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Abstract— A new Feedback based design 
technology scheme of the AES-128 
(Advanced Encryption Standard, with 
128bit-key) algorithm is proposed in this 
paper. For getting the speed of encryption 
block, decryption blocks and as well as the 
key generation block, the Feedback 
architecture is applied and the mode of data 
transmission is modified in this design so that 
the chip size can be decreased. The 128-bit 
plaintext and the 128bit-initial key, as well as 
the 128bit- output of cipher text, are all 
divided into four 32bit-consecutive units 
respectively managed by the clock. This new 
program can significantly decrease quantity 
of chip pins and effectively optimize the area 
of chip[4]. 
KeyWords— VHDl, DES, 3DES, Area 
Optimization, Encryption, Decryption, Key 
Generation, PipeLine Arch, FeedBack Arch. 
 

I. Introduction 
The 3DES algorithm is subjected to 

more security than any other encryption 
algorithm over a long period of time and no 
effective cryptanalytic attack based on 
algorithm rather than brute force has been 
found. Accordingly, there is a higher level of 
confidence that 3-DES is very much resistant to 
cryptanalysis. If security is  only consideration 
then 3-DES would be an appropriate choice for 
a standardized encryption and decryption 
algorithm for years to come[1]. 

The main principle drawback of 3-DES 
is that the algorithm is relatively sluggish in 
software. The original DES was designed in 
mid 1970s for hardware implementation and 
does not produce efficient software code. In 
3DES it has 3 times as many rounds as DES is 
correspondingly slower. secondary drawback is 

that both DES and 3-DES are works on 64-bit 
block size. Just For the reasons of both 
efficiency and security a larger block size is 
desirable[1]. 

Just because of these drawbacks, 3-DES 
is not reasonable algorithm for long time use. 
As a replacement algorithm, NIST (National 
Institute Of Standard And Technology) in 1997 
issued a call for proposals for a new Advanced 
Encryption Standard (AES) which is having 
security strength equal or better than 3-DES and 
significantly improved in working. In addition 
to these general requirements NIST specified 
that AES must be symmetric block cipher with 
a block length of 128 bits and support for key 
lengths of 128-bits,192-bits and 256-bits[1]. 

In first round of evaluation, 15 proposed 
algorithms were selected. In second round 5 
were selected. NIST finished its selection 
process and published a final standard white 
paper (FIPS 197) in November 2001. NIST 
selected Rijndael as the proposed AES 
algorithm. The two scientist who developed and 
submitted Rijndael for the AES are both 
cryptographers from Belgium: Dr.Joan Daemen 
and Dr.Vincent Rijmen[1]. 

The choice of platform, software, ASIC 
or FPGA, is driven by several points and 
aspects, such as AES algorithm performance, 
cost, resources and flexibility. Although ASIC 
has high performance and lower the unit cost, it 
has no flexibility at all. While software has the 
most flexibility among all, the performance is 
very lower.  

 
II.  AES Block Diagram & Description 
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Figure 1:AES Algorithm Block Diagram 

 As shown in Fig.1, The algorithm 
consist of three parts. Encryption, Decryption 
and Key Generation Parts. 
A. Encryption 

The Encryption process consist of #10 
rounds of transformation. But, the input given 
to the round #1 will be EX-OR of 128-bits plain 
text and 128-bit key. Each round from round #1 
to round #9 again consist of four different 
transformation internally except 10th round. 
These transformation are namely SubBytes 
operation, ShiftRows operation, MixColumns 
operation and AddRound key transformation. 
The result of one transformation is given as 
input to the next transformation and so on as 
shown in the figure. Round #10 is slightly 
different from the other rounds in that the 
MixCloumns transformation is removed. The 
output of each round is feedback to the next 
round as input. Total 10 rounds of 
transformations produces encrypted output 
called cipher text[4]. 
B. Decryption 

