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Abstract 

Two independent fixed sized samples are drawn from continuous uniform 

distributions on (0, )  and  (0, ) respectively. Problem is to improve 

the estimator of . If the hypothesis that =  is accepted, we use both 

the samples to estimate ; otherwise, use its UMVUE based on the first 

sample alone. The likelihood ratio test is developed to test this 

hypothesis. Its properties are studied. An improved estimator is suggested 

and its properties are studied. The mean square error (MSE) of this 

estimator is compared with the variance of UMVUE based on first 

sample. The regions in which new estimator is preferable are identified. 

Graphs for a few specific values are also given. 
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1.INTRODUCTION: Let X1 ,X2, … ,Xn  and Y1 ,Y2 , … ,Ym  be two 

independent random samples from continuous uniform probability distributions 

on (0, )  and  (0, ) respectively. Let X and Y be the maximum values in 

these two samples respectively. The problem is to estimate the value of . It is 

suspected but not known for sure that   Therefore, we use the two 

samples to  test the hypothesis that  . If the hypothesis is accepted, we 

use both the samples to estimate ;  otherwise, use just the first sample. We 

provide here the necessary test and the estimator in this situation. We study the 

properties of the test and the estimator. This estimator is compared with the 

usual unbiased estimator based on maximum likelihood  estimator based on 

single sample. 

2. LIKELIHOOD RATIO TEST TO TEST Ho: : The pdf’s  of X 

and Y are given by  

 (x)= (n/ 
n
)x

n-1
, 0<x<  , >0                                               (2.1) 

And  (y)= (m/ 
m

)y
m-1

, 0<x<  , >0.                                  (2.2) 

The joint pdf of (x,y) is  

(x,y)=[mn/(( 
n
)( 

m
))]x

n-1
y

m-1
(x)  (y)              (2.3) 

The parameter space is,   

                 

To test   Ho: against H1:  ,we have, 

                 

and  

 

              If    and both are unknown, x and y are maximum likelihood 

estimators (mles) of  and  respectively. Therefore,    
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Sup (    (x,y) = (nm/( x
n
 y

m
)) x

n-1
 y

m-1   
= nm/(xy). 

If  , say, the mle of  is max(x, y). Therefore, 

Sup ( )   {  (x,y)  } = [nm  x
n-1

 y
m-1 

/{ (max(x,y))
m+n

}]   

Therefore, the likelihood ratio  

           L.R.(x ,y) =       

                            =[[nm  x
n-1

 y
m-1 

/{ (max(x,y))
m+n

}]/[nm/xy]] 

                             = (y/x)
m
, if x  ≥ y           (2.4) 

Putting T=  X/Y, we have, 

        L.R.(x ,y)=t
n
,  if t ≤ 1   

                        =  t
-m

, if t> 1. 

Thus, the likelihood ratio test to test Ho against  H1 is: Reject Ho iff     L.R.(x 

,y) < c , where, c  is some constant so chosen that size of the test becomes α. 

The test is equivalent to: Reject Ho iff  L.R.(x,y)= LR(t) < c, i.e.; iff  t
n
 < c for  

0< t ≤ 1  and (1/t
m

) < c for t> 1.That is, reject Ho  if t < c
1/n

 for 0< t ≤ 1  and if t 

> c
-1/m

 for t>1. 

Thus, the test is 

             Ф(t) = 1, if t < c
1/n

 for 0< t ≤ 1  and if t > c
-1/m

 for t>1. 

                     =0,otherwise.                                                           (2.5) 

Applying equal tail criterion,  

            P Ho{ t < c
1/n

} = P Ho{ t > c
-1/m

} = α/2     (2.6) 

To calculate probabilities in (2.6) we have to know the probability distribution 

of T. For this, let T = X/Y and U = Y. If 0< t ≤ ( ), 0< u < .If ( ) < 

t < ∞, 0 < u < ( /t). X = TU. The Jacobian of transformation   

            J =        (2.7) 

The joint pdf of T and U, using (2.3)  and (2.7) is 

(u,t) = (n/ 
n
)( m/ 

m
)t 

n-1
u 

n+m-1
, 0<t<∞, 0<u<  , 0 < tu <         (2.8) 

