

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

Optimized AES Algorithm Using FeedBack Architecture
Chintan Raval1, Maitrey Patel 2, Bhargav Tarpara3

1, 2, Pursuing M.Tech., VLSI, U.V.Patel college of Engineering and Technology, Kherva, Mehsana,
India

3Verification Technical Assistant, eiTRA, Ahemdabad,India

Abstract— A new Feedback based design
technology scheme of the AES-128
(Advanced Encryption Standard, with
128bit-key) algorithm is proposed in this
paper. For getting the speed of encryption
block, decryption blocks and as well as the
key generation block, the Feedback
architecture is applied and the mode of data
transmission is modified in this design so that
the chip size can be decreased. The 128-bit
plaintext and the 128bit-initial key, as well as
the 128bit- output of cipher text, are all
divided into four 32bit-consecutive units
respectively managed by the clock. This new
program can significantly decrease quantity
of chip pins and effectively optimize the area
of chip[4].
KeyWords— VHDl, DES, 3DES, Area
Optimization, Encryption, Decryption, Key
Generation, PipeLine Arch, FeedBack Arch.

I. Introduction
The 3DES algorithm is subjected to

more security than any other encryption
algorithm over a long period of time and no
effective cryptanalytic attack based on
algorithm rather than brute force has been
found. Accordingly, there is a higher level of
confidence that 3-DES is very much resistant to
cryptanalysis. If security is only consideration
then 3-DES would be an appropriate choice for
a standardized encryption and decryption
algorithm for years to come[1].

The main principle drawback of 3-DES
is that the algorithm is relatively sluggish in
software. The original DES was designed in
mid 1970s for hardware implementation and
does not produce efficient software code. In
3DES it has 3 times as many rounds as DES is
correspondingly slower. secondary drawback is

that both DES and 3-DES are works on 64-bit
block size. Just For the reasons of both
efficiency and security a larger block size is
desirable[1].

Just because of these drawbacks, 3-DES
is not reasonable algorithm for long time use.
As a replacement algorithm, NIST (National
Institute Of Standard And Technology) in 1997
issued a call for proposals for a new Advanced
Encryption Standard (AES) which is having
security strength equal or better than 3-DES and
significantly improved in working. In addition
to these general requirements NIST specified
that AES must be symmetric block cipher with
a block length of 128 bits and support for key
lengths of 128-bits,192-bits and 256-bits[1].

In first round of evaluation, 15 proposed
algorithms were selected. In second round 5
were selected. NIST finished its selection
process and published a final standard white
paper (FIPS 197) in November 2001. NIST
selected Rijndael as the proposed AES
algorithm. The two scientist who developed and
submitted Rijndael for the AES are both
cryptographers from Belgium: Dr.Joan Daemen
and Dr.Vincent Rijmen[1].

The choice of platform, software, ASIC
or FPGA, is driven by several points and
aspects, such as AES algorithm performance,
cost, resources and flexibility. Although ASIC
has high performance and lower the unit cost, it
has no flexibility at all. While software has the
most flexibility among all, the performance is
very lower.

II. AES Block Diagram & Description

465

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

Figure 1:AES Algorithm Block Diagram

 As shown in Fig.1, The algorithm
consist of three parts. Encryption, Decryption
and Key Generation Parts.
A. Encryption

The Encryption process consist of #10
rounds of transformation. But, the input given
to the round #1 will be EX-OR of 128-bits plain
text and 128-bit key. Each round from round #1
to round #9 again consist of four different
transformation internally except 10th round.
These transformation are namely SubBytes
operation, ShiftRows operation, MixColumns
operation and AddRound key transformation.
The result of one transformation is given as
input to the next transformation and so on as
shown in the figure. Round #10 is slightly
different from the other rounds in that the
MixCloumns transformation is removed. The
output of each round is feedback to the next
round as input. Total 10 rounds of
transformations produces encrypted output
called cipher text[4].
B. Decryption