The Decryption process is reverse process 
of Encryption and it also consists of ten rounds 
of transformation. But the input to round #1 will 
be EX-OR of cipher text and key 10. Each 
round from round #1 to round #9 again consists 
of four different transformation internally 
except #10 round. These transformations are 
namely InvSubBytes operation, InvShiftRows 
operation, InvMixColumns operation and 
InvAddRound key transformation. Round #10 

is slightly different from other rounds in that the 
InvMixColumns transformation is removed. 
Like in Encryption output of one round is fed as 
input to the next round. The usage of keys also 
reverse in this case i.e. round #1 uses key 9 and 
round #2 uses key 8 and so on. Total #10 
rounds of transformations produces decrypted 
output i.e. Plain Text[4]. 
C. Key Generation 

This part takes a 128-bit key. The 128-
bit key is divided into four words represented in 
word[0,3]. These four words are used as it is for 
encryption initially before starting of a round 
and for round #10 of decryption part. These 4 
words are used for producing a new key 
represented by word[4,7]. Which is used for 
round #1 of encryption and round  #9 of 
decryption. These 4 words represented by 
word[4,7] which is key 1, is used for producing 
key2 represented by word[8,11]. Like this it 
will generate total 40 words i.e. 10 keys[4]. 

III. AES Specification 
For the AES algorithm, the number of 

rounds to be performed during the execution of 
the algorithm is dependent on the key length. 
The number of rounds is represented by Nr, 
where Nr = 10 when Nk = 4, Nr = 12 when Nk 
= 6, and Nr = 14 when Nk = 8. The only Key-
Block-Round combinations that conform to 
this standard are given in Fig. 2. 

 
Figure 2: Key-Block-Round Combinations. 

A. Key Generation 
The AES algorithm takes the cipher key K, 

and performs a Key Expansion routine process 
to generate a keys. The Key Expansion 
generates a total of  Nb (Nr + 1) words. The 
algorithm requires an initial set of Nb words, 
and each of the Nr rounds require Nb words of 
key data. The resulting key schedule consists of 
a linear array of 4-byte words, denoted [wi], 
with I in the range 0≤ I <Nb(Nr + 1). 

The AES algorithm takes the cipher key K, 
and performs a Key Expansion routine process 
to generate keys. The Key Expansion process 

466 
 



 
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015 

                              ISSN: 2395-3470 
www.ijseas.com 

 
 

generates a total of  Nb (Nr + 1) words. The 
algorithm requires an initial set of Nb words, 
and each of the Nr rounds require Nb words of 
key data. The resulting key schedule contains a 
linear array of 4-byte words, denoted [wi], with 
I in the range 0≤ I <Nb(Nr + 1).The key 
expansion operation has Temp, Subword(), 
Rotword(), Rcon[i],w[i - Nk] stages. The 
following example will show its detail. 
Cipher Key =  
2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c 
for Nk = 4, which results in  
w0 = 2b7e1516, w1 = 28aed2a6, w2 = 
abf71588, w3 = 09cf4f3c 

 
Figure 3:Key Generation Example. 

B. Encryption (cipher) 
The Encryption consists of 4 different 

transformation. The individual transformations -
SubBytes(), ShiftRows(), MixColumns(), and 
AddRoundKey() process the State and are 
described in the following division. All Nr 
rounds are identical with the exception of the 
final round, which does not include the 
MixColumns()transformation. 
1. SubBytes( ). 

The SubBytes() transformation is a non-
linear byte substitution that operates 
independently on each byte of the State using a 
substitution table (S-box). This S-box is 
nonvertible, is constructed by composing  two 
transformations: 

The following Figure.4. illustrates the 
effect of the SubBytes() function on the state. 

 

 
Figure 4: Subbytes applies the s-box 

to each of the state. 
 
1. ShiftRows( ). 

In the ShiftRows() transformation, the 
bytes in the last 3 rows of the State are 
cyclically shifted over different numbers of 
bytes (offsets). The first row,r=0,is not 
shifted. Specifically, the ShiftRows( ) 
transformation proceeds as follows: 

 
Figure 5 illustrates the 
ShiftRows()transformation. 