                                       = 0 ,    otherwise. 
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Integrating (2.8) w.r.t. u, we get, the marginal pdf of T as 

 

       (t)= (nm/(n +m))( )
n
 t 

n-1
,  0< t ≤ ( )  

                      = (nm/(n +m))( ) 
m
(1/t 

m+1
), ( ) < t < ∞. (2.9) 

If  , i.e.; under Ho, we have, 

        (t) = (nm/(n +m))t 
n-1

,   0< t ≤ 1 

                   = (nm/(n +m))(1/t 
m+1

) , 1< t < ∞.     (2.10) 

Note that this is independent of . 

If the samples are of equal size, i.e.; if n = m, (2.9) becomes, 

       (t)= (n/2)( )
n
 t 

n-1
,                    0< t ≤ ( )  

                      = (n/2)( ) 
m
(1/t 

m+1
) ,          ( ) < t < ∞.    (2.11) 

If         , as well as     n = m, this reduces to 

            h(t) = (n/2) t 
n-1

,     0 < t ≤ 1  

                    = (n/2) (1/ t 
n+1

),    1< t < ∞.      (2.12)   

From (2.5), we have, 

          (nm/(n +m))   = (nm/(n +m))    = α/2.This gives  

the critical region to be 

   Rα = {(0,( α(m +n)/(2m))
(1/n)

)U((2n/ α(n+m))
(1/m)

, ∞)}  

        = {(0, U( , ∞)}  (2.13) 

If m=n, the critical region reduces to, Rα =  {(0,  ) U (   , ∞ )}.  (2.14) 

The power of the test (2.5) is given by , 

         βф(ѳ1,ѳ2)= E ѳ1,ѳ2(Ф(T))= P[ ( t < c
1/n

 )U (t > c
-1/m

)] 

                         =   +   

=  
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=  α/2[(θ2/θ1)
n
 + (θ1/θ2) 

m
 ] =                                (2.15) 

  

=   , if n=m.                                                                       ( 2.16) 

3. ESTIMATOR TO ESTIMATE :  

     Consider the following estimator 

T
*
=          (3.1) 

where  Z= max(X,Y) 

The pdf of Z is given by, 

f(zIθ1,θ2)=                    ,θ1<θ2      (3.2) 

And 

f(zIθ1,θ2)=                   ,θ2≤ θ1   (3.3) 

 

The expected value of Z is, 

E(Z)=                                      (3.4) 

and 
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E(Z
2
)=  

If θ1= θ2, 

1. E(Z)=           (3.5) 

    Which is expectation of maximum of (n+ m) observations.  

2. E(Z
2
)=  

     Which is expectation of square of maximum of (m+ n) observations. 

We have the p.d.f.s, 

fX(x | θ1)=  

fY(y | θ2)=  

hT(t | θ1, θ2)=  

hY,T (y,t | θ1,  θ2)= 

(3.6)  

 

If   and if  0< t <  

h(y | t, θ1, θ2) =                (3.7) 

Let us put Y =  

Jacobean of transformation is,  
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=  

Therefore, 

h(x,v | θ1, θ2) =  

In our notation, V=T=  , therefore, 

h(x,t| θ1, θ2) =   

 

   

(3.8)   

0<  0 < x < also 0 < x < , therefore 0 < x < min { θ1, θ2} 

If 0 < t <  

If  

Therefore, the conditioned density of X given T is given by, 

h(x I t, θ1, θ2) =     (3.9) 

let A1 = (0, , A2 = (  and A= A1 U A2. 