The Decryption process is reverse process
of Encryption and it also consists of ten rounds
of transformation. But the input to round #1 will
be EX-OR of cipher text and key 10. Each
round from round #1 to round #9 again consists
of four different transformation internally
except #10 round. These transformations are
namely InvSubBytes operation, InvShiftRows
operation, InvMixColumns operation and
InvAddRound key transformation. Round #10

is slightly different from other rounds in that the
InvMixColumns transformation is removed.
Like in Encryption output of one round is fed as
input to the next round. The usage of keys also
reverse in this case i.e. round #1 uses key 9 and
round #2 uses key 8 and so on. Total #10
rounds of transformations produces decrypted
output i.e. Plain Text[4].
C. Key Generation

This part takes a 128-bit key. The 128-
bit key is divided into four words represented in
word[0,3]. These four words are used as it is for
encryption initially before starting of a round
and for round #10 of decryption part. These 4
words are used for producing a new key
represented by word[4,7]. Which is used for
round #1 of encryption and round #9 of
decryption. These 4 words represented by
word[4,7] which is key 1, is used for producing
key2 represented by word[8,11]. Like this it
will generate total 40 words i.e. 10 keys[4].

III. AES Specification
For the AES algorithm, the number of

rounds to be performed during the execution of
the algorithm is dependent on the key length.
The number of rounds is represented by Nr,
where Nr = 10 when Nk = 4, Nr = 12 when Nk
= 6, and Nr = 14 when Nk = 8. The only Key-
Block-Round combinations that conform to
this standard are given in Fig. 2.

Figure 2: Key-Block-Round Combinations.

A. Key Generation
The AES algorithm takes the cipher key K,

and performs a Key Expansion routine process
to generate a keys. The Key Expansion
generates a total of Nb (Nr + 1) words. The
algorithm requires an initial set of Nb words,
and each of the Nr rounds require Nb words of
key data. The resulting key schedule consists of
a linear array of 4-byte words, denoted [wi],
with I in the range 0≤ I <Nb(Nr + 1).

The AES algorithm takes the cipher key K,
and performs a Key Expansion routine process
to generate keys. The Key Expansion process

466

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

generates a total of Nb (Nr + 1) words. The
algorithm requires an initial set of Nb words,
and each of the Nr rounds require Nb words of
key data. The resulting key schedule contains a
linear array of 4-byte words, denoted [wi], with
I in the range 0≤ I <Nb(Nr + 1).The key
expansion operation has Temp, Subword(),
Rotword(), Rcon[i],w[i - Nk] stages. The
following example will show its detail.
Cipher Key =
2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c
for Nk = 4, which results in
w0 = 2b7e1516, w1 = 28aed2a6, w2 =
abf71588, w3 = 09cf4f3c

Figure 3:Key Generation Example.

B. Encryption (cipher)
The Encryption consists of 4 different

transformation. The individual transformations -
SubBytes(), ShiftRows(), MixColumns(), and
AddRoundKey() process the State and are
described in the following division. All Nr
rounds are identical with the exception of the
final round, which does not include the
MixColumns()transformation.
1. SubBytes().

The SubBytes() transformation is a non-
linear byte substitution that operates
independently on each byte of the State using a
substitution table (S-box). This S-box is
nonvertible, is constructed by composing two
transformations:

The following Figure.4. illustrates the
effect of the SubBytes() function on the state.

Figure 4: Subbytes applies the s-box

to each of the state.

1. ShiftRows().

In the ShiftRows() transformation, the
bytes in the last 3 rows of the State are
cyclically shifted over different numbers of
bytes (offsets). The first row,r=0,is not
shifted. Specifically, the ShiftRows()
transformation proceeds as follows:

Figure 5 illustrates the
ShiftRows()transformation.

Figure 5: Shiftrows cyclically shifts last three

rows.
2. MixColumns().
The MixColumns() transformation operates on
the State column-by-column, taking each
column as a four-term polynomial as described
previously. The columns are treated as
polynomials over GF(28) and multiplied
modulo x 4 + 1 with a fixed polynomial a(x),
given by

a(x)={03}x3+{01}x2+{01}x+{02}.
Let,

S’(x) = a(x) XOR s(x).
As a result of this operation, the 4-bytes in a
column are placed by the following:

Figure 6: MixColumns operates on state

column by column.