 
Figure 5: Shiftrows cyclically shifts last three 

rows. 
2. MixColumns( ). 
The MixColumns() transformation operates on 
the State column-by-column, taking each 
column as a four-term polynomial as described 
previously. The columns are treated as 
polynomials over GF(28) and multiplied 
modulo x 4 + 1 with a fixed polynomial a(x), 
given by 

a(x)={03}x3+{01}x2+{01}x+{02}. 
Let, 

S’(x) = a(x)  XOR s(x). 
As a result of this operation, the 4-bytes in a 
column are placed by the following: 

 
 

 
Figure 6: MixColumns operates on state 

column by column. 

3. AddRoundKey( ). 
In the AddRoundKey() transformation 

operation,a Round Key is added to the State by 
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a simple bitwise XOR operation. Each Round 
Key consists of Nb words from key schedule. 
Those Nb words are added  individually into the 
columns of the StateIn the AddRoundKey() 
transformation operation,a Round Key is added 
to the State by a simple bitwise XOR operation. 
Each Round Key consists of Nb words from 
key schedule. Those Nb words are added  
individually into the columns of the State, such 
that 

 
The action of this transformation is illustrated in 
Fig. 7, where l = round * Nb. 

 
Figure 7: Addroundkey XORS each column 

of the state with a word from the key 
schedule. 

2. Decryption (Inverse Cipher) 
The Cipher transformations operation can be 
inverted and then implemented in reverse order 
to produce a straightforward Inverse Cipher for 
the AES algorithm decryption block. The 
individual transformations used in the Inverse 
Cipher -InvShiftRows(), InvSubBytes(), 
InvMixColumns(), and InvAddRoundKey() – 
process the State and are described in the 
following subsections. 
1. InvShiftRows( ). 

InvShiftRows() is the inverse of the 
ShiftRows() transformation operation. The 
bytes in the last 3 rows of the State are 
cyclically rotate over different numbers of bytes 
(offsets). The first row, r = 0, is unshifted. The 
bottom 3 rows are cyclically rotated by Nb -
shift(r, Nb) bytes, where the shift value 
shift(r,Nb) depends on the row number, 
Specifically, the InvShiftRows() 
transformation proceeds as follows: 
S’r,(c+Shift(r,Nb))mod Nb=sr,c for 0<r<4 and 0≤c<Nb. 

 

         Figure 8: InvShiftRows cyclically the 
last three rows in a state. 

2. InvSubBytes( ). 
 InvSubBytes() is the inverse of the byte 
substitution transformation, in which the 
inverse S-box is applied to each byte of the 
State. This is obtained by applying the inverse 
of the affine transformation followed by taking 
the multiplicative inverse in GF(2

8
). 

3. InvMixColumns( ). 
InvMixColumns() is the inverse of the 

MixColumns() function. InvMixColumns() 
operates on the State column-by-column, 
treating each column as a four-term polynomial. 
The columns are considered as polynomials 
over GF(2

8
) and multiplied modulo x 

4 
+ 1 with 

a fixed polynomial a 
-1

(x), given by 
a-1(x) = {0b}x3+ {0d}x2+ {09}x+ {0e}. 

4. InvAddRoundKey( ). 
It is the same AddRoundKey function of 

encryption. 
IV.  ALGORITHM IMPLEMENTATION 

A. Implementation of KEY GENERATION 
Module. 

This module takes in 128 bit key and a 
round constant as input and generates a new 
128 bit key. And this makes use of S-BOX table 
to generate a new key. The following RTL 
schematic gives the detail of this entity. 

 
Figure 9: RTL Schematic of internally KEY 

Generation Round . 

 
Figure 10: OUTPUT result of KEY 

Generation Unit . 
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B. Implementation of Encryption Module 
The encryption module contains ten round 

and each round has four stages namely, 
SubBytes, ShiftRows, MixColumns and 
AddRoundKey except 10th round which has 
MixColumns removed. Here we are combining 
SubBytes and ShiftRows into a single stage to 
reduce device utilization. The important part at 
this stage is implementing s-box. MixColumns 
and AddRoundKey transformations and can be 
implemented directly using VHDL Behavioral 
codes. 
1. Implementing a Round. 