Consider the estimator T
*
 defined earlier, 

T
*
 =  

Thus, T
*
 = X  

Therefore, 

E(T
*
) = E (X ) + E(  

On A1, 0 < T <  <  , therefore, 

E(X I t 1) =  
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E(X  ) =  

                     =         (3.10) 

E(X
2
 I t 1) = t

2
 

E(X
2

) =  

                     =       (3.11) 

In general, 

E(X
r

) =  

On A2 , t >    and 

E(X | t 2) =  

E(X  ) =  

                     =        (3.12) 

E(X
2
 | t 2)=                                                                                       

E( X
2
 (t) ) =       (3.13) 

In general, 

E( X
r
 (t) ) =  , r > 0 

But T
*
= X if Tє A1 or Tє A2 , i.e. if Tє A 

Therefore actually we want, 

E (X ) = E[X  + X ] 
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=       (3.14) 

E(X
r

(t) ) = E(X
r

) + E(X
r

) 

                   =  

Consider, 

E[(X  – θ1)
2
] = E[X

2
 - 2θ1 X  + ] 

                               = E[X
2

]- 2 θ1E[X ] +  

=   

        (3.15) 

 

Z= max (T,1) ,            A
c
= (c1,c2) 

Note that   ,   c1 < 1 < c2 

4. CASE ï I       1 < 2 

                                               

Thus, 

T
*
= X { (0,c1)(t) +  (c2,∞)(t) } + X (1,c2)(t)+ Y (t) + Y (t)    (4.1) 

Therefore,  E(T
*
) = a+b+c+d; 

Where,   a =  E[X { (0,c1)(t) +  (c2,∞)(t) }],    b =  E[X (1,c2)(t)], 

c =  E[Y (t)],     d = E[Y (t)] 
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a= E[X { (0,c1)(t) +  (c2,∞)(t) }] 

  =  

E[X
2
 {  +   }] =  

b= E[X  ]   = E[  E[X I t є (1,c2)]]  

   =   

    =  

E[X
2
 (t)] = . 

Now, we consider  

c= E[Y (t)]  = E [ (t) E[Y I t є  ] 

  =   =  

E[Y
2
 (t)]=  

d= E[Y (t)]  = E[ (t) E[Y I t є  ] 

  =  

  =  

E(Y
2

(t))=  

From a, b, c and d 
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E(T
*
)=  + 

 +  +   

 

 

Thus,  

E(T
*
)=   +  +       (4.2) 

In estimating  by T
*  

the bias is, 

= E(T
*
) -  

     =   +  +  - (4.3) 

We also have, 

E(T
*2

) = E[ X
2
 { (t) + (t) }] + E [X

2
 (t) ] + E [ Y

2
 (t)]  

              +E [ Y
2
 (t) ]  

 =    

                                   +  

    E(T
*2

)=   +  +    (4.4) 

The MSE (mean squared error) of T
*  

in estimating  is given by, 
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E(T
*
- 1)

2
= E(T

*
)

2
 - 2 1 E(T

*
) + 1

2
=   

–  

 

       (4.5) 

If m=n, 

=       (4.6) 

where, . 

 

5.CASE- II: >  

In this situation,  

 

Thus,  

= X  + Y ( ,1)(t) + X (t) + X (t)                      (5.1) 

    = (I) + (II) + (III) + (IV) 

E(I) = E[X (0, )(t)] 

     = E[ (0, )(t) E{X I t є (0, )} ]  

       =  ,     =   

       =   
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E(I
2
) = E[X

2
 (0, )(t)] 

        =   

E(II) = E[ ( ,1)(t) E{Y I t є ( ,1)} ]  

        =  

        =  

        =  

        =     

E(II
2
) = E [Y

2
 ( ,1)(t) ]  

          =   

E(III) = E [ (t) E{X I t є (1,  )}] 

         =  

    =  

E(III
2
)= E[X

2
 (t)] 

         =  

E(IV)= E [X (t)] 

        = E [ (t) E{X I t є } ] 
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        =   

        =  

 E(IV)=  

E(IV
2
)= E [X

2
 (t)] 

          =  

          =  

Thus, 

E( = +   

 +   + .                                     

              

= 

  

E( =   (5.2) 

E( = +   

 +     +  
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 =  

 

E( =    (5.3) 

In this situation, i.e., when >  the bias of   in estimating  is given by, 

= E(T
*
) -  

                 =   +  -      (5.4) 

Also 

E(T
*
- )

2
= E(T

*
)

2
 - 2  E(T

*
) + 

2
 

=  -  

    

     =  –  

         

                                   

              

(5.5) 
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     6. CASES  I AND II TOGETHER.  