3. AddRoundKey().
In the AddRoundKey() transformation

operation,a Round Key is added to the State by

467

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

a simple bitwise XOR operation. Each Round
Key consists of Nb words from key schedule.
Those Nb words are added individually into the
columns of the StateIn the AddRoundKey()
transformation operation,a Round Key is added
to the State by a simple bitwise XOR operation.
Each Round Key consists of Nb words from
key schedule. Those Nb words are added
individually into the columns of the State, such
that

The action of this transformation is illustrated in
Fig. 7, where l = round * Nb.

Figure 7: Addroundkey XORS each column

of the state with a word from the key
schedule.

2. Decryption (Inverse Cipher)
The Cipher transformations operation can be
inverted and then implemented in reverse order
to produce a straightforward Inverse Cipher for
the AES algorithm decryption block. The
individual transformations used in the Inverse
Cipher -InvShiftRows(), InvSubBytes(),
InvMixColumns(), and InvAddRoundKey() –
process the State and are described in the
following subsections.
1. InvShiftRows().

InvShiftRows() is the inverse of the
ShiftRows() transformation operation. The
bytes in the last 3 rows of the State are
cyclically rotate over different numbers of bytes
(offsets). The first row, r = 0, is unshifted. The
bottom 3 rows are cyclically rotated by Nb -
shift(r, Nb) bytes, where the shift value
shift(r,Nb) depends on the row number,
Specifically, the InvShiftRows()
transformation proceeds as follows:
S’r,(c+Shift(r,Nb))mod Nb=sr,c for 0<r<4 and 0≤c<Nb.

 Figure 8: InvShiftRows cyclically the
last three rows in a state.

2. InvSubBytes().
 InvSubBytes() is the inverse of the byte
substitution transformation, in which the
inverse S-box is applied to each byte of the
State. This is obtained by applying the inverse
of the affine transformation followed by taking
the multiplicative inverse in GF(2

8
).

3. InvMixColumns().
InvMixColumns() is the inverse of the

MixColumns() function. InvMixColumns()
operates on the State column-by-column,
treating each column as a four-term polynomial.
The columns are considered as polynomials
over GF(2

8
) and multiplied modulo x

4
+ 1 with

a fixed polynomial a
-1

(x), given by
a-1(x) = {0b}x3+ {0d}x2+ {09}x+ {0e}.

4. InvAddRoundKey().
It is the same AddRoundKey function of

encryption.
IV. ALGORITHM IMPLEMENTATION

A. Implementation of KEY GENERATION
Module.

This module takes in 128 bit key and a
round constant as input and generates a new
128 bit key. And this makes use of S-BOX table
to generate a new key. The following RTL
schematic gives the detail of this entity.

Figure 9: RTL Schematic of internally KEY

Generation Round .

Figure 10: OUTPUT result of KEY

Generation Unit .

468

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

B. Implementation of Encryption Module
The encryption module contains ten round

and each round has four stages namely,
SubBytes, ShiftRows, MixColumns and
AddRoundKey except 10th round which has
MixColumns removed. Here we are combining
SubBytes and ShiftRows into a single stage to
reduce device utilization. The important part at
this stage is implementing s-box. MixColumns
and AddRoundKey transformations and can be
implemented directly using VHDL Behavioral
codes.
1. Implementing a Round.

A single round consists of four
transformations namely SubBytes, ShiftRows,
MixColumns and AddRoundKey. First two
transformations are combined into a single
component. Hence a single round will have 3
components. The entity defined for a round
takes in 128bit key for that particular round and
128bit data which is either output of a previous
round if the round is other than 1st round or it
would e EX-OR of key and plain text if it is
Round #1. The following RTL schematic is
generated for this entity
2. Implementing Complete Encryption.

The entity defined for encryption takes in 10
round keys, plain text and key as inputs and
produces a cipher text as output, all of them
having length of 128 bits. The RTL schematic
for this entity is shown below.
The following RTL schematic is generated for
this implementation[5].