A single round consists of four 
transformations namely SubBytes, ShiftRows, 
MixColumns and AddRoundKey. First two 
transformations are combined into a single 
component. Hence a single round will have 3 
components. The entity defined for a round 
takes in 128bit key for that particular round and 
128bit data which is either output of a previous 
round if the round is other than 1st round or it 
would e EX-OR of key and plain text if it is 
Round #1. The following RTL schematic is 
generated for this entity 
2. Implementing Complete Encryption. 

The entity defined for encryption takes in 10 
round keys, plain text and key as inputs and 
produces a cipher text as output, all of them 
having length of 128 bits. The RTL schematic 
for this entity is shown below. 
The following RTL schematic is generated for 
this implementation[5]. 

 
Figure 11: RTL schematic for encryption 

implementation(using feedback arch). 

 

Figure 12: RTL schematic for encryption 
implementation(using pipeline arch). 

3. Implementation of DECRYPTION 
module. 

The decryption module also contain ten 
rounds and each round has four stages namely, 
InvSubBytes, InvShiftRows, InvMixColumns 
and InvAddRoundkey except 10th round which 
has InvMixColumn removed. The important 
part at this stage is implementing INVERSE S-
OX. The internal architecture of decryption 
module is similar to the Encryption module. 
The differences are highlighted below. 
1. Implementing Rounds 

The architecture of a single round is similar 
to that of encryption containing four 
transformations. Round #10 differs in that 
InvMixColumns transformation is removed. 
The implementation of single round is done in 
much the same way as that of encryption round 
using VHDL. 
2. Implementing Complete Decryption. 

 
Figure 13: RTL schematic for decryption 

implementation (using feedback arch). 

The entity defined for decryption takes in 10 
round keys,output of encryption module i.e. 
cipher text and keys as inputs and produces a 
plain text as output, all of them having length of 
128 bits. The RTL schematic for this entity is 
shown below. 

V.COMPARISON BASED ON TWO 
DISTINCT ARCH. 

The following chart compares the 
previous Pipeline Architecture and Latest 
Feedback Architecture. In which it compares 
the resources used by these both Architecture. 
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Figure 14: No. Of Resources Used By 
Individual Arch. 

 
Number Of ROM’s used by an 

individual architecture 
Architecture FeedBack PipeLine 
Encryption 16 160 
Decryption 16 160 
Key Gene.. 04 20 
Figure 15: Comparison Of Two Arch. 

  
VI. APPLICATION OF AES 

ALGORITHM. 
1. For wireless communication devices like 

PDA’s    multimedia cellular phones AES 
can apply. 

2. It can be used for security of Smart cards, 
wireless sensor networks, wireless mesh 
Networks. 

3. AES have high computational efficiency, so 
as to be usable in high speed applications, 
such as broad band links. 

4. AES is very well suited for restricted-space 
environments where either encryption or 
decryption is implemented. It has very low 
RAM and ROM requirements. 

5. Web servers that need to handle many 
encryption sessions. 

6. Any kind application where security is 
needed for our current cryptosystems. 

 
CONCLUSION AND FUTURE WORK 

 
To overcome the issue of low efficiency 

over the traditional CPU-based implementation 
of AES, we proposed a new algorithm for AES 
method in this paper. According to our 
proposal, we designed and implemented the 
feedback AES algorithm. Our implementation 

achieves up to 10x speedup over the 
implementation of AES on a comparable CPU. 
Our implementation can be applied for the 
computer forensics which requires high speed 
of data encryption. In the future, we will focus 
on efficient implementations of other common 
symmetric-key encryption algorithms, such as 
Blowfish, Serpent and Twofish. Besides, future 
work will also include GPU implementations of 
hashing and public key algorithms (e.g. MD5, 
SHA-1 and RSA) in order to create a complete 
cryptographic framework. 
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