Thus, from the cases I and II above we conclude that, 

 

Its bias is given by, 

    

(6.2) 

The MSE of  is given by, 

E(T
*
- )

2
 

    (6.3) 

Where 

b2=  (6.4) 

If n=m,      c1=  ,        c2=   and 

 

(6.5) 

If α=0,  gives always pooled estimator and c1=0, c2=∞. This gives 
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        (6.6) 

If n=m, this becomes, 

           (6.7) 

In this putting  , we have 

 

                

                

                 : the bias of the maximum of a sample of size 2n. 

If m=n the MSE of   is given by, 

E(T
*
- )

2
    (6.8) 

Where 

 

If α=0, in this, then, =0 and 

E(T
*
- )

2         
 (6.9) 

                                         (6.10) 

(6.10)is the MSE of the maximum in the 2n observations, if . 

If α=1, m=n we have c1=c2=1 and  becomes never pool estimator. In this 

case 
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           (6.11) 

If , this becomes, 

 

               .                                                                       (6.12)                              

  (6.12)  gives  bias  of the maximum in n observations in single sample. 

If m=n, α=1, 

b2=  

If , this becomes, 

b2=  

If n=m, α=1,  

E(T
*
- )

2
  : MSE of maximum of sample of size n (i.e., of X). 

Note that,  

               ,   V n≥1 and  >0. 

That is, MSE of proposed estimator T* is smaller than that of the sample 

maximum of size n V n≥1 and  >0. 

7. COMPARISON OF ESTIMATORS: 

 To have an idea of comparative values of mean square error (MSE) of the 

proposed estimator T* and the variance  
 
of uniformly minimum 

variance unbiased (UMVU) Estimator based on the single sample, 

, we calculate them for some particular values. T* would provide 
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better estimator when = . For the sake of convenience, let us take =1 and 

=0.4, 0.5,…,1.3 etc. Using these values of the parameters we evaluate MSE 

of T* and the variance  of UMVUE based on single sample. For small 

samples T* gives smaller MSE than . This is illustrated by choosing some 

values of the sample sizes n and m. Following tables and the graphs make it 

clear that whenever = , T* can be used in a short span of the values. But, 

we can not say that T* is uniformly better than T for all , , and for all n, m. 

Thus, the proposed estimator T* can be profitably used in the specific region, 

with care. If the sample sizes are more than 15, the UMVUE is consistently 

better than T* as its variance is less than the corresponding MSE of T*. In this 

discussion I did not consider the magnitude of the bias of T*. But, I have 

derived expressions for bias of T* in various situations. 
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1. Here we consider n=3, m=8 and ɗ2=1. The MSE(T*) and Variance V 

are as below         

Table 7.1 

MSE(T*)  , VARIANCE V WHEN n=3,m=8 AND ɗ2=1 

ɗ1 n m mse var 

0.4 3 8 0.155928 0.010667 

0.5 3 8 0.141231 0.016667 

0.6 3 8 0.097822 0.024 

0.7 3 8 0.058256 0.032667 

0.8 3 8 0.032224 0.042667 

0.9 3 8 0.022331 0.054 

1 3 8 0.027665 0.066667 

1.1 3 8 0.181955 0.080667 

1.2 3 8 0.183311 0.096 

1.3 3 8 0.193911 0.112667 

 

 

 

Figure 7.1 

Figure 7.1 shows the span where T* provides a better estimate than UMVUE 

based on single sample. 
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2. Here we consider n=5, m=7 and ɗ2=1. The MSE(T*) and Variance V are 

as below. 

Table 7.2 

MSE(T*)  , VARIANCE V WHEN n=5,m=7 AND ɗ2=1 

ɗ1 n m mse var 

0.6 5 7 0.065936 0.010286 

0.7 5 7 0.047346 0.014 

0.8 5 7 0.026049 0.018286 

0.9 5 7 0.016461 0.023143 

1 5 7 0.019571 0.028571 

1.1 5 7 0.091949 0.034571 

1.2 5 7 0.088216 0.041143 

1.3 5 7 0.091916 0.048286 

1.4 5 7 0.100039 0.056 

 

 

Figure 7.2 
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3. Here we consider n=8, m=3 and ɗ2=1. The MSE(T*) and Variance V are 

as below. 