Figure 11: RTL schematic for encryption

implementation(using feedback arch).

Figure 12: RTL schematic for encryption
implementation(using pipeline arch).

3. Implementation of DECRYPTION
module.

The decryption module also contain ten
rounds and each round has four stages namely,
InvSubBytes, InvShiftRows, InvMixColumns
and InvAddRoundkey except 10th round which
has InvMixColumn removed. The important
part at this stage is implementing INVERSE S-
OX. The internal architecture of decryption
module is similar to the Encryption module.
The differences are highlighted below.
1. Implementing Rounds

The architecture of a single round is similar
to that of encryption containing four
transformations. Round #10 differs in that
InvMixColumns transformation is removed.
The implementation of single round is done in
much the same way as that of encryption round
using VHDL.
2. Implementing Complete Decryption.

Figure 13: RTL schematic for decryption

implementation (using feedback arch).

The entity defined for decryption takes in 10
round keys,output of encryption module i.e.
cipher text and keys as inputs and produces a
plain text as output, all of them having length of
128 bits. The RTL schematic for this entity is
shown below.

V.COMPARISON BASED ON TWO
DISTINCT ARCH.

The following chart compares the
previous Pipeline Architecture and Latest
Feedback Architecture. In which it compares
the resources used by these both Architecture.

469

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

0

200

400

PIPELINE ARCH FEEDBACK ARCH

Figure 14: No. Of Resources Used By
Individual Arch.

Number Of ROM’s used by an

individual architecture
Architecture FeedBack PipeLine
Encryption 16 160
Decryption 16 160
Key Gene.. 04 20
Figure 15: Comparison Of Two Arch.

VI. APPLICATION OF AES

ALGORITHM.
1. For wireless communication devices like

PDA’s multimedia cellular phones AES
can apply.

2. It can be used for security of Smart cards,
wireless sensor networks, wireless mesh
Networks.

3. AES have high computational efficiency, so
as to be usable in high speed applications,
such as broad band links.

4. AES is very well suited for restricted-space
environments where either encryption or
decryption is implemented. It has very low
RAM and ROM requirements.

5. Web servers that need to handle many
encryption sessions.

6. Any kind application where security is
needed for our current cryptosystems.

CONCLUSION AND FUTURE WORK

To overcome the issue of low efficiency

over the traditional CPU-based implementation
of AES, we proposed a new algorithm for AES
method in this paper. According to our
proposal, we designed and implemented the
feedback AES algorithm. Our implementation

achieves up to 10x speedup over the
implementation of AES on a comparable CPU.
Our implementation can be applied for the
computer forensics which requires high speed
of data encryption. In the future, we will focus
on efficient implementations of other common
symmetric-key encryption algorithms, such as
Blowfish, Serpent and Twofish. Besides, future
work will also include GPU implementations of
hashing and public key algorithms (e.g. MD5,
SHA-1 and RSA) in order to create a complete
cryptographic framework.

REFERENCE

[1]. J. Daemen and V. Rijmen, AES

Proposal:Rijndael, AES Algorithm
Submission, September 3, 1999.
http://csrc.nist.gov/encryption/aes/rijndael/R
ijndael.pdf.

[2]. J. Daemen and V. Rijmen, The block cipher
Rijndael, Smart Card research and
Applications, LNCS 1820, Springer-Verlag,
pp. 288-296.

[3]. Maire McLoone, John V. McCanny:Single-
Chip FPGA Implementation of the
advanced encryption standard algorithm.

 www.springerlink.com/index/eajtwybnuw9
hhejjh.

[4]. FIPS PUB197, Advanced Encryption

Standard (AES),National Institute of
Standards and Technology, U.S.
Department of Commerce, November 2001.

 http://csrc.nist.gov/publications/fips/fips197
/fips-197

[5]. Suresh Sharma, T S BSudarshan: Design of

an Efficient Architecture for Advanced
Encryption Standard Algorithm Using
Systonic Structure.

 http://www.hipc.org/hipc2005/posters/systol
ic.pdf

470

