the G-norm and LPR 
models, which implies that the proposed 
model agrees well with a variety of images 
compared to the other models. 

 

Fig. 6. Improvement of PSNR [dB] and 
SSIM by the proposed model and the LPR 
model from the best average performance of 
the G-norm (averaged over 200 images) 
with respect to varying λ in (3): The legend 
of black, blue and red lines indicate the 
block size and shift step number of the 
proposed method, e.g., 16 − 8 means mv = 
mh= 16 and δv= δh= 8. 

Observations from the proposed method: 

a) The value of lambda giving the best 
average performance depends on the 
block size and shift step number, as 
indicated in Fig. 6. Specifically, first, 
the more redundant setting, i.e., the 
smaller shift step number, requires 
the larger λ to achieve the best 
average performance, implying that 
the value of BNN is proportional to 
the redundancy rate (mvmh)/(δvδh). 
Second, based on one redundancy 
rate, the smaller block size needs a 
larger λ for the best average 
performance, which means the 
increase of the number of blocks 
leads to the increase of the value of 
BNN.  

b) Among all the block sizes, the 
smallest one (mv = mh= 8) results in 
the worst performance, as observed 
in Fig. 6. This would be because an 
excessively small block size cannot 
capture and reconstruct patterns well. 

c) The non-overlapped settings (the 
lines of ‘8-8’ and ‘16-16’ in Fig. 7) 
perform poorly, which agrees with 
the intuition that it tends to produce 
undesirable blocky effects. Basically, 
a higher overlap level leads to a 
better performance but with a more 
expensive computational cost. 

d) It is natural to suppose that a large K 
leads to a more accurate 
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characterization of patterns 
extending in various directions, and 
thus results in a better restoration. 
The experimental results in Table II 
match this expectation. At the same 
time, the computational complexity 
grows because of the increase in the 
number of the separated components. 

CONCLUSIONS: 

We have proposed a cartoon-texture 
decomposition model with a novel texture 
prior named the Block Nuclear Norm 
(BNN). Using BNN, our model interprets 
the texture component as the combination of 
blockwise low-rank matrices with possible 
overlap and shear, which leads to a suitable 
characterization of globally dissimilar but 
locally well-patterned nature of texture. The 
convex optimization problem associated 
with the proposed model is efficiently 
solved by ADMM. Numerical examples 
demonstrate its effectiveness both in pure 
decomposition and restoration. Future works 
include an efficient implementation based 
on the blockwise nature of BNN, extension 
to color image decomposition with the 
incorporation of the combination with more 
involved data-fidelity constraints under 
various scenarios of noise contamination, 
and the incorporation into hierarchical 
convex optimization for selecting a better 
pair of cartoon and texture components 
among all the solutions to the proposed 
model. 
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