Table 7.3 

MSE(T*)  , VARIANCE V WHEN n=8,m=3 AND ɗ2=1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 

ɗ1 n m mse var 

0.8 8 3 0.015295 0.008 

0.9 8 3 0.013654 0.010125 

1 8 3 0.016591 0.0125 

1.1 8 3 0.036653 0.015125 

1.2 8 3 0.036585 0.018 

1.3 8 3 0.039823 0.021125 

1.4 8 3 0.044726 0.0245 

1.5 8 3 0.050627 0.028125 

1.6 8 3 0.057235 0.032 

1.7 8 3 0.064418 0.036125 

1.8 8 3 0.072113 0.0405 

1.9 8 3 0.080288 0.045125 

2 8 3 0.088928 0.05 

2.1 8 3 0.098023 0.055125 

2.2 8 3 0.107569 0.0605 

2.3 8 3 0.117564 0.066125 

2.4 8 3 0.128005 0.072 

2.5 8 3 0.138891 0.078125 

2.6 8 3 0.150224 0.0845 

2.7 8 3 0.162001 0.091125 

2.8 8 3 0.174222 0.098 

2.9 8 3 0.186889 0.105125 
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4. Here we consider n=m=3 and ɗ2=1. The MSE(T*) and Variance V are as 

below. 

Table 7.4 

MSE(T*)  , VARIANCE V WHEN n=m=3 AND ɗ2=1 

 

 

                                            

 

 

 

 

 

 

 

 

 

 

Figure 7.4 

 

ɗ1 n=m mse var 

0.4 3 0.084078 0.010667 

0.5 3 0.084268 0.016667 

0.6 3 0.061419 0.024 

0.7 3 0.042279 0.032667 

0.8 3 0.033758 0.042667 

0.9 3 0.036705 0.054 

1 3 0.049507 0.066667 

1.1 3 0.157842 0.080667 

1.2 3 0.167972 0.096 

1.3 3 0.18439 0.112667 

1.4 3 0.205548 0.130667 

1.5 3 0.230507 0.15 

1.6 3 0.258679 0.170667 
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5. Here we consider n=m=5 and ɗ2=1. The MSE(T*) and Variance V are as 

below. 

Table 7.5 

MSE(T*)  , VARIANCE V WHEN n=m=5 AND ɗ2=1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 

ɗ1 n=m mse var 

0.6 5 0.053385 0.010286 

0.7 5 0.040361 0.014 

0.8 5 0.024444 0.018286 

0.9 5 0.018647 0.023143 

1 5 0.023456 0.028571 

1.1 5 0.086482 0.034571 

1.2 5 0.085198 0.041143 

1.3 5 0.090243 0.048286 

1.4 5 0.099125 0.056 

1.5 5 0.110572 0.064286 

1.6 5 0.123901 0.073143 

1.7 5 0.138733 0.082571 
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6. Here we consider n=8, m=8 and ɗ2=1. The MSE(T*) and Variance V are 

as below. 

Table 7.6 

MSE(T*)  , VARIANCE V WHEN n=8,m=8 AND ɗ2=1 

 

                                        

 

 

 

 

 

 

 

 

 

Figure 7.6 

 

ɗ1 n=m mse var 

0.7 8 0.027597 0.006125 

0.8 8 0.020979 0.008 

0.9 8 0.010685 0.010125 

1 8 0.011014 0.0125 

1.1 8 0.044467 0.015125 

1.2 8 0.039973 0.018 

1.3 8 0.041341 0.021125 
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7. Here we consider n=15, m=15 and ɗ2=1. The MSE(T*) and Variance V 

are as below. 

Table 7.7 

MSE(T*)  , VARIANCE V WHEN n=15,m=15 AND ɗ2=1 

 

 

 

 

 

 

 

 

Figure 7.7 

 

 

 

 

 

 

 

ɗ1 n=m mse var 

0.9 15 0.006613 0.003176 

1 15 0.003685 0.003922 

1.1 15 0.014804 0.004745 

1.2 15 0.012066 0.005647 